
����������
�������

Citation: Messmer, M.; Audrino, F.

The Lasso and the Factor

Zoo-Predicting Expected Returns in

the Cross-Section. Forecasting 2022, 4,

969–1003. https://doi.org/10.3390/

forecast4040053

Academic Editor: Konstantinos

Nikolopoulos

Received: 6 October 2022

Accepted: 17 November 2022

Published: 25 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

forecasting

Article

The Lasso and the Factor Zoo-Predicting Expected Returns in
the Cross-Section
Marcial Messmer and Francesco Audrino *

Department of Economics, School of Economics and Political Science, University of St. Gallen, Bodanstrasse 6,
9000 St. Gallen, Switzerland
* Correspondence: francesco.audrino@unisg.ch

Abstract: We investigate whether Lasso-type linear methods are able to improve the predictive
accuracy of OLS in selecting relevant firm characteristics for forecasting the future cross-section of
stock returns. Through extensive Monte Carlo simulations, we show that Lasso-type predictions
are superior to OLS when type II errors are a concern. The results change if the aim is to minimize
type I errors. Finally, we analyze the predictive performance of the competing methods on the US
cross-section of stock returns between 1974 and 2020 and show that only small and micro-cap stocks
are highly predictable throughout the entire sample.
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1. Introduction

After years of strong growth in the number of published firm characteristics (FC) claim-
ing to explain differences in average cross-sectional returns, some researchers have more re-
cently shifted their attention to the fundamental question of which statistical method to em-
ploy in selecting these variables; see for example, Harvey et al. [1], McLean and Pontiff [2]
or Green et al. [3]. Given that understanding differences in cross-sectional returns has far-
reaching implications for finance theory in general and consequently also for a vast part of
the investment management industry, improving these methods is a pre-requisite for future
finance research. This work aims to contribute to the task by investigating the importance
of selecting FC that matter for prediction in a selection process focusing on prediction
and highlighting the relative predictive accuracy of various shrinkage methods through
an extensive simulation study and an empirical investigation of cross-sectional returns in
the US.

More generally, selecting variables, estimating coefficients and predicting noisy targets
are common challenges for finance and economics. An important application in the context
of selecting FC is the seminal contribution by Fama and French [4], where variable selection
is performed based on the multivariate regression framework and where insignificant
coefficients are discarded. In particular, they regress cross-sectional returns on several firm
characteristics to determine the crucial set of criteria that explain differences in returns.
Based on this selection procedure, Fama and French [5] form the well-known Fama-French
(FF) three-factor model, which has set the benchmark and raised the bar for detecting new
relevant FC. However, these estimates, usually obtained from ordinary least squares (OLS),
often suffer from a large variance and, hence, conclusions about the relevance of coefficients
come potentially with a high degree of uncertainty.

To overcome the high variance problem of classical linear methods, the machine learn-
ing literature has introduced alternative methods for variance reduction by tolerating a
small bias. In an important contribution Tibshirani [6] presents the least absolute shrinkage
and selection operator (Lasso) method for estimating linear models. It simultaneously
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performs variable selection and coefficient estimation by shrinkage. To preserve the advan-
tages of absolute shrinkage, Zou [7] proposes a modified version, the so-called adaptive
Lasso, such that consistent variable selection can be achieved even under less stringent
conditions.

This study contributes to the literature by developing an extensive Monte Carlo
simulation to generate a panel of plausible cross-sectional returns in which a distinct and
novel feature is the flexible simulation of high-dimensional FC correlation matrices. This
simulation design allows us to investigate extensively the predictive performance of Lasso
methods in panels for various error specifications and to highlight eventual problems
related to the correct selection of FC that contain useful information to predict the cross-
section of expected returns.

The primary goal of the paper is to answer the question of whether Lasso-type meth-
ods can be useful in predicting differences in expected cross-sectional returns. Secondly,
the paper aims to determine which firm characteristics drive these predictions and how
they compare to classical approaches. In addition to the empirical evaluation, we use a
simulation study to shed light on the properties of the methods in finite samples. For the
empirical part of our analysis, we focus on the US cross-section. We include 62 published
firm characteristics constructed based on the CRSP/Compustat merged database with
monthly data starting from 1974 until 2020.

It is important to note that we constrain our selection and prediction procedure to
the linear setting. Specifically, we want to perform our prediction based on a multivariate
regression that is consistent with the original scope when the considered FC was introduced
in the literature. Hence, this study builds on the work of Green et al. [3]. In particular, the
authors analyze a large set of FC in a linear multivariate Fama and MacBeth [8] regression;
we closely follow their data construction and FC pre-selection procedure. However, instead
of relying on a multivariate regression, we apply the adaptive Lasso a true variable selection
method.

The simulation results indicate some advantages of the adaptive Lasso over the Lasso
in selecting the true set of FC. In contrast, Lasso-type predictions rank consistently better
when predictive accuracy is the main objective. We find patterns consistent with the
simulation results when predicting US small-cap stock returns, as two of the considered
Lasso-type specifications achieve the best predictions. Large-cap stocks are not forecastable
with the methods included in this work and the naïve zero return forecast cannot be rejected
as being inferior to the included set of linear estimators. These results on the US expected
returns cross-section confirm and extend the empirical evidence provided in the previous
literature.

The full pooled panel adaptive Lasso selection characterizes 21 FC of relevance for
future differences in stock returns. This is in stark contrast to 47 variables selected by the
Lasso, 23 by pooled ordinary least squares (POLS) and 13 by POLS inference corrected
for multiple testing. The most dominant FC for prediction is based on price information;
the most consistently selected is short-term reversal. Moreover, the Fama and French [9]
five-factor model is fully represented in the Lasso-based selection, but complemented by
additional FC. Although the methods considered in the current study substantially differ,
generally this contrasts with the findings of Green et al. [3], as they identify a relatively
low-dimensional linear cross-section.

This study contributes to different strands of the literature. First, it contributes to
the asset pricing literature by analyzing the usefulness of Lasso-type methods in selecting
relevant FC for estimating and predicting expected cross-sectional stock returns; we refer,
among others, to Cochrane [10,11], Goyal [12], and Hou et al. [13] for reviews of the different
research questions, estimation methods, and introduced FC related to asset pricing. Harvey
et al. [1] introduce the concepts of family-wise error and the false discovery rate to the
finance literature. Applying the t-value adjustment reveals that many published factors
would lose their status as a significant factor. However, the method suffers shortcomings
from a prediction perspective that our work takes into consideration: It does not explicitly
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take into account the dependence structure of the FC and it neglects to trade-off type I vs.
type II errors.

More recently, Kozak et al. [14] investigate the problem from a portfolio perspective
in combination with L2 and L1 penalties. The authors identify a sparse set of FC. A mean-
variance (MV) optimized portfolio including 50 anomaly variables yields a CAPM alpha
similar to the Fama and French [9] five-factor model. Furthermore, the authors include
two-dimensional interactions between these 50 FC and show a substantial increase in an
alpha of the MV portfolio compared to the case without interactions.

Feng et al. [15] propose a double Lasso model selection methodology to systematically
investigate the in-sample marginal contribution to asset pricing of some new, additional
factors beyond what is explained by a possibly vast number of already existing ones.
They introduce a framework for conducting in-sample statistical inference in such a high-
dimensional setting and provide robustness checks to verify the sensitivity of the results
with respect to the involved tuning parameters in finite samples. In contrast to their study,
our analysis focuses on out-of-sample prediction and on the evaluation of the forecasting
accuracy of the resulting Lasso-based models. We provide new evidence about the finite
sample properties of the Lasso (and other) estimators to select relevant factors for prediction
through an extensive simulation exercise that is broader in terms of competing models and
model selection criteria designed for forecasting than the one presented by Feng et al. [15].

Finally, Bryzgalova [16] pays particular attention to problems arising from model mis-
specification when using shrinkage methods in the context of factor models. She introduces
an alternative adaptive weighting scheme based on partial correlations instead of a two-
stage procedure as compared with the adaptive Lasso. The work of Freyberger et al. [17]
approaches the problem using non-parametric techniques. DeMiguel et al. [18] analyze the
FC selection from a portfolio perspective in a framework that combines shrinkage and mean-
variance (MV) optimization. Moreover, a fast-growing strand of the literature addresses the
prediction problem from a non-linear perspective; see, for example, Messmer [19], Moritz
and Zimmermann [20] or Gu et al. [21].

Second, our study is related to the literature that investigates the finite samples or
asymptotical properties of shrinkage approaches in financial settings. The Lasso introduced
by Tibshirani [6] is motivated by the desire to improve OLS estimates without the short-
comings of subset selection and ridge regression. Tibshirani [6] notes that subset selection
suffers from high variability, as small data changes can cause subset selection to easily
select a different model. Zou [7] remarks that subset selection can become computationally
infeasible if the number of variables is large. Ridge regression, which penalizes the sum
of the squared coefficients (l2 norm) in a linear regression framework, on the other hand,
has no obvious interpretation due to the fact that the coefficients are not exactly set to
zero.The Lasso estimator optimizes least squares under an additional condition involving
the total sum of the absolute size of the coefficients (known as the `1-norm) that cannot
be larger than a given tolerance value. The inclusion of a penalty term leads to consis-
tent coefficient estimation and variable selection if two necessary conditions are fulfilled,
as Meinshausen [22] shows; see Bühlmann and Van De Geer [23] for a detailed discussion.
These conditions are too restrictive in many empirical applications. Zou [7] modifies the
Lasso insofar as the weight of each coefficient in the penalization term is adaptive. This
is achieved by scaling the absolute value of each coefficient with a first-stage estimator
such that more highly relevant variables are less strongly affected by the penalty. Setting
adaptive weights leads to consistent variable selection and coefficient estimation even if
one of the two is not fulfilled.

The previously mentioned consistency properties are developed for a cross-sectional
set-up with iid errors. Typically, the majority of applications in finance require the use
of time-series or panel data. Moreover, an iid error specification is more an exception
than the rule. Consequently, Medeiros and Mendes [24], Caner and Zhang [25], Caner
and Kock [26], Kock and Callot [27], Audrino and Camponovo [28] and Kock [29,30]
derive asymptotic properties of the Lasso and the adaptive Lasso in time series and panel
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settings. In particular, Medeiros and Mendes [24] and Audrino and Camponovo [28]
derive consistency properties of the adaptive Lasso in time series environments. Medeiros
and Mendes [31] prove that the oracle properties of the adaptive Lasso are preserved for
linear time series models even under non-Gaussian, conditionally heteroscedastic and time-
dependent errors. Audrino and Camponovo [28] show that the adaptive Lasso combines
efficient parameter estimation, variable selection and valid finite sample inference for
general time series regression models. We contribute to this strand of the literature by
investigating the finite sample properties of Lasso-type estimators by performing extended
simulations in a realistic panel data setting mimicking closely the behavior of the expected
returns cross-section with a prediction target.

The paper is organized as follows. Section 2 provides a description of the relevant
methodology. This section is followed by a description of the estimation objective and how
it relates to a factor structure. Section 3 presents the simulation study. The data are briefly
discussed in Section 4. The penultimate section covers the empirical work, including the
return prediction and FC selection results. The final section concludes.

2. Methodology

This section introduces the notation and presents the underlying estimation methods
and the statistics we use to evaluate the selection and prediction performance of the
methods in our simulations and the empirical analysis.

2.1. Notation

Generally, if not explicitly otherwise stated, we follow the notation that n refers to
stock n of Nt total stocks and t to period (i.e., month) t of T total periods. Moreover, factors
are indexed by c of C total factors and belong to set C, where each c belongs to one of the
following three groups or subsets: priced factors are denoted by p (of a total P) and define
the set P ; unpriced factors are defined by u (of a total U, set U ), and spurious factors with
respect to the return process are described by s (of a total S, set S). The total number of
factors, P + U + S = C. A specification of each type of factor is outlined in more detail in
Section 2.2. The indexing of FC is identical to that of the factors.

