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Abstract

This supplementary material includes three sections: (1) additional sensitivity tests, (2) a
derivation of the analytical formula for the decorrelation time of the time-averaged stochastic
process, and (3) figures of performance increase in terms of percentage increase via time averaging
or space averaging.

1 Additional Sensitivity Tests

In this section, to test the robustness of the results in the main manuscript, additional sensitivity tests
are implemented. One test involves using anomaly data (using anomalies from the seasonal cycle) where
a long term smoothed seasonal cycle is subtracted from the original data for both precipitation and
temperature. Beyond that, the average from the past 14 days to the future 14 days is used as a second
version of seasonal cycle for the surface temperature in the second test. In the third test, the average
from the past 14 days to the current time point serves as the seasonal cycle for the surface temperature.
For precipitation, another dataset, the GPM (Global Precipitation Measurement) dataset, is used as
the truth signal as an additional robustness test.

1.1 Analysis on anomaly data for precipitation and temperature

Forecast skill changes are now investigated in the GFS precipitation rate/surface temperature anomaly
data. The anomaly data is defined by subtracting a smoothed seasonal cycle before assessing the
forecast skills.

For the precipitation rate, the enhanced monthly long term mean CPC Merged Analysis of Precip-
itation (CMAP) is used for calculating the seasonal cycle. For the surface temperature, GFS analysis
data with lead 0 are used. More details about the seasonal cycles are explained in the Method section
of main manuscript.

The main results are shown in Fig. S1. In the comparison between forecast performance changes
via time averaging vs. spatial averaging, essentially the same result is obtained: spatial averaging is
more efficient than time averaging in improving the forecast skills, both for the precipitation and the
temperature. One difference seen in Fig. S1b is that the temperature forecast skill is lower for the
anomalies from the seasonal cycle, in comparison to the case of the main text, where the temperature
forecast skills were higher. This difference indicates that variations from the seasonal cycle contribute
a substantial amount of the forecast skill. Nevertheless, as seen in this additional test, the effects of
time averaging vs. space averaging are essentially the same no matter the seasonal cycle is retained or
removed or not.

1.2 Temperature anomaly data analaysis using centered 28 days average
as the seasonal cycle

As another sensitivity test, the average from the past 14 days to the future 14 days of the surface
temperature is used as the seasonal cycle for 3.5 months surface temperature data.
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(a) (b)

Figure S1: Effect of time and space averaging on forecast skill, averaged globally. (a) Precipitation
anomaly, at a lead time of 3 days. (b) Surface temperature anomaly, at a lead time of 7 days.

The spatial averaging is still showing a much better effect in improving the forecast performance
than time averaging from the new global map.

Figure S2: Global map of the ratio of forecast skill increase, defined as r = ∆xρ/∆tρ, where ∆xρ is
the change in forecast skill due to increased spatial averaging, and ∆tρ is the change in forecast skill
for increased time averaging for surface temperature anomaly using the average from the past 14 days
to the future 14 days as the seasonal cycle.
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Figure S3: Effect of time and space averaging on forecast skill, averaged globally for surface temperature
anomaly using the average from the past 14 days to the future 14 days as the seasonal cycle, at a lead
time of 7 days.

1.3 Temperature anomaly data analysis using past 14 days average as the
seasonal cycle

To avoid using the future information in the seasonal cycle, a version of seasonal cycle only using the
past 14 days is implemented here as another robustness test for 3.5 months surface temperature data.
The plots are still showing the spatial averaging is helping more than time averaging in most of the
locations globally.

Figure S4: Global map of the ratio of forecast skill increase, defined as r = ∆xρ/∆tρ, where ∆xρ is
the change in forecast skill due to increased spatial averaging, and ∆tρ is the change in forecast skill
for increased time averaging for surface temperature anomaly using the average from the past 14 days
to the present as the seasonal cycle.
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Figure S5: Effect of time and space averaging on forecast skill, averaged globally for surface temperature
anomaly using the average from the past 14 days to the present as the seasonal cycle, at a lead time
of 7 days.

1.4 Assessing tropical precipitation forecast skills using GPM data

In the main text, the truth signal was taken to be the day-0 analysis from the GFS model. Here,
as an additional test, an observational data product is used as the truth signal instead of the model
data product. In particular, GPM data is used to serve as the true precipitation data for testing the
robustness as well. We compare the GFS precipitation forecast data, at a lead time of 3 days, to the
GPM data to assess the forecast skill.

Figure S6: Effect of time and space averaging on forecast skill, averaged over tropical areas from 12◦S
to 12◦N for comparing GFS precipitation rate forecast with GPM data, at a lead time of 3 days

Due to the GPM only having full observations from 60◦S to 60◦N while a maximum of 4500 km
spatial averaging diameter is required in our analysis, the results of this additional test are limited to
tropical locations from 12◦S to 12◦N, so that the entire spatial averaging disc is contained in the GPM
data coverage from 60◦S to 60◦N .
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As seen in Fig. S6, it is again seen that spatial averaging outperforms time averaging in increasing
forecast skill. One difference here is that, for short spatial/time averaging, the tropical averaged
precipitation rate forecast skills are lower than the global averaged ones shown in the main text. This
is within expectation based on earlier work since tropical precipitation has less predictability than
extratropical precipitation. This additional test can also be taken as a special case of analyzing one
region (i.e., the tropics), and again the main conclusion is robust: spatial averaging improves forecast
skills more than time averaging.

2 Analytic Formulas for Decorrelation Time

In this section, we present the derivation of the analytic formula for the decorrelation time, including
the decorrelation time of the time-averaged process. In the calculation, we use a continuous-time
version of the AR(1) model called the Ornstein–Uhlenbeck (OU) process.

The Ornstein-Uhlenbeck process is defined as

du(t) = −u(t)

Td
dt+ σdW (t) (S1)

with positive parameters Td, σ > 0 and dW (t) is related to a Gaussian white noise Ẇ (t) via

dW (t) = Ẇ (t)dt, (S2)

that is, white noise is a “derivative” of the Winener processW (t) and it satisfies the following properties

E[Ẇ (t)] = 0, (S3)
E[Ẇ (t)Ẇ (s)] = δ(t− s). (S4)

The exact solution of (S2) is

u(t) = e−t/Tdu(0) + σ

∫ t

0

e−(t−s)/TddW (s) (S5)

As t → ∞, or as the initial time tends to −∞, u(t) will converge to a stationary Gaussian distribution
with mean 0 and variance σ2Td/2 [1, 3]. In what follows, we consider the stochastic process in its
stationary state.

For the definition of the time averaged signal ū(t