2.2. FC and the Return Generating Process

Generally, we assume a Rosenberg [32] and Daniel and Titman [33] type cross-sectional
return structure. Covariances are determined based on a factor structure and expected
returns mark a compensation for factor risk (default assumption). Following Daniel and
Titman [33], we consider the following excess return generating process,

Re
n,t = β′n,t−1 ft + x′n,t−1δ + ηn,t, t = 1, ...., T, n = 1, ..., N (1)

where ft defines the vector of factor returns of length C and ηn,t each stock idiosyncratic
noise component, assumed to be normally distributed and orthogonal to the factors and
other stocks’ idiosyncratic components. x′n,t = [1 Cn,t], the vector of the corresponding C FC
and an intercept: Cn,t = [sizen,t, bmn,t, momn,t, ...]′. Each factor, ft, follows the dynamics,

fi,t = µi + εi,t, with εi,t ∼ N (0, σ2
i ) i = 1, ..., C,

where µi defines the risk-premium of the i’th factor and εi,t, i = 1, · · · , C, the sequence of
independent factors’ innovations. Moreover, we assume a linear functional relation of the
FC and the factor exposures,

βn,t = g(xn,t) = at + Bxn,t (2)

with B a C× C matrix of coefficients. Note that at cancels, once we consider de-meaned
cross-sectional returns. Naturally, exposures are time-varying. This is in line with the
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empirical characteristics, as momentum or value exposures vary with the price level
movements of each stock. The model 1 then becomes

Re
n,t = β′n,t−1µ + β′n,t−1εt + x′n,t−1δ + ηn,t

= (Bxn,t−1)
′µ + (Bxn,t−1)

′εt + x′n,t−1δ + ηn,t

= x′n,t−1(B′µ + δ) + η̃n,t

where η̃n,t is the new zero mean innovation. As a consequence, the linear predictive
dependence we aim to measure is of the form:

Et−1[Re
n,t] = x′n,t−1γ. (3)

To allow for different interpretations of the relationship between FC and expected
returns from an asset pricing perspective we differentiate among three types of factors,
namely priced, unpriced, and spurious factors:

• P priced factors: µp 6= 0 ∀p ∈ P ,
• U unpriced factors: µu = 0 ∀u ∈ U ,
• S spurious factors: βs,t = 0 and δs = 0, ∀s ∈ S .

Examples of priced factors are the market or value factor; for unpriced factors, sector
factors; and for spurious factors, an independently created random time series. In a first
model setting we consider risk-premia always coupled to the underlying risk-exposure,
that is δ = 0 and γi = biµ = 0 ∀i ∈ U , where bi = B·,i denotes the i-th column of B. As an
example, the CAPM can be found in this asset pricing model interpretation by considering
only one priced factor, the market factor and no unpriced or spurious factors.

Under a second asset pricing modeling interpretation, we consider a model where δi
is not constrained to be equal to zero for the unpriced factors in (3). In case γi = δi 6= 0
for some i ∈ U , δi measures the sensitivity of FC to expected returns that do not directly
compensate for factor risk. It imposes a non-zero covariance between FC (xn,t−1) and
some factors in case the FC are linked to the non-zero elements in δ as described in Daniel
and Titman [33]. In this model setting, we might have zero-priced factors. In particular,
this asset pricing model allows two stocks with an identical book-to-market ratio to have
different risk exposures to a book-to-market value factor. Here the return compensation is
associated with the book-to-market characteristic, i.e., mispricing, and not its risk sensitivity
to the value dimension. The first asset pricing modeling framework rules this out. The
second asset pricing model implies the presence of asymptotic arbitrage. Regardless of the
interpretation, both models are estimated using (3).

2.3. Methods

We focus on three different linear models, which are defined as:

β̂ols = arg min
β

(
‖Y− Xβ‖2

2/n
)

, (4)

β̂Lasso(λ) = arg min
β

(
‖Y− Xβ‖2

2/n + λ‖β‖1

)
, (5)

β̂adapt(λ) = arg min
β

(
‖Y− Xβ‖2

2/n + λ
p

∑
j=1

|β j|
|β̂init,j|

)
(6)

where Y ∈ R and X ∈ Rp and the corresponding response vector Yn×1, the design matrix
Xn×p, the parameter vector βp×1. We slightly deviate in this subsection and denote the
regression coefficient as β (vs. γ). In all other sections we use the term β exclusively
as a measure of factor exposure, and γ as the regression coefficient we aim to estimate.
Moreover, throughout this work we treat Y and X as standardized matrices, with µ = 0
and σ = 1, where the standardization is applied column by column. As defined in (1)
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Y corresponds to the vector of excess returns, Re, and X to the matrix of FC. Equation
(4) defines the ordinary least squares (OLS) estimator, Equation (5) the Lasso estimator
(Tibshirani [6]) and (6) the adaptive Lasso (Zou [7]). The Lasso and the adaptive Lasso differ
in terms of the penalization term, which allows the weights to vary for each parameter. The
assigned individual weights are inversely proportional to a first-stage β estimate. Zou [7]
suggests the use of the OLS estimator, β̂ols as β̂init, unless collinearity is an issue. Bühlmann
and Van De Geer [23] set β̂init = β̂Lasso(λ). The use of the Lasso as a first-stage estimator
is justified by the screening property of the Lasso, which still allows consistent variable
selection of the adaptive Lasso at the second stage. We solely use the Lasso as a first stage
estimator in (6) in this work. The penalty term λ used in (5) and (6) is determined by
cross-validation (CV) or classical selection criteria, typically five-fold or ten-fold CV, the
Bayesian information criterion (BIC), or the Akaike information criterion (AIC). Bühlmann
and Van De Geer [23] show that the optimal λ̂ based on the BIC evaluation reads as follows:

λ̂BIC = arg min
λ

(
n log

(
‖Y− Ŷλ‖2

n

)
+ log(n)‖β̂λ‖0

0

)
,

and accordingly the AIC,

λ̂AIC = arg min
λ

(
n log

(
‖Y− Ŷλ‖2

n

)
+ 2‖β̂λ‖0

0

)
.

Alternatively, the optimal λ can be estimated by cross-validation. Here we randomly
split the samples along time points and never within a given period. Assume we observe T
periods each containing N stocks S1,t, S2,t,..., SN,t. Consequently, we can randomly select
a training and testing set along the time index t. Hence, high cross-sectional correlations
cannot cause biased estimates for the optimal λ.

The empirical set-up presented above makes shrinkage methods like the ones intro-
duced above an attractive choice as they possess the ability to reduce the variance at the
cost of slightly increasing the bias. First, as the variance increases in p, the ratio of p

T can
potentially be high, as we have 400+ presented factors in the literature and in the best case
50 years of monthly data (T = 600). Moreover, if some FC is available only for a shorter
period of time, we can still perform the regression, as the Lasso methods are feasible even
for the case where we have a truly high-dimensional problem (p > T), which imposes a
constraint for classical OLS. Moreover, the noise component makes up unambiguously a
significant proportion of the return process (even when assuming that the efficient market
hypothesis is violated). Hence, the noise variance component has an important impact.

2.4. Data Sparsity

It is important to highlight the role played by the assumption of data sparsity con-
nected to the use of the (adaptive) Lasso. Data sparsity is generally an untestable as-
sumption and we consider it only a rough although reasonable approximation of reality.
According to Zhang et al. [34] the concept of exact sparsity can be relaxed while still main-
taining the same rate of convergence of the Lasso estimator to the true coefficients. They
define that a model is sparse if most coefficients are small, in the sense that the sum of their
absolute values is below a certain level. Under this general sparsity assumption, it is no
longer sensible to select exactly the set of nonzero coefficients. Therefore, in cases where
the exact selection consistency is unattainable or undesirable, the authors show that the
Lasso is able to select the important variables with coefficients above a certain threshold
determined by the controlled bias of the selected model. Thus, under this generalized
sparsity concept, the (adaptive) Lasso is able to successfully discriminate between small and
large coefficients and identify with high probability the most important firm characteristics;
see also Bühlmann and Van De Geer [23] for a general review of the corresponding theory.
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Moreover, given that our interest focuses primarily on the predictive ability of the
competing approaches, the results discussed by Greenshtein et al. [35], Bickel et al. [36],
and Sirimongkolkasem and Drikvandi [37] are reassuring: They highlight the fact that
assuming sparsity as an approximation of the true design of the data does not generally
significantly degrade the predictive accuracy of the models in high-dimensional settings
with a large number of covariates. Greenshtein et al. [35] show that under various sparsity
assumptions there is “asymptotically no harm” in considering a large number of covariates
(many more than observations) for prediction purposes in a linear regression model under
an l1 constrained optimization. Bickel et al. [36] provide bounds on the lp prediction
loss, 1 ≤ p ≤ 2, of the Lasso in a high dimensional linear regression in terms of the
best possible (oracle) approximation under the sparsity constraint. Finally, by comparing
different shrinkage approaches in a linear regression simulation setting, Sirimongkolkasem
and Drikvandi [37] show that when important covariates are associated with correlated
data, the l1 and l2 prediction performances of the Lasso improve for both sparse and
non-sparse high dimensional settings and even sometimes outperform those of the Ridge
regression. The predictive performance of the Lasso remains generally unaffected when the
correlated covariates are associated with nuisance and less important variables. Given the
previous evidence and the fact that the focus of the current study is set on identifying the
most relevant methods and firm characteristics for predicting the cross-section of expected
returns in a variable selection framework, we do not report results for alternative shrinkage
techniques like the Ridge. Predictive performance results using Ridge are qualitatively
similar to those presented for the lasso in Section 5.2.1 and are available from the authors
upon request.

2.5. Selection and Prediction Evaluation

We apply pooled ordinary least squares as described in (4), where the t-values are
based on the Driscoll and Kraay [38] robust standard errors. Next, we set a significance level
for the OLS estimates to have a rule determining whether or not a coefficient can be seen as
selected—we set the level to the literature standard of 5%. The impact of multiple-testing is
gauged by considering t-value corrections as presented by Harvey et al. [1]. Specifically, we
use the Bonferroni and Holm adjustment, which belongs to the class of family-wise error
rates. Additionally, the study includes Benjamini, Hochberg and Yekutiel’s (BHY) adjust-
ment, a false discovery rate control, which we also consider; we refer to Harvey et al. [1]
for a more complete description of the multiple-testing adjustments. In the case of the
Lasso and the adaptive Lasso, the FC selection procedure is straightforward: all non-
zero coefficient estimates are considered to be selected. Here we provide estimates for
Lasso- and adaptive Lasso-based BIC, AIC and five-fold cross-validation (CV5) optimized
regularization strength.

Following the variable selection, we calculate expected returns for each stock at each
point in time. In this step, we evaluate two variants of each method. The first case drops
all insignificant coefficients in the case of OLS and takes the relevant ones directly into
consideration for the prediction. The second variant performs a post-variable selection OLS
(PVSOLS).

The prediction quality is then measured based on a cross-sectional average, as pro-
posed by Gu et al. [21]. More formally,

lt =
1

Nt

Nt

∑
n=1

(Re
n,t − R̂e

n,t)
2 (7)

where Re
n,t and R̂e

n,t denote the actual and the predicted excess returns over the risk-free rate,
respectively. We report two metrics measuring the prediction performance, the simple time
series average of lt and the model confidence set (MCS) as introduced by Hansen et al. [39].
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Furthermore, we report the out-of-sample R2
OS following Campbell and Thompson [40]

defined as follows:
R2

t,OS = 1− lt
1

Nt
∑Nt

n=1 Re 2
n,t

(8)

3. Simulation Study

In order to analyze the suitability of the Lasso-type estimators in the previously de-
scribed context, we propose a simulation of cross-sectional returns and FC. It is calibrated
such that crucial properties of the cross-sectional return data are satisfied. Although the
simulation setting is highly stylized and cannot be a perfect replication of the true under-
lying data-generating process (DGP), it is helpful for gaining insights into the method’s
model selection and predictive performance in finite samples under different distributional
assumptions in our specific setting; see the literature review in Section 1 on what has
already been proved theoretically.

3.1. Calibration

The calibration of the return-generating process is as follows:

• We set the number of priced and unpriced factors to 6 each. Even if it were theoretically
assumed that unpriced factor risk should not exist, it could empirically still be present.
Moreover, we assume that the factors are independent of one another and that the
stock market factor explains the highest proportion of variance of all priced factors.

• Firm characteristics fall into one of the following three groups: Group 1 measures
factor exposure to priced factors and group 2 to unpriced factors. Group 3 measures
FCs which are independent of the return-generating process. FCs are potentially
correlated across groups.

• The signal-to-noise ratio is relatively small, assuming a ratio implying a yearly R2 of
5% (see the Appendix A for details on the transformation to monthly R2s). This is in
line with empirically documented R2s in the case of the linear model; see, for example,
Lewellen [41].

• The stock market factor follows a time-varying volatility process (implying het-
eroskedasticity for the individual stocks over time as well).

• The simulated return series do not possess any auto-correlation.
• The return-generating process follows (1) with εc,t+1 ∼ N (0, σ2

f ) ∀c ∈ P ∪ S ∧ c 6= 0

and ε0,t+1 ∼ N (0, σ2
0,t). FC, c = 0, represents the stock market return, which follows a

latent volatility process σ2
0,t (see next item). εc,t+1 is set to 0 ∀c ∈ S (spurious factor).

The elements of the vector of risk-premia, µc, are drawn from ∼ unif(0.1, 3.5)∀c ∈
P ∧ c 6= 0 and are set equal to zero ∀c ∈ U ∪ S . We assume a stock market premium,
µ0, of 5.5% per year. The risk-premia are drawn only once per case and are kept
constant through each simulation. The market premium is the estimate of the Fama
French market factor.

• σ2
0,t, the stock market volatility, is estimated by using a GARCH(1,1) process, where the

estimated σ̂t are obtained by fitting a GARCH(1,1) model on daily observed US stock
market returns. The GARCH(1,1) model captures a sufficient fraction of distribution
properties observed in stock returns for our simulation study. Moreover, model
performance seems reasonable compared to many less parsimonious approaches (see
Hansen and Lunde [42]). Better volatility models exist, but are beyond the scope of
this paper and not of crucial relevance.

• ηn,t represents the idiosyncratic stock-specific component and is drawn from∼ N (0, σ2
idio).

Bekaert et al. [43] show that aggregated idiosyncratic volatility varies over time.
Despite this empirical evidence, we choose a parsimonious approach to model id-
iosyncratic volatility. This is mainly motivated by the statistical properties our DGP
already possesses.
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• xn,t marks the vector of FC of stock n at t of length C. We simulate the characteristics
xt from ∼ N (0, Σ).

• The correlation matrix of FC, Σ, is obtained following the simulation approach of
Hardin et al. [44] and is a crucial feature of our simulation. It is important, as many FC
measure empirically similar variations. The base case refers to the constant correlation
structure within groups (Algorithm 1) in Hardin et al. [44]. The Σ is drawn only
initially and kept constant in each specification. The empirical correlation structure
described in Section 5.1 shows a handful of cases with pairwise correlations around
0.9 and many between 0.4 and 0.5. Our simulated correlation pairs reflect this, in order
to investigate the impact of this difference. However, this study does not consider
a correlation grouping of more than two FCs, or any other forms of more involved
linear dependencies.

Finally, the collection of all T periods of the simulations can then be stacked together in
matrix X and matrix Y. The true coefficient of interest is the vector of µ, which is estimated
as the vector of coefficients γ̂.

The specification allows flexible simulations under different assumptions, analyzing
the sensitivity of simulation parameters on the performance of the method. For this,
we perform several different simulation specifications, each loosening one assumption
separately. In general, the following default parameters are set:

• Number of simulations, 2000.
• Number of in-sample periods, 600, corresponding to 50 years of monthly data.
• Number of out-of-sample periods, 240, corresponding to 20 years of monthly data.
• Number of stocks, 4000, where 4000 corresponds to the average number of stocks used

in the empirical part.
• Number of firm characteristics, 100—with P = 6, U = 6 and S = 88.
• σ2

f and σ2
idio result from the pre-specified level of R2, where the noise variance is

distributed as described in the Appendix A.
• The correlation matrix, Σ, is simulated such that we have one high (0.9) and one low

(0.4) pairwise correlation between FC from each group. See Figure 1 for a visualization
of one realization of the specified correlation matrix simulation.

3.2. Sensitivity Analysis

The behavior of the simulated DGP crucially depends on its calibration defined above.
In order to investigate the sensitivity to these choices, we define the following cases:

Case 1: Base case
Default settings.
Case 2: Small T
Default settings, T is set to 240.
Case 3: Large T
Default settings, T is set to 4200 (and N reduced to 800 to keep it computationally

tractable). This specification requires a longer than available estimated GARCH(1,1) series;
the missing σ2

0,t are simply simulated based on the GARCH(1,1) parameter estimates
described in the Appendix A. (This case is not a realistic scenario for monthly data but is
insightful for applications with higher frequencies.)

Case 4: Expected returns: a function of FC instead of factor exposure
Default settings. The premium of the stock market factor is set to zero. Instead, we

attach the premium to the FC directly and impose a correlation of the factor exposure and
the FC of 0.9. This is in line with our second asset pricing interpretation introduced in
Section 2.2.

Case 5: Small N
Default settings, N is set to 250.
Note that each simulation considers a balanced panel. As the actual data consist

of an unbalanced panel, we adjust the data as described in Section 5.1. Moreover, the
simulation ignores potential measurement errors in FC and assumes that they are measured



Forecasting 2022, 4 978

without errors. Empirically, the most common FC suffering from measurement error are, as
mentioned above, market betas.

� � � � � � 	 
 � � �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��
�


�
�

�
�

�
�

	



�
�

��
��

��
��

��
��

�	
�


��
��

��
��

��
��

��
�









����������������������������������������������������


���

���

���

��	

���

���

Figure 1. The figure displays a fraction of the default correlation matrix used for the simulations.
It shows the correlation for the first 25 FC, where FC 0 to 5 refer to the set of FC with positive
risk-premia, 6-11 belong to U and the rest to S . For example, FC 1 (part of P) and FC 12 (part of
S) are correlated with each other with a correlation of around 0.9. Note that the missing 75 FC are
uninteresting insofar as their off-diagonal elements are close to zero.

3.3. Performance Evaluation

After each data simulation is performed, we report ten specifications covering all
three methods and their respective choice variables presented above in the pooled panel
framework. We collect the results of the OLS estimates, the Lasso and the adaptive Lasso.
The evaluation considers two performance dimensions. First, we show the selection
qualities of each method; second, we assess the simulated forecast accuracy, reflecting
jointly the selection and parameter estimation qualities.

Knowing the true DGP of the simulation, we can then simply calculate the ratios of
correctly classified coefficients, providing insights on type I and type II error behavior. Type
II errors are calculated for FC 0–5—a failure to reject the null hypothesis of an unpriced
factor FC given the factor is truly priced. Type I errors are measured for FC 6–100—rejecting
the null hypothesis of an unpriced factor exposure given the FC is tied to an unpriced factor
(FC 6–11) or the FC is independent of the returns (FC 12–100). The prediction evaluation
follows Section 2.5 and is based on the 240 periods of simulated out-of-sample data.

3.3.1. Prediction

Case 1: Default settings
The prediction simulation results of case 1 are displayed in Figure 2. The BIC and CV5

Lasso specifications perform best considering the average p-value of the MCS; however, the
differences are not large. The weakest among the methods is the standard POLS. Correcting
the t-values for multiple testing yields meaningful improvements in this specification. The
MSE ratios are more concentrated and only a few differences can be documented; the
highest value achieves the Bonferroni and Holm t-value adjusted predictions.

Case 2: Small T
Reducing the number of estimation periods increases the difference between the min

and max p-value average. POLS remains the weakest prediction tool and the two Lasso-



Forecasting 2022, 4 979

type methods still perform best, although in the opposite order. Furthermore, the p-value
corrected POLS-based predictions rank among the worst-performing methods. Consistent
with the wider p-value difference, the MSE relative difference increases compared to the
default case. Once more, adjusting the t-values for the variable selection realizes the highest
MSE on average.

Case 3: Large T
A larger T leads to convergence of the prediction results as the gap between the

average p-value and the MSE narrows.
Case 4: Direct linear dependence between FC and expected returns
There is no notable difference in the order of the p-values; the two Lasso-type predic-

tions yield the best results.
Case 5: Small N
Compared to the previous four cases the Lasso CV5 methodology falls by some rank

levels; however, the Lasso BIC remains on top. Overall, a lower number of stocks in
the cross-section impacts the relative quality of POLS-based predictions negatively when
compared to the default case.

1 2 3 4 5
Case

POLS

L AIC PVSOLS

POLS PVSOLS

L CV5 PVSOLS

AL CV5

L BIC PVSOLS

L AIC

AL BIC

AL CV5 PVSOLS

AL AIC

AL AIC PVSOLS

POLS PVSOLS BHY

POLS PVSOLS Bonf

POLS PVSOLS Holm

AL BIC PVSOLS

L CV5

L BIC

0.28 0.13 0.53 0.25 0.091

0.39 0.23 0.61 0.35 0.24

0.48 0.44 0.66 0.39 0.32

0.55 0.46 0.69 0.57 0.36

0.59 0.51 0.71 0.66 0.64

0.62 0.48 0.75 0.59 0.61

0.62 0.49 0.73 0.57 0.59

0.64 0.51 0.72 0.64 0.65

0.65 0.52 0.7 0.69 0.66

0.66 0.54 0.72 0.65 0.64

0.66 0.51 0.72 0.61 0.6

0.66 0.41 0.69 0.61 0.55

0.66 0.44 0.7 0.61 0.56

0.66 0.44 0.7 0.61 0.56

0.67 0.51 0.71 0.62 0.68

0.67 0.64 0.77 0.71 0.64

0.7 0.59 0.84 0.65 0.71

MCS p-value average

1 2 3 4 5
Case

0.9969 0.9929 0.9998 0.9952 0.9949

0.9969 0.9929 0.9998 0.9951 0.9946

0.9977 0.9948 0.9998 0.9961 0.996

0.9972 0.9936 0.9998 0.9951 0.9945

0.9974 0.9939 0.9997 0.9951 0.9944

0.9968 0.9928 0.9998 0.9951 0.9941

0.9968 0.9928 0.9998 0.9951 0.9942

0.9968 0.9928 0.9997 0.995 0.994

0.9974 0.9939 0.9997 0.9951 0.9943

0.9968 0.9928 0.9997 0.995 0.9941

0.9968 0.9928 0.9997 0.9951 0.9941

0.9999 1 1 0.9999 1

1 0.9997 1 1 1

1 0.9997 1 1 0.9999

0.9968 0.9928 0.9997 0.9951 0.994

0.9972 0.9936 0.9998 0.9951 0.9943

0.9968 0.9927 0.9998 0.995 0.9943

MSE relative to max

Figure 2. The figure shows the simulated out-of-sample prediction evaluation for each method.
Pooled OLS (POLS), Lasso AIC with post-variable selection OLS (L AIC PVOLS), pooled OLS
with post-variable selection OLS (POLS PVOLS), Lasso CV5 with post-variable selection OLS (L
CV5 PVOLS), adaptive Lasso CV5 (AL CV5), Lasso BIC with post-variable selection OLS (L BIC
PVOLS), Lasso AIC (L AIC), adaptive Lasso BIC (AL BIC), adaptive Lasso CV5 with post-variable
selection OLS (AL CV5 PVOLS), adaptive Lasso AIC (AL AIC), adaptive Lasso AIC with post-variable
selection OLS (AL AIC PVOLS), pooled OLS with post-variable selection OLS and the BHY t-value
adjustment(POLS PVOLS BHY), pooled OLS with post-variable selection OLS and the Bonferroni
t-value adjustment (POLS PVOLS Bonf), pooled OLS with post-variable selection OLS and the Holm
t-value adjustment(POLS PVOLS Holm), adaptive Lasso BIC with post-variable selection OLS (AL
BIC PVOLS), Lasso CV5 (L CV5) and Lasso BIC (L BIC). The plot on the left side shows average MCS
p-values over all 2000 simulation cases, where the p-value measures if the model is part of the MCS.
The right figure illustrates the MSE values relative to the max of each case. The darker the color the
better the performance relative to the competing methods.

3.3.2. Selection

Case 1: Default settings
The selection simulation results of case 1 are displayed in Table 1. The results reveal

that there are distinct differences between the methods applied. It shows that for the
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simulated stock market factor, OLS performs the worst, as it displays a type II error rate
of around 50%. On the other hand, the Lasso and the adaptive Lasso methods show a
far better performance with an error rate of around 0% and 15%, respectively, for the
stock market factor (in the case of CV5). For the other, significantly less volatile factors
carrying a positive risk-premium, the type II error rates are zero in the case of AIC and
BIC-based selection. The exceptions are some POLS t-value adjusted estimates and all
Lasso- and adaptive Lasso-selected FCs are based on CV5. The type I error cases have to
be distinguished in two cases: First, for FC belonging to set U (unpriced factor FC) where
OLS has slight advantages over the adaptive Lasso, only the CV5-based adaptive Lasso
selections perform comparably. The Lasso reveals a poor performance with error rates
mostly above 50%. The second case of type I errors comprises spurious FC. Correlations
of the uninformative FC with any of the two other FC types prove once more to be a
problem for the Lasso. For these cases, the more restrictive adaptive Lasso reveals a far
better selection performance than the Lasso, as the error rate is zero for all cases. Moreover,
the OLS type I error rate behaves as expected by varying around the 5% significance level.

Case 2: Small T
Reducing the number of periods in the simulation reveals differences in the perfor-

mance compared to the default simulation results, as Table 1 shows. First, type II error rates
rise strongly for OLS estimates, whereas only a slight increase is observed for the adaptive
Lasso and practically no changes are visible for the Lasso. The picture also changes when
looking at type I error rates for FC in set U , where we observe a jump in error ratios for the
adaptive Lasso.

Case 3: Large T
As T grows larger, the error ratios decline as expected. The only remarkable exception

is found for the Lasso, where once more the correlated FC remains prone to false inference.
A strong indication that the neighborhood stability condition is likely to be violated in
cases of higher correlations is that the error rate of FC 6 is 99% and that of FC 12 reaches
84%. Moreover, higher error ratios are also observed for cases with weaker correlations of
around 0.5; see FC cases 7–9 and 12–15.

Case 4: Direct linear dependence between FC and expected returns
This specification yields a performance improvement for all methods, most apparent

for OLS, where the classification error comes down from 33% to 23% compared to the
default assumption.

Case 5: Small N
We observe some higher type II errors for one FC in the case of adjusted POLS selection

and generally lower type I errors for the Lasso-type methods.
Finally, we briefly summarize the simulation results. We show that the adaptive Lasso

is superior to OLS when type II errors are a concern. A Lasso-based selection reveals for
this case only negligible advantages over the adaptive Lasso. The picture changes if we
want to minimize type I error behavior. Here we have to differentiate between two distinct
scenarios. First, whenever we encounter an entirely uninformative independent variable,
we show that the adaptive Lasso performs best. Second, in case we have a relation of
the independent variable with an unpriced risk factor of the dependent variable, an OLS
approach achieves the best results. We note that correlations are a crucial driver behind
these results, where, in particular, the Lasso presents problems reaching reasonable type
I error ratios when confronted with higher correlations (≈0.9). Moreover, altering the
optimal λ selection mechanism impacts the results importantly. BIC is favorable over AIC
in the specifications under consideration. BIC reduces type I errors without suffering from
an increase in type II misclassifications. BIC vs. CV exposes a tradeoff between type I and
type II. Assigning equal weight to both error types, BIC-based estimation is the preferable
tuning method. Additional robustness checks can be found in Appendix A.2.
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Table 1. Simulation Results: The table provides an overview of type II (for priced factor FC, FC 0–5) and type I error (for unpriced factor FC, 6-11, and spurious FC,
12–99) ratio behavior in percentage points for the specified simulation cases. All details of the cases can be found in Section 3.2. FC cases 12–15 are interesting insofar
as they are spurious FC with high correlations to priced and unpriced FC. A white space represents a zero value.

Case Method P — Type II U — Type I S — Type I Summary FC 16-99
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mean std min max

1 POLS 0.50 0.05 0.04 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.01 0.04 0.06
POLS BY 0.88 0.06 0.04 0.02
POLS Holm 0.89 0.06 0.04 0.02
POLS Bonf 0.90 0.06 0.04 0.02
AL BIC 0.02 0.01 0.11 0.11 0.12 0.12 0.13
AL AIC 0.02 0.01 0.13 0.14 0.16 0.15 0.16
AL CV5 0.14 0.10 0.11 0.09 0.08 0.10 0.05 0.05 0.06 0.05 0.06
L BIC 0.01 0.40 0.60 0.63 0.65 0.65 0.63 0.28 0.18 0.05 0.02 0.01 0.01
L AIC 0.52 0.78 0.83 0.84 0.85 0.83 0.42 0.35 0.29 0.26 0.25 0.01 0.21 0.27
L CV5 0.09 0.06 0.06 0.06 0.06 0.06 0.37 0.51 0.53 0.55 0.54 0.55 0.25 0.17 0.07 0.04 0.03 0.02 0.04

2 POLS 0.52 0.04 0.17 0.12 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.04 0.07
POLS BY 0.90 0.36 0.65 0.58 0.41 0.03
POLS Holm 0.89 0.32 0.61 0.54 0.37 0.02
POLS Bonf 0.89 0.33 0.62 0.54 0.37 0.02
AL BIC 0.03 0.07 0.01 0.10 0.36 0.32 0.38 0.37 0.37
AL AIC 0.02 0.05 0.01 0.11 0.39 0.37 0.43 0.41 0.41
AL CV5 0.15 0.11 0.25 0.15 0.12 0.08 0.05 0.15 0.13 0.16 0.15 0.15
L BIC 0.01 0.02 0.47 0.74 0.74 0.76 0.79 0.78 0.29 0.23 0.05 0.04 0.01 0.01 0.02
L AIC 0.01 0.63 0.85 0.89 0.90 0.90 0.90 0.39 0.37 0.28 0.27 0.26 0.01 0.23 0.29
L CV5 0.10 0.07 0.11 0.08 0.07 0.06 0.38 0.51 0.49 0.52 0.53 0.52 0.17 0.12 0.02 0.02 0.01 0.01 0.02

3 POLS 0.06 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.04 0.05 0.05 0.01 0.04 0.06
POLS BY 0.04
POLS Holm 0.04
POLS Bonf 0.04
AL BIC
AL AIC 0.01 0.01
AL CV5
L BIC 0.37 0.37 0.38 0.40 0.40 0.43 0.26 0.10 0.03 0.02 0.01 0.01
L AIC 0.46 0.62 0.70 0.71 0.71 0.74 0.39 0.30 0.23 0.24 0.22 0.01 0.20 0.24
L CV5 0.42 0.49 0.52 0.56 0.54 0.57 0.33 0.19 0.11 0.10 0.06 0.01 0.05 0.08
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Table 1. Cont.

Case Method P — Type II U — Type I S — Type I Summary FC 16-99
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mean std min max

4 POLS 0.34 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.06
POLS BY 0.79
POLS Holm 0.80
POLS Bonf 0.81
AL BIC 0.01 0.02 0.21 0.19 0.24 0.22 0.24
AL AIC 0.01 0.02 0.24 0.23 0.27 0.26 0.28
AL CV5 0.04 0.10 0.09 0.11 0.10 0.11
L BIC 0.43 0.70 0.71 0.74 0.75 0.74 0.31 0.22 0.04 0.03 0.01 0.01 0.01
L AIC 0.58 0.83 0.87 0.87 0.89 0.90 0.42 0.37 0.28 0.29 0.26 0.01 0.23 0.28
L CV5 0.02 0.42 0.58 0.58 0.62 0.62 0.62 0.25 0.16 0.04 0.04 0.02 0.02 0.03

5 POLS 0.44 0.02 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.06
POLS BY 0.88 0.03 0.27 0.05
POLS Holm 0.88 0.03 0.26 0.05
POLS Bonf 0.89 0.03 0.27 0.05
AL BIC 0.03 0.01 0.03 0.06 0.07 0.08 0.09 0.07 0.01 0.01
AL AIC 0.02 0.08 0.15 0.16 0.20 0.19 0.17 0.02 0.04 0.01 0.01 0.01
AL CV5 0.07 0.01 0.03 0.02 0.01 0.01 0.04 0.06 0.07 0.07 0.08 0.08 0.01 0.01
L BIC 0.02 0.33 0.16 0.21 0.20 0.19 0.18 0.27 0.06 0.04 0.02 0.01 0.01
L AIC 0.01 0.42 0.44 0.52 0.54 0.55 0.55 0.38 0.25 0.23 0.20 0.20 0.01 0.18 0.22
L CV5 0.04 0.01 0.01 0.01 0.01 0.01 0.39 0.34 0.39 0.40 0.41 0.42 0.34 0.17 0.15 0.10 0.09 0.01 0.08 0.11
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4. Data

Our objective is to preserve consistency as much as possible. Therefore the selec-
tion, data preparation and the notation of the description of firm characteristics generally
follow the approach of Green et al. [3]. The FC data are implemented independently of
Green et al. [3]. Our sample period ranges from 1974 to 2020. As in most studies, the
analysis considers only CRSP stocks with share codes 10 and 11 which are traded either
at NYSE, AMEX or NASDAQ; for an example, see Fama and French [4]. Furthermore,
we exclude stocks with missing market capitalization data and/or where book values are
unavailable. Compustat data are aligned with a standard lag of six months of the fiscal
year end date. For example, the data of a firm with fiscal year end date 12/31 are aligned
with data 06/30, predicting monthly returns from 6/30 to 7/31. CRSP-based stock/firm
characteristics, such as idiosyncratic volatility, beta, maximum return or six-months mo-
mentum are used as of the most recent month end. For example, for the return prediction
from 6/30 to 7/31, the max daily return from the period 5/31-6/30 is used. Additionally,
following Green et al. [3] some selected Compustat accounting data are set to zero if not
available; see the Appendix A for details. In processing larger amounts of data, correcting
extreme and often implausible values is mostly unavoidable. Correcting these values on a
discretionary basis is not feasible; hence, winsorizing the data is a useful strategy to reduce
the problem. Therefore, each FC is winsorized at the 1% and 99% percentile at each point in
time. Binary FC like divi, divo, rd and ipo are excluded from the winsorizing procedure. In
the next step, missing data are replaced by the mean of the winsorized data at each point
in time. Only then can the z-score standardization be applied at each calendar point. We
do winsorize the return observations at the 5% and 95% percentile at each point to reduce
the weight of outliers in the least-squares setting; therefore, no observations are excluded
because of implausible returns. Moreover, returns are only de-meaned for each period and
not corrected by the standard deviations. Finally, the data can be stacked and the pooled
regressions applied, as each independent variable has mean zero and variance one given
by the property of combining z-scores. Note that this is necessary as the Lasso requires a
normalized design matrix as input, as described above.

However, differences in the selection of FC are unavoidable. This study employs
only FCs which are not dependent on Compustat quarterly and IBES data. A detailed
description of each FC included in the empirical part of this study can be found in the
Appendix A. Moreover, the β estimates are obtained by regressing rolling weekly stock
returns on the market excess returns. The literature often employs an alternative procedure
whereby stocks are ranked and sorted into portfolios according to their individual market
beta; see, for example, Fama and French [4]. The betas assigned to each stock for estimating
the equity market premia are obtained by using the betas of the corresponding portfolios.
Using portfolio beta estimates instead of individual stock betas has been applied to reduce
potential errors-in-variable issues in the second stage regression. However, Ang et al. [45]
cast doubt on whether portfolio betas are optimal due to the loss of dispersion in individual
betas. More details about the specific CRSP and Compustat data and the corresponding
data alignment process can be found in the Appendix A. The returns used in the prediction
regression are the CRSP returns (RET) adjusted by the provided CRSP delisting return
(DLRET). Additionally and for verification purposes, we benchmark our data for selected
FC with the FC portfolio returns provided by Kenneth French’s Data Library. We find
satisfying R2s, reaching values from 0.99> to about 0.9 for cases where the FC definition of
the benchmark data slightly deviates from the one presented in Green et al. [3]. Furthermore,
we follow Fama and French [46] for the size classification definition, where large-cap stocks
are the 1000 stocks with the highest market capitalization, mid-cap stocks rank 1001–2000
and small comprise all stocks with rank >2000. Finally, our industry-adjusted variables
always use the 48 sectors downloaded from Kenneth French’s Data Library, as the SIC 2
classification is empirically too granular since in many instances the sector group is defined
by a single stock.
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5. Empirical Results

The first subsection explains the details of how we construct the required normalized
matrix X of the unbalanced panel of FC and returns. This subsection is followed by the
empirical analysis of the predictability of cross-sectional stock returns. The third subsection
covers the discussion of the selected FC.

5.1. Estimation Set-Up

As described above, the approach estimates the coefficients based on a pooled panel
set-up. However, simply stacking the data causes two problems.

First, since we are interested in cross-sectional differences, we need to normalize
each FC at each point in time to preserve the cross-sectional information. To illustrate the
problem, one can think about the book-to-market ratio of single stocks, which certainly
fluctuates partially based on market-wide price movements through time; standardizing
along the entire panel would then implicitly change the order as time and cross-sectional
information get mixed up.

Another issue that needs to be addressed is the unbalanced panel structure, as it
implicitly causes the weights of each period in the regression to vary. Assuming there is no
correlation between the returns and the number of stocks, we could ignore this issue, but
empirically this is not the case; for example, we see that prior to the stock market peak at
the beginning of the 2000s we have a much higher number of stocks with unknown return
dependence. Therefore, we suggest adjusting the number of stocks in each period to the
mean number of stocks per time point. This can be achieved by simply randomly drawing
stocks with replacements at each point in time until we have filled the desired sample size.

Figure 3 presents the correlation structure of the FC. It shows overall only five cases
with absolute correlation coefficients greater than 0.9. Even though we cannot achieve
precisely the same correlation structure in our simulation, we have considered cases with
correlations of around 0.9 and hence capture this feature observed in the data in our
simulation as well. As we show in the simulation study in Section 3, correlations around 0.9
cause no selection issues for the adaptive Lasso; only a Lasso-based selection appears prone
to misclassification. However, we want to avoid including almost identical FC. Hence,
before regressing the returns on the full set of FC included in our dataset, we screen the
correlations for cases with an absolute correlation greater than 0.95. In such cases, we
eliminate the more recently published FC of the affected pair from our analysis. Finally,
not all FC are included in our FC analysis due to data problems; we drop: cfp_ia, roic,
pchemp_ia, and ipo.

5.2. Predicting the Cross-Section of Returns

The prediction results presented in this subsection analyze the out-of-sample return
predictions from 1992 to 2020. We run monthly rolling and expanding window regressions
to form predictions for the upcoming month. The expanding window regression is initially
fit with 15 years of observations. The rolling window specification includes three different
windows, with 10, 15 and 20 years of data. Moreover, we form five different data groups
classified by market capitalization: all, including all stocks available; large, consisting of
the highest 1000 ranked stocks; mid, the stocks ranked between 1001 and 2000; large plus
mid, the top 2000; small, considering all stocks below a market cap rank 2000. Hence, we
look in total at 20 different data groupings. Note that, the results in this section represent
aggregated numbers, as we show averages of the four different data estimation windows
defined above.
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Figure 3. Empirical correlation matrix (best seen in color): The figure exhibits the correlation of all
stocks and FC included in our analysis for the years June 1974 until December 2020. We use the
normalized, winsorized and pooled FC data (as used in the full sample regression) to calculate the
correlation coefficients. The figure shows five extreme correlation pairs (>0.9). For example, the
highest absolute correlation is measured for beta and beta_sq with a coefficient slightly less than 0.95.

5.2.1. Performance Evaluation

Table 2 and Figure 4 present the empirical out-of-sample prediction evaluation. It
reveals that the ability to forecast cross-sectional returns varies along the size dimension.
Large-cap stocks are not predictable compared to a naïve benchmark for the full sample
period, whereas small and micro-cap stocks are highly predictable. When focusing on R2

statistics we do not find any meaningful differences along the time dimension.
Separating the predictions into a different sizes and time buckets allows for a more

granular perspective. Figure 4 displays the 12-month aggregated rolling R2 for each size
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group. The prediction quality of the sample including all stocks shows relatively stable
predictability, with a period of poorer forecasts between 2003 and 2008. However, small and
micro-cap stock returns are predictable until the end of our sample. The MCS p-value for
the naïve zero-return forecast is consistently below the 5% significance level. The question
of whether these predictable returns are exploitable by investors remains unanswered here.
It might reflect the fact that risk compensation or existing trading frictions simply do not
allow prices to reflect all information available at the time. On the other hand, large-cap
stock returns are much harder to predict during the entire sample, with the exception of a
short period in the early 2000s. The prediction results highlight the importance of evaluating
the quality of return predictions conditioned on size corroborating the empirical evidence
shown in the previous literature. Splitting the sample into a pre- and post-2004 period (not
reported) yields almost the same results for samples when assessing the predictability of
cross-sectional returns compared to the full period analysis.

Comparing different linear estimators reveals that the empirical results of all stocks
are consistent with the simulation findings. Based on the MSE and R2 metric, the Lasso
specifications perform best followed by the adaptive Lasso, whereas POLS-based methods
show the weakest performance. Moreover, the five-fold cross-validation reaches the best
prediction results in the case of Lasso and adaptive Lasso-based predictions. However, the
differences are not statistically significant, as we can only reject the Lasso AIC case as not
being part of the MCS at a 10% confidence level.

The predictability pattern changes if we consider only large cap stocks, as all out-of-
sample R2s turn negative. Overall, large-cap stocks are not predictable with the selected
linear methods measured over the full sample between 1992 and 2020 as the zero return
forecast achieves the lowest MSE. The prediction quality slightly improves when consider-
ing mid-cap stocks only, with two specifications achieving slightly positive R2s. Doubling
the cross-sectional sample size by combining large and mid-cap stocks does not improve
the prediction quality in a statistical or economically meaningful way. The small-cap subset
shows that small and micro-cap stocks are highly predictable as the zero return prediction
benchmark is statistically rejected at a 1% level and not part of the MCS. Lasso-type predic-
tions perform best in this case. Furthermore, the size sub-sample analysis underscores the
importance of conditioning on the size as the existing predictability shown for all stocks is
mostly driven by a small fraction of the market which only accounts for a negligible share
of the US market capitalization. This result echoes the findings of Hou et al. [13], who show
that small and micro-cap stocks contribute disproportionately to return characteristics of
many published anomalies.

Furthermore, we can see that there are distinct differences in the number of selected
FC. The Lasso specifications contain the largest number of FC; on average about 14–42 FC
are selected to form expected returns. The more conservative adaptive Lasso selects
around 5–28 FC depending on the tuning method. The POLS-based forecasts use a lower
dimensional model, as it includes on average between 1 and 18 FC. Counting the pure
number of FC can be misleading, as many coefficients might be close to zero and hence the
effective dimensionality could be more similar between the methods. If we compare the
absolute sum of all coefficients between the different regressions, we still see meaningful
differences, however at a different order of magnitude than purely counting active variables.
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Table 2. Out-of-Sample Forecast Evaluation: The MSE and R2s are calculated according to (7)–(8).
The MCS indicates the p-value of being part of the set that includes the best model. The monthly R2s
are expressed in percentage points. The MSE and ∑ abs(coef) column values are scaled by a factor of
103 and 101, respectively. The columns “Median #” and “Mean #” show the time-series median and
mean of the number of active FC.

Size Sample Estimator MSE MCS R2 Median # Mean # ∑ abs(coef)

All AL AIC 142.48 0.39 0.60 26.6 25.0 3.7
AL BIC 142.49 0.21 0.60 21.5 20.8 3.2
AL CV5 142.48 0.52 0.60 16.8 15.9 2.7
L AIC 142.50 0.05 0.59 41.8 42.0 4.6
L BIC 142.47 0.69 0.61 31.8 31.9 3.4
L CV5 142.47 0.91 0.62 29.8 30.5 3.1
POLS PVSOLS 142.49 0.49 0.58 18.0 17.8 3.3
POLS PVSOLS Holm 142.52 0.50 0.54 6.5 6.5 1.8
Zero 143.04 0.01 0.00 0.0 0.0 0.0

Large AL AIC 73.48 0.17 −0.13 21.9 20.5 2.1
AL BIC 73.47 0.33 −0.11 13.2 12.6 1.5
AL CV5 73.41 0.83 −0.03 4.0 5.1 0.7
L AIC 73.49 0.17 −0.17 39.2 39.5 3.0
L BIC 73.44 0.72 −0.07 21.2 20.4 1.4
L CV5 73.45 0.48 −0.06 11.1 14.0 0.9
POLS PVSOLS 73.46 0.43 −0.13 12.1 11.5 1.5
POLS PVSOLS Holm 73.40 0.82 −0.01 1.2 1.5 0.3
Zero 73.39 0.89 0.00 0.0 0.0 0.0

Large + mid AL AIC 97.60 0.60 −0.05 23.2 22.3 2.4
AL BIC 97.59 0.58 −0.04 15.5 15.3 1.8
AL CV5 97.58 0.72 −0.02 5.5 7.3 1.0
L AIC 97.61 0.25 −0.08 42.1 41.4 3.5
L BIC 97.58 0.74 −0.03 27.0 26.2 1.9
L CV5 97.58 0.73 −0.02 17.4 18.0 1.3
POLS PVSOLS 97.58 0.73 −0.05 14.2 14.2 2.1
POLS PVSOLS Holm 97.53 0.96 0.00 3.2 3.4 0.6
Zero 97.52 0.84 0.00 0.0 0.0 0.0

Mid AL AIC 118.75 0.16 −0.04 24.0 23.4 2.7
AL BIC 118.73 0.16 −0.01 10.0 10.3 1.4
AL CV5 118.71 0.43 −0.01 7.0 8.1 1.1
L AIC 118.76 0.17 −0.06 39.8 39.3 3.5
L BIC 118.68 0.83 0.03 15.0 15.1 1.2
L CV5 118.70 0.45 0.00 15.8 17.2 1.4
POLS PVSOLS 118.74 0.29 −0.05 13.1 13.5 2.3
POLS PVSOLS Holm 118.67 0.87 −0.01 3.2 3.4 0.8
Zero 118.65 0.86 0.00 0.0 0.0 0.0

Small AL AIC 187.66 0.45 0.76 29.9 28.1 4.6
AL BIC 187.67 0.33 0.76 19.0 18.5 3.5
AL CV5 187.68 0.31 0.75 19.2 18.3 3.4
L AIC 187.67 0.09 0.75 41.4 41.1 5.3
L BIC 187.64 0.83 0.77 26.0 25.0 3.3
L CV5 187.64 0.68 0.77 30.0 29.6 3.6
POLS PVSOLS 187.69 0.35 0.73 17.8 16.7 4.0
POLS PVSOLS Holm 187.81 0.16 0.61 5.8 5.9 2.2
Zero 188.63 0.00 0.00 0.0 0.0 0.0
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Figure 4. 12-month rolling R2 (best seen in color): The figure shows the 12-month rolling R2 as
defined in (8) of each of the five different size groups. We aggregate the four different estimation
window types per method and display the central tendency with confidence bounds.
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5.3. Shrinking the Zoo of Firm Characteristics for Prediction

The analysis considers the years from 1974 to 2020 and primarily emphasizes the
selection regression including all stocks. These findings are shown in Table 3. Furthermore,
this table shows the regression results of conditioning on large, mid and small-cap-sized
stocks. It displays the coefficient estimates of all FC determined by the Lasso, adaptive
Lasso, and POLS. Given the results discussed in the previous section in terms of predictive
accuracy, we focus on the lasso procedures optimized using five-fold cross-validation. The
discussion in this section stresses mostly the details of the FC selection for the adaptive
Lasso and the differences from the alternative selection procedures. As we showed in the
simulations the adaptive lasso with five-fold cross-validation is able to reduce significantly
the number of false positives. As a consequence, the firm characteristics estimated to belong
to the active set by the adaptive lasso are quite reliable and give a clear indication of which
characteristics carry relevant information for prediction.

Once more, results reflect the findings of Hou et al. [13], who document the impact of
micro-cap stocks. It is also in line with the work of Green et al. [3], as they emphasize a value-
weighted selection exercise. We are interested in the full sample analysis, i.e., the results of
the single pooled regression applied at once over all periods to obtain the set of selected FC.
Note that we denote the sign of the selected FC in brackets behind each FC when mentioned in
the text for the first time and also provide a brief description of the respective FC but for the
following subsection only. For the other subsections, we refer to Appendix A.

5.3.1. FC Selection including All Stocks

Considering all stocks for the selection analysis, the first block of columns in Table 3
embodies the FC selection results for the adaptive Lasso, POLS and Lasso-based on all
sample periods. Note that we drop beta_sq prior to the selection regression for all sam-
ples, due to its high correlation with beta within the large and mid-cap stocks. It is not
surprising that beta and beta_sq are more highly correlated for large and mid-cap stocks,
as the beta of these stocks tends to be more centered around one, causing any quadratic
transformation to be more correlated compared to a more dispersed beta measured among
small-caps. We find that dimensionality varies starkly between the methods. The adaptive
Lasso selects 21, the Lasso 47, POLS with unadjusted t-values 23 and the DFDR adjusted
POLS inference 13 FC. The adaptive Lasso selects four out of five FC associated with
the Fama and French [9] five-factor model and observes consistency with respect to the
sign of the coefficients. Specifically, we identify beta(+)—market; bm(+)—book-to-market;
agr(−)—asset growth; and gma(+)—profitability; as part of the set of active FC. Only mve
—size; is missing. Many out of the 21 FC selected by the adaptive Lasso are based exclusively
on price information. This includes the most relevant FC, measured by the absolute size
of the coefficient, mom1m(−)—short-term reversal; Moreover, the prominent and classi-
cal 12 months momentum—mom12m(+) takes the spot of the second-most relevant FC.
Moreover, the adaptive Lasso selects the following price-related FC: idiovol(−)—last month
idiosyncratic return volatility; maxret(−)— the max daily return of the previous month; and
idiovol(−)—last month idiosyncratic volatility.

We skip all other selected FC and refer to Table 3 instead. Furthermore, the table
expresses the differences between the three selection specifications and underscores the
relevance of this choice. Generally, these across-study comparisons have to be conducted
with caution, as the set of FC and the sample periods can differ and hence impact the
inference in an unknown way. POLS on the other hand selects a set of 23 FC, whose
elements largely overlap with the set identified by the adaptive Lasso.

The table reveals that a Lasso-based procedure would suggest an even higher dimen-
sional relation between FC and returns. We dispense with the discussion here: As the
simulation results showed, lasso could be severely affected by false positives and generally
overestimates the number of active variables. Overall, we find a substantial number of FC
inspected do not contain relevant information for predicting returns when considered in a
multivariate selection, as 41 of the included 62 FC are not picked by the adaptive Lasso.
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Table 3. Main pooled FC regression r = X′γ + ε: The table exhibits the regression coefficients of POLS, Lasso (L) and adaptive Lasso (AL). POLS t-values are
displayed in brackets, bold t-values indicate significance after a DFDR adjustment at the 5%-level. In case of POLS, row “# selected” counts FC with p-values ≤ 5%,
the count for the DFDR equivalent is displayed in brackets. The other columns reflect the count of all non-zero FC coefficients. The estimation spans the period from
1974 to 12–31 until 31 December 2020. The AE: ’All’, ’Large’, ’Mid’ and ’Small’ define different sets of stocks: all CRSP/CS stocks, market cap rank 1–1000, 1001–2000
and 2000>, respectively.

Sample All Large Mid Small
Method AL CV5 L CV5 POLS AL CV5 L CV5 POLS AL CV5 L CV5 POLS AL CV5 L CV5 POLS

# selected 21 47 23 (13) 14 38 10 (0) 18 50 14 (6) 25 54 17 (9)
absacc −0.50 −0.85 −1.03 (3.36 ) −0.19 (0.75) −0.32 −0.49 (1.82) −0.55 −0.97 −1.21 (3.07)
acc −0.45 −0.77 (2.32) −0.33 −0.70 (2.40) −0.34 −0.60 (1.81) −0.82 −1.25 (2.82)
age −0.13 −0.12 (0.56) −0.04 −0.07 (0.25) 0.03 (0.13) 0.32 0.43 (1.45)
agr −1.96 −1.29 −1.52 (4.67) −0.43 −0.53 −0.87 (2.30) −1.02 −0.95 −1.17 (2.37) −2.22 −1.79 −2.05 (5.37)
beta 1.12 1.39 1.58 (2.38) 0.02 0.31 (0.49) 1.31 1.39 1.58 (2.23) 1.06 1.14 1.33 (2.03)
bm 1.39 1.12 1.20 (3.86) 0.41 0.72 (1.94) 0.18 0.30 (0.71) 0.29 0.48 0.52 (1.24)
bm_ia 0.18 0.19 (0.73) −0.20 (0.59) 0.07 0.11 (0.28) 0.43 0.53 0.53 (1.76)
cash 0.48 0.82 0.82 (1.45) 0.25 0.35 (0.54) 0.18 0.72 0.92 (1.55) 0.79 0.99 0.93 (1.55)
cashdebt 0.34 0.59 0.72 (2.25) 0.24 0.53 (1.35) 0.37 0.65 0.82 (1.90) 0.54 0.79 0.95 (2.61)
cashpr −0.08 −0.13 (0.69) −0.09 −0.21 (0.99) −0.08 −0.15 (0.76) −0.27 −0.38 (1.50)
cfp_ia 0.42 0.52 0.50 (2.66) −0.22 (1.00) −0.07 (0.30) 0.48 0.54 0.53 (1.68)
chato_ia 0.43 0.52 (3.11) 0.11 0.32 (1.43) 0.15 0.24 (1.11) 0.18 0.30 (1.13)
chg_mom6m −1.52 −1.84 −2.29 (2.86) −3.00 −2.75 −3.57 (2.73) −2.32 −1.84 −2.44 (2.43) −0.24 −0.79 (0.95)
chinv −0.05 0.03 (0.15) 0.16 (0.49) −0.16 −0.09 (0.35) −0.10 −0.02 (0.07)
chpm_ia 0.07 (0.48) 0.03 0.15 (1.00) 0.27 0.36 (1.91) −0.10 −0.20 (0.87)
chshrout −0.35 −0.58 −0.63 (2.84) −0.05 (0.21) −0.35 −0.45 (1.72) −0.43 −0.61 −0.65 (1.98)
currat −0.11 −1.55 (1.85) −0.46 −1.56 (1.69) −0.30 −0.71 −2.05 (1.94) −1.85 (1.66)
depr 0.04 0.09 (0.40) 0.08 0.11 (0.44) 0.20 0.18 (0.71) 0.48 0.62 (1.94)
divi −0.03 (0.21) −0.13 −0.23 (1.90) −0.08 −0.17 (0.99) −0.01 (0.04)
divo 0.01 0.08 (0.57) −0.09 (0.72) 0.04 0.12 (0.80) 0.08 0.16 (0.74)
dolvol 0.46 (0.60) 0.21 (0.33) 0.15 0.67 (1.58) 0.59 1.16 (1.68)
dy −0.64 −0.82 −0.87 (2.74) −0.29 −0.43 (1.21) −0.20 −0.55 −0.63 (1.91) −0.48 −0.76 −0.86 (2.40)
egr −0.18 −0.21 (1.18) −0.31 −0.30 (1.49) −0.05 (0.22) 0.12 0.26 (1.00)
ep 1.22 1.36 1.46 (4.28) 0.47 0.69 0.74 (2.26) 0.49 0.65 0.71 (1.81) 1.82 1.95 2.12 (4.88)
gma 1.46 1.33 1.42 (4.74) 0.12 0.60 0.80 (1.95) 1.06 1.08 1.22 (3.56) 1.60 1.50 1.59 (4.36)
grcapex −0.23 −0.28 (1.87) −0.03 −0.11 (0.56) −0.47 −0.65 −0.72 (3.47) −0.31 −0.36 (1.62)
hire 0.06 0.20 (0.94) 0.08 (0.34) 0.24 0.40 (1.78) −0.19 −0.25 (0.97)
idiovol −3.93 −4.08 −4.34 (7.03) −0.22 −0.59 −0.90 (1.84) −2.11 −2.13 −2.41 (4.51) −4.62 −4.46 −4.67 (6.91)
invest −0.34 −0.35 (1.15) 0.10 (0.33) −0.02 0.05 (0.13) −0.32 −0.40 −0.34 (0.89)
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Table 3. Cont.

Sample All Large Mid Small
Method AL CV5 L CV5 POLS AL CV5 L CV5 POLS AL CV5 L CV5 POLS AL CV5 L CV5 POLS

lev 0.14 0.22 (0.50) 0.13 0.20 (0.43) 0.38 0.53 (1.26) 0.46 0.70 0.83 (1.40)
lgr 0.19 (0.94) 0.33 (1.21) 0.01 (0.04) 0.20 (0.71)
maxret 0.19 (0.29) 0.57 (1.03) 0.39 (0.71) −0.68 −0.63 (0.71)
mom12m 2.56 2.35 2.08 (2.12) 0.31 −0.23 (0.20) 0.69 0.34 (0.32) 3.88 3.59 3.28 (3.05)
mom1m −4.23 −4.19 −4.27 (6.63) −1.31 −1.39 −1.65 (3.03) −2.18 −2.14 −2.26 (4.04) −6.48 −6.23 −6.23 (7.41)
mom36m 0.26 0.40 (0.94) 0.08 (0.19) 0.07 0.27 (0.72) 0.32 0.46 (0.96)
mom6m 1.44 1.86 2.43 (2.06) 2.49 2.13 3.17 (2.02) 2.96 2.20 2.95 (2.24) 0.35 1.04 (0.85)
mve −0.52 −1.68 (1.33) −0.64 −1.23 −2.01 (2.43) −0.18 −0.53 −0.97 (2.42) −0.09 −0.70 (0.65)
mve_ia 0.54 (0.49) 0.48 0.95 (1.36) 0.19 0.37 (0.68) −0.39 −0.85 −0.87 (0.98)
pchcapx_ia −0.33 −0.38 (2.38) −0.19 −0.25 (1.53) −0.07 −0.13 (0.87) −0.17 −0.44 −0.49 (2.51)
pchcurrat −0.30 (0.66) −0.09 −0.46 (1.00) −0.07 −0.44 (0.86) −0.42 (0.71)
pchdepr −0.06 (0.31) −0.02 (0.10) 0.06 (0.27) −0.27 −0.38 (1.46)
pchgm_pchsale 0.31 0.32 (2.05) −0.07 (0.38) 0.27 0.30 (1.47) 0.13 0.45 0.47 (1.80)
pchquick 0.42 (0.90) 0.42 (0.88) 0.39 (0.74) 0.17 0.75 (1.19)
pchsale_pchinvt 0.24 0.29 (1.64) 0.01 (0.05) 0.12 0.16 (0.77) 0.36 0.48 (1.83)
pchsale_pchrect −0.04 (0.28) 0.02 (0.12) −0.08 −0.20 (1.07) 0.35 0.46 (2.12)
pchsale_pchxsga −0.09 −0.16 (0.70) −0.41 −0.54 (2.33) −0.18 −0.51 −0.62 (2.69) −0.03 (0.09)
pchsaleinv 0.13 0.17 (0.82) 0.11 0.25 (0.92) 0.26 0.30 (1.32) −0.16 (0.56)
pctacc 0.06 0.20 (0.73) 0.11 (0.56) −0.01 (0.04) 0.18 0.37 (1.13)
quick 1.46 (1.57) 0.88 (1.05) 1.34 (1.22) 0.35 2.32 (1.88)
rd 0.00 (0.03) −0.11 (1.03) 0.21 0.25 (1.77) −0.09 −0.19 (0.93)
rd_mve 1.72 1.80 1.88 (5.75) 0.81 0.70 0.72 (2.22) 1.16 1.12 1.21 (3.54) 2.29 2.37 2.50 (6.56)
rd_sale 0.09 0.23 (0.78) 0.08 0.71 1.00 (1.90) 0.61 0.83 (1.91) 0.09 (0.25)
retvol −2.57 −2.60 −2.75 (3.49) −1.24 −1.08 −1.62 (2.97) −2.54 −2.39 −2.70 (4.76) −2.54 −1.94 −1.96 (1.86)
roic 0.23 0.58 0.69 (2.68) 0.72 0.83 0.84 (1.62) 0.15 0.58 0.70 (2.14) 0.49 0.58 (1.52)
salecash 0.07 (0.46) 0.09 (0.53) 0.03 0.20 (1.12) −0.03 −0.13 (0.51)
saleinv 0.16 0.12 (0.91) −0.13 (0.84) −0.05 (0.28) 0.26 0.25 (1.02)
salerec 0.08 (0.33) 0.08 0.20 (0.73) 0.23 0.36 (1.15) 0.02 0.13 (0.49)
sgr −0.41 −0.50 (1.86) −0.21 (0.62) −0.00 (0.00) −0.50 −0.66 −0.72 (2.07)
sp 0.25 0.51 0.52 (1.58) 0.23 0.48 0.52 (1.60) 0.24 0.24 (0.70) 0.73 0.68 0.70 (1.41)
tang 0.18 0.22 (0.68) −0.02 −0.46 −0.60 (1.90) −0.09 −0.26 (0.80) 0.09 0.12 (0.31)
turn −0.93 −1.05 −1.28 (3.51) −0.32 −0.59 (1.53) −0.50 −0.97 (2.28) −2.26 −2.50 −2.82 (4.92)
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5.3.2. FC Selection Conditioned on Size

The selection results conditioned on large-cap stocks only are depicted in the second
set of columns in Table 3. Overall, we observe fewer active FC compared to results including
all stocks; a total of 14 (vs. 21) are selected. Not overly surprisingly, the top-ranked FC
resembles the picture described above, where price-related information dominates the
overall prediction contribution—mom1m(−), mom6m(+) and chg_mom6m(−) are among
the FC with the highest absolute coefficient values. Moreover, OLS selects a sparser set vs.
the adaptive Lasso with ten FC only. The DFDR adjustments suggest none of the included
FC are useful in predicting large-cap stocks. Given the out-of-sample prediction results
presented above, this reflects the findings that large-cap stocks are not predictable with the
linear methods and FC included in this work.

Table 3 also presents the active set of FC conditioned on mid-sized stocks. Strikingly,
price-based FC rank highest, with mom6m(+), retvol(−), chg_mom6m(−) and mom1m(−) as
the top four contributors. Moreover, the full sample estimated mid-cap dimensionality is
higher, reflecting once more some predictability for stocks belonging to an economically
less relevant segment of the market.

Finally, we briefly discuss the results including exclusively small-cap stocks. The FC
selection, as shown in the last block of Table 3, shows that the price information-driven
FC is dominant as in the mid-sized selection regression. We find consistency in which FC
occupies the top ranks, considering the magnitude of short-term reversal. The three highest
rank FC are: mom1m(−), idiovol(−) and mom12m(+). The OLS and Lasso-based selection
deviate once more.

6. Conclusions

In this work, we propose the application of the adaptive Lasso for predicting cross-
sectional stock returns. In particular, this study contributes to a better understanding of
the behavior of the adaptive Lasso when applied in panel data settings mimicking the
expected returns cross-section dynamics. We perform an extensive Monte Carlo simulation
study in which we consider panel data scenarios of low signal-to-noise ratios including
heteroscedastic, non-normal and highly cross-sectionally correlated errors. We compare
the accuracy of the adaptive Lasso, Lasso and POLS based on the ability to select the truly
informative FC for prediction and on the final predictive performance. The selection results
show that the Lasso is inferior to its adaptive version in most specifications. In particular,
a required condition, most apparent in cases of higher correlations, reveals shortcomings
in the Lasso. Despite these apparent selection disadvantages for the standard Lasso, both
Lasso-type methods yield improved predictive results over their classical alternatives. The
adaptive Lasso appears promising compared to OLS, especially at reducing type II error
ratios and controlling FC that suffer from a likely publication bias. POLS-based predictions
show the least promising results.

Furthermore, in agreement with the previous literature, we show that the predictability
of linear methods based on a rich zoo of firm characteristics is mostly limited to small
and micro-cap stocks—the least relevant section of the stock market. Large-cap stocks
are not predictable with the linear methods used in this work. Overall, the predictive
differences between different linear methods are hard to measure given the potentially
non-existing predictability of large-cap stocks. When emphasizing the evaluation based
on the less relevant but predictable small and micro-cap segment, we find that Lasso-
type predictions perform best. This empirical finding is consistent with the results of the
simulation study. An adaptive Lasso selection procedure applied to 62 FC included in
this paper and constructed based on US stock data from 1975 to 2020 identifies a highly
dimensional return process. We show that a large part of published FC is selected when
considered in a multivariate predictive analysis simultaneously; we identify 21 FC of
relevance for prediction.
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Appendix A

Appendix A.1. Signal-to-Noise Ratio

In order to calibrate the simulation to the desired signal-to-noise ratio, we set the
volatility of the factors and idiosyncratic volatility as follows. The signal-to-noise ratio
(SNR) is defined as:

SNR =
σ2

signal

σ2
noise

and it is related to the r-squared as follows:

SNR =
R2

1− R2 (A1)

Recalling Equation (1) and ignoring the indices, we can write,

r = x′ f + η,

with f = µ + ε
Hence, we can define the variance of the signal as:

σ2
signal = Var(x′µ)

= σ2
x µ′µ

Note that the µ is defined as a uniformly distributed random vector and the realized µ
are fixed at the beginning of the simulation and can be treated as deterministic.

Furthermore, the variance of the noise can be stated as follows:

σ2
noise = Var(x′ε) + Var(η)

= œ2
x œ2

ffl + σ2
η

=
|C|

∑
c

σ2
ε,cσ2

x Ic∈P ∪U + σ2
η

= σ2
ε,1σ2

x + (P + U − 1)σ2
ε f

σ2
x + σ2

η

The first line can be simplified according to Equation (A2) below as all terms involving
Cov(x, ε), E(ε) and E(x) collapse to zero. σε,1 is given by the data reflecting the long-term
mean of the stock market GARCH volatility. σε f and ση are calibrated such that each part
contributes equally to fit the desired signal-to-noise ratio (σ2

η = (P + R− 1)σ2
ε f

). The value

of σ2
η and σ2

ε f
of the desired SNR or the desired R2 follow then straightforwardly.
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The variance of the product of two random variables X and Y can be expressed as
follows:

Var(XY) =E[X2Y2]− [E(XY)]2

=Cov(X2, Y2) + E(X2)E(Y2)− [E(XY)]2

=Cov(X2, Y2) + (Var(X) + [E(X)]2)(Var(Y) + [E(Y)]2)

− [Cov(X, Y) + E(X)E(Y)]2 (A2)

Moreover, we can show that the R2 of a frequency with length T and a frequency
comprising a fraction T

τ of it are related as follows, assuming that x does not change with
the time horizon and all terms in σ2

noise are treated as returns with zero auto-correlation:

σ2
signal,T = Var(x′µ) = σ2

x µ′µ

σ2
signal, T

τ
= Var(x′

µ

τ
) = σ2

x
µ′µ

τ2

σ2
noise, T

τ
=

1
τ

σ2
noise,T

and hence,

SNRT
SNR T

τ

=
σ2

signal,T

σ2
signal, T

τ

σ2
noise, T

τ

σ2
noise,y

=
µ2σ2

x
1

τ2 µ2σ2
x

1
τ σ2

noise,T

σ2
noise,T

= τ (A3)

Combining Equations (A3) and (A1), the following relation holds:

R2
T
τ

1− R2
T
τ

τ =
R2

T
1− R2

T
(A4)

Appendix A.2. Simulation Study: Additional Robustness Checks

In addition to the sensitivity analysis provided in Section 3.2 this section exhibits
additional robustness checks. The results are presented in Table A1 and Figure A1.

Appendix A.2.1. Additional Cases

Case A1: Time-constant stock market volatility
Default settings, except for the assumption of the underlying latent volatility process

of σ̂2
t,0, which we fix for all t to the long-term volatility estimate of the US stocks of 15.8 %.
Case A2: t-distributed stock market returns
Default settings, except εt+1,0 ∼ t-with the GARCH(1,1) estimation also based on the

t-distributed errors, with an estimated number of degrees of freedom, ν̂, of 7.14. However,
differences are not overly strong.

Case A3: Time varying risk-premia
The model is identical to Model 1 except that it is equipped with a time-varying µt,

instead of the time constant µ as before. Notice, that this case can collapse to the first model
from a statistical perspective. For example, assume the following time-varying process:
µt = µ̄ + κt, and, κt ∼ N (0, σκ). Any variation in the risk-premia would then be absorbed
by the error term and cannot be distinguished from it. In a panel regression, we would
then simply estimate µ = ∑T

t=1 µt. Otherwise, default settings. We impose that, E[µt,0]
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is equivalent to µ0. The stock market risk-premia is replaced with the following AR(1)
process:

µt,c = cc + ϕµt−1,c + ψt,

the constant, cc, is set to µc(1− ϕ) = cc for the mean constraint to hold and the noise
component, ψt ∼ N (0, σ2

µ0
) and ϕ = 0.2. The size of the standard error, σµ0 , is set such that

it absorbs 1/5 of the unconditional variance of the associated stock market factor variance
(which is reduced accordingly). The errors are independent of each other.

Appendix A.2.2. Results

Case A1: Time constant stock market volatility
Table A1 reveals that assuming homoscedastic errors for the stock market factor only

marginally affects the error ratios. The only difference we observe is a slight drop in the
error ratio for the stock market factor for the OLS approach.

Case A2: T-distributed stock market returns
Using draws from a Student-t distribution instead of the Normal with corresponding

GARCH-(1,1) volatility estimates for the market factor does not have an impact on the
performance behavior of the three different methods, as Table A1 shows.

Case A3: Time varying risk-premia
Assuming an AR(1) process for the mean component of the stock market factor does

not influence the inference by much. We document only marginal changes for all methods
in this case for FC 0.
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Table A1. Simulation Results: The table provides an overview of type II (for priced factor FC, FC 0–5) and type I error (for unpriced factor FC, 6–11, and spurious
FC, 12–99) ratio behavior in percentage points for the specified simulation cases. All details of the cases can be found in Appendix A.2.1. FC cases 12–15 are
interesting insofar as they are spurious FC with high correlations to priced and unpriced FC. A white space represents a zero value. Please note that the results
displayed are based on 200 simulations only.

Case Method P — Type II U — Type I S — Type I Summary FC 16–99
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mean std min max

1a POLS 0.46 0.01 0.05 0.06 0.04 0.03 0.05 0.06 0.05 0.03 0.06 0.07 0.05 0.02 0.02 0.10
POLS BY 0.84 0.10 0.01 0.01 0.01 0.01 0.01 0.01
POLS Holm 0.85 0.10 0.01 0.01 0.01 0.01 0.01
POLS Bonf 0.85 0.10 0.01 0.01 0.01 0.01 0.01
AL BIC 0.01 0.03 0.15 0.12 0.14 0.17 0.18
AL AIC 0.01 0.03 0.19 0.12 0.18 0.20 0.21
AL CV5 0.06 0.02 0.02 0.01 0.02 0.01 0.08 0.06 0.05 0.07 0.09
L BIC 0.01 0.41 0.66 0.62 0.70 0.66 0.76 0.24 0.15 0.06 0.02 0.01 0.01 0.03
L AIC 0.56 0.80 0.84 0.91 0.84 0.91 0.34 0.32 0.28 0.32 0.25 0.03 0.18 0.33
L CV5 0.03 0.02 0.01 0.01 0.01 0.01 0.41 0.54 0.52 0.60 0.57 0.59 0.22 0.14 0.04 0.02 0.02 0.01 0.04

2a POLS 0.97 0.06 0.06 0.04 0.04 0.07 0.06 0.06 0.06 0.04 0.04 0.05 0.02 0.01 0.09
POLS BY 1.00 0.12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
POLS Holm 1.00 0.12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
POLS Bonf 1.00 0.12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
AL BIC 0.13 0.02 0.14 0.12 0.20 0.17 0.15
AL AIC 0.11 0.02 0.18 0.17 0.23 0.20 0.18
AL CV5 0.53 0.19 0.27 0.21 0.19 0.20 0.01 0.04 0.01 0.04 0.03 0.02
L BIC 0.04 0.38 0.65 0.63 0.65 0.61 0.65 0.26 0.17 0.02 0.02 0.01 0.01 0.03
L AIC 0.02 0.48 0.79 0.84 0.83 0.84 0.88 0.38 0.34 0.34 0.23 0.25 0.03 0.18 0.31
L CV5 0.30 0.10 0.14 0.11 0.10 0.11 0.24 0.35 0.33 0.31 0.31 0.33 0.14 0.09 0.03 0.02 0.02 0.01 0.04

3a POLS 0.97 0.04 0.06 0.06 0.08 0.05 0.07 0.04 0.05 0.05 0.02 0.05 0.01 0.02 0.08
POLS BY 1.00 0.01 0.01 0.01
POLS Holm 1.00 0.01 0.01 0.01
POLS Bonf 1.00 0.01 0.01 0.01
AL BIC 0.15 0.06 0.06 0.12 0.06 0.09
AL AIC 0.15 0.07 0.08 0.14 0.10 0.11
AL CV5 0.44 0.11 0.11 0.11 0.11 0.11 0.01 0.01 0.01 0.01 0.01
L BIC 0.03 0.43 0.55 0.57 0.67 0.69 0.63 0.28 0.16 0.04 0.01 0.01 0.01 0.03
L AIC 0.02 0.56 0.74 0.80 0.89 0.86 0.83 0.41 0.34 0.21 0.23 0.23 0.03 0.14 0.33
L CV5 0.28 0.08 0.09 0.08 0.09 0.08 0.28 0.29 0.33 0.33 0.40 0.34 0.12 0.12 0.03 0.01 0.01 0.01 0.04
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Appendix A.3. Firm Characteristics

The data in the paper utilize the CRSP/Compustat Merged database. In particular, we
use the monthly and daily stock data from CRSP Stock/Security files. We calculate weekly
returns based on daily data using Friday as the last day of the week. Additionally, factor
returns as well as risk-free rate data are obtained from Kenneth French’s Data Library. The
FC constructed follow the methodology used in Green et al. [3]. Generally, we use yearly
accounting data. We construct the single criteria as described in Tables A2 and A3. Some
raw data used to construct the FC have data gaps; we follow Green et al. [3] in replacing
the missing data points with zeros for the following raw data variables: xrd, emp, dp, rect,
invt, dvt, che, nopi and at.
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Table A2. The table displays the firm characteristics used. Most definitions are taken from Green et al. [3]. If not otherwise stated, accounting ratios always refer to
fiscal year end values.

ID Acronym Name Description Reference

1 beta Beta Measured based on 3 years (min 52 weeks) weekly excess returns with standard ols (y = c + βx) Fama and MacBeth [8]
2 beta_sq Beta squared Simply obtained by squaring the β based on the beta from # 1 Fama and MacBeth [8]
3 retvol Volatility Volatility is measured by the standard deviation of daily returns of the previous months Ang et al. [47]
4 maxret Maximum return Maximum return is defined over the max of the daily returns in month t− 1 Bali et al. [48]
5 idiovol Idiosyncratic volatility Calculated based on the residuals of regression in # 1 Ali et al. [49]
6 mom1m 1-month momentum Return in month t− 1 Jegadeesh [50]
7 mom6m 6-month momentum Cumulative return over 5 months ending in t− 2 Jegadeesh and Titman [51]
8 mom12m 12-month momentum Cumulative return over 11 months ending in t− 2 Jegadeesh [50]
9 mom36m 36-month momentum Cumulative return over 24 months ending in t− 13 Bondt and Thaler [52]

10 mve Market capitalization (size) log of (SHROUT×PRC) Banz [53]
11 ep Earnings-to-price Earnings per share Basu [54]
12 dy Dividends-to-price Yearly dividends (dvt) divided by market cap at fiscal year Litzenberger and Ramaswamy [55]
13 bm Book-to-market Book value of equity (ceq) divided by market cap Rosenberg et al. [56]
14 lev Leverage Total liabilities (lt) divided by market cap Bhandari [57]
15 currat Current ratio Current assets (act) divided by current liabilities (lct) Ou and Penman [58]
16 pchcurrat Pct change in current ratio Percentage change in currat from year t− 1 to t Ou and Penman [58]
17 quick Quick ratio Current assets (act) minus inventory (invt), divided by current liabilities (lct) Ou and Penman [58]
18 pchquick Pct change in quick ratio Percentage change in quick from year t− 1 to t Ou and Penman [58]
19 salecash Sales-to-cash Annual sales (sale) divided by cash and cash equivalents (che) Ou and Penman [58]
20 salerec Sales-to-receivables Annual sales (sale) divided by accounts receivable (rect) Ou and Penman [58]
21 saleinv Sales-to-inventory Annual sales (sale) divided by total invetory (invt) Ou and Penman [58]
22 pchsaleinv Pct change in sales-to-inventory Percentage change in saleinv from year t− 1 to t Ou and Penman [58]
23 cashdebt Cashflow-to-debt Earnings before depreciation and extraordinary items (ib + dp) divided by avg total liabilities (lt) Ou and Penman [58]
24 baspread Illiquidity (bid-ask-spread) Monthly avg of daily bid-ask spread divided by avg of daily bid-ask spread Amihud and Mendelson [59]
25 depr Depreciation-to-gross PP&E Depreciation expense (dp) divided by gross PPE (ppegt) Holthausen and Larcker [60]
26 pchdepr Pct change in Depreciation-to-gross PP&E Percentage change in depr from year t− 1 to t Holthausen and Larcker [60]
27 mve_ia Industry-adjusted firm size Log market caps are adjusted by log of the mean of the industry Asness et al. [61]
28 cfp_ia Industry-adjusted cashflow-to-price Industry adjusted cash flow-to-price ratio equal weighted average Asness et al. [61]
29 bm_ia Industry-adjusted book-to-market Industry adjusted book-to-market equal weighted average Asness et al. [61]
30 sgr Annual sales growth Percentage change in sales from year t− 1 to t Lakonishok et al. [62]
31 ipo IPO Indicated by 1 if first 12 months available on CRSP monthly file Loughran and Ritter [63]
32 divi Dividend initiation Indicated by 1 if company pays dividends but did not in prior year. Michaely et al. [64]
33 divo Dividend omission Indicated by 1 if company does not pay dividends but did in prior year. Michaely et al. [64]
34 sp Sales-to-price Annual sales (sale) divided by market cap Barbee Jr et al. [65]
35 acc WC accruals (ib) - (oancf)/(at), if (oancf) is missing then (ib)-(delta_act)-(delta_che) -(delta_lct) Sloan [66]

+ (delta_dlc) + (txp-dp) where each item 0 if missing
36 turn Share turnover Average monthly trading volume for the three months t− 3 to t− 1 divided by SHROUT at t− 1 Datar et al. [67]
37 pchsale_pchinvt Delta pct change sales vs. inventory Difference of percentage changes in sales (sale) and inventory (invt) Abarbanell and Bushee [68]
38 pchsale_pchrect Delta pct change sales vs. receivables Difference of percentage changes in sales (sale) and receivables (rect) Abarbanell and Bushee [68]
39 pchcapx_ia CAPEX Industry adjusted (two digit SIC) fiscal year mean adjusted percentage Abarbanell and Bushee [68]

change in capital expenditures (capx)
40 pchgm_pchsale Delta pct gross margin vs. sales Annual percentage change in gross margin (sale minus cogs) minus percentage change in sales (sale) Abarbanell and Bushee [68]
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Table A3. The table displays the firm characteristics used. Most definitions are taken from Green et al. [3]. If not otherwise stated, accounting ratios always refer to
fiscal year end values.

ID Acronym Name Description Reference

41 pchsale_pchxsga Delta pct sales vs. SGaA Annual percentage change in sales (sale) minus percentage change in SGaA (xsga) Abarbanell and Bushee [68]
42 dolvol Dollar trading volume Log of trading volume times price per share from month t-2 Chordia et al. [69]
43 std_dolvol Volatility trading volume Monthly standard deviation of daily trading volume Chordia et al. [69]
44 std_turn Volatility turnover Monthly standard deviation of daily share turnover Chordia et al. [69]
45 chinv Change in inventory First difference of inventory (invt) divided by total assets Thomas and Zhang [70]
46 pchemp_ia Industry-adjusted pch in employees Industry adjusted percentage change in employees Asness et al. [61]
47 cfp Cashflow-to-price Operating cash flows (oancf) scaled by market capitalization (fiscal year end) Desai et al. [71]
48 rd R&D Increase If annual increase in R&D expenses (xrd) scaled by total assets (at) >0.05, 1, else 0 Eberhart et al. [72]
49 lgr Pct change in long-term debt Annual percentage change in long term debt (lt) Richardson et al. [73]
50 egr Pct change in book equity Annual percentage change in book equity (ceq) Richardson et al. [73]
51 rd_sale R&D-to-sales R&D expenses(xrd) scaled by sales (sale) Guo et al. [74]
52 rd_mve R&D-to-market R&D expenses(xrd) scaled by market cap Guo et al. [74]
53 chg_mom6m change in mom6m difference of mom6m measured at t and t− 6 Gettleman and Marks [75]
54 hire Pct change in employee Annual percentage change in employee (emp) Belo et al. [76]
55 agr Asset growth Annual percentage change in assets (at) Cooper et al. [77]
56 cashpr Cash productivity Market cap plus long term debt (dltt) minus assets (at) divided by cash (che) Chandrashekar and Rao [78]
57 gma Gross-profitability Sales (sale) minus costs of goods sold (cogs) divided by one-year lagged assets(at) Novy-Marx [79]
58 cash Cash-to-assets Cash (che) divided by assets(at) Palazzo [80]
59 pctacc Accruals-to-income (ib) minus (oancf) divided by abs ((ib)), when (ib) equals 0, it is set to 0.01, if (oancf) is Hafzalla et al. [81]

missing then (ib)-(delta_act)-(delta_che) -(delta_lct) + (delta_dlc) + (txp-dp) where each item 0 if missing
60 absacc Absolut accruals Absolute value of acc Bandyopadhyay et al. [82]
61 roic Return on invested capital Earnings before interest and taxes (ebit) - non-operating income (nopi), divided by non-cash enterprise value Brown and Rowe [83]

(ceq+lt-che)
62 grcapex Pct change in two year CAPX Percentage change in two year capital expenditure (capx) Anderson and Garcia [84]
63 tang Debt capacity-to-firm-tangability (Cash (che) + 0.715 receivables (rect) + 0.547 inventory(invt) + 0.535 (ppegt))/ total assets (at) Hahn and Lee [85]
64 chshrout Change in shares-outstanding Yearly percentage change in outstanding shares (SHROUT) Pontiff and Woodgate [86]
65 invest CAPEX and inventory Yearly difference in gross property, plant and equipment (ppegt) + diff in (invt) / (t-1) total assets (at) Chen and Zhang [87]
66 age Years since CS coverage Years since first compustat coverage years(datadate - min(datadate)) Jiang et al. [88]
67 chpm_ia Industry-adjusted change in profit margin Industry adjusted (two-digit SIC) change in profit margin (ib/sale) Soliman [89]
68 chato_ia Industriy-adjusted change in asset turnover Industry adjusted (two-digit SIC) change in asset turnover (sale/at) Soliman [89]
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Appendix A.4. Code

Our code is available upon request via github.com; please make requests by email. It
is all written in Python 3.x and should be compatible on win and ux systems. Be aware
the simulations as specified above are memory/RAM intensive; in order to run the main
simulation, at least 90GB of available RAM are required.

Appendix A.5. Additional Figures

1 1a 2a 3a
Case

POLS

L AIC PVSOLS

POLS PVSOLS

L CV5 PVSOLS

AL CV5

L BIC PVSOLS

L AIC

AL BIC

AL CV5 PVSOLS

AL AIC

AL AIC PVSOLS

POLS PVSOLS BHY

POLS PVSOLS Bonf

POLS PVSOLS Holm

AL BIC PVSOLS

L CV5

L BIC

0.28 0.26 0.19 0.27

0.39 0.38 0.3 0.35

0.48 0.42 0.55 0.57

0.55 0.61 0.48 0.54

0.59 0.65 0.5 0.56

0.62 0.63 0.58 0.58

0.62 0.6 0.6 0.61

0.64 0.64 0.65 0.65

0.65 0.72 0.52 0.57

0.66 0.65 0.67 0.68

0.66 0.64 0.65 0.64

0.66 0.59 0.74 0.76

0.66 0.58 0.7 0.75

0.66 0.6 0.74 0.76

0.67 0.64 0.64 0.65

0.67 0.7 0.54 0.55

0.7 0.67 0.69 0.68

MCS p-value average

1 1a 2a 3a
Case

0.9969 0.9941 0.9991 0.9996

0.9969 0.9941 0.9991 0.9996

0.9977 0.9958 0.9977 0.9979

0.9972 0.9942 0.9996 0.9998

0.9974 0.9943 1 1

0.9968 0.9941 0.999 0.9996

0.9968 0.9941 0.999 0.9995

0.9968 0.994 0.9989 0.9995

0.9974 0.9942 0.9999 0.9999

0.9968 0.994 0.9989 0.9995

0.9968 0.994 0.999 0.9995

0.9999 0.9999 0.9972 0.9974

1 1 0.9972 0.9974

1 1 0.9972 0.9974

0.9968 0.994 0.999 0.9995

0.9972 0.9943 0.9997 1

0.9968 0.9941 0.9989 0.9994

MSE relative to max

Figure A1. The figure shows the simulated out-of-sample prediction evaluation for each method.
Pooled OLS (POLS), Lasso AIC with post-variable selection OLS (L AIC PVOLS), pooled OLS
with post-variable selection OLS (POLS PVOLS), Lasso CV5 with post-variable selection OLS (L
CV5 PVOLS), adaptive Lasso CV5 (AL CV5), Lasso BIC with post-variable selection OLS (L BIC
PVOLS), Lasso AIC (L AIC), adaptive Lasso BIC (AL BIC), adaptive Lasso CV5 with post-variable
selection OLS (AL CV5 PVOLS), adaptive Lasso AIC (AL AIC), adaptive Lasso AIC with post-variable
selection OLS (AL AIC PVOLS), pooled OLS with post-variable selection OLS and the BHY t-value
adjustment(POLS PVOLS BHY), pooled OLS with post-variable selection OLS and the Bonferroni
t-value adjustment (POLS PVOLS Bonf), pooled OLS with post-variable selection OLS and the Holm
t-value adjustment(POLS PVOLS Holm), adaptive Lasso BIC with post-variable selection OLS (AL
BIC PVOLS), Lasso CV5 (L CV5) and Lasso BIC (L BIC). The plot on the left side shows average MCS
p-values over 200 simulation cases, where the p-value measures if the model is part of the MCS. The
right figure illustrates the MSE values relative to the max of each case. Please note that the results
displayed are based on 200 simulations only.
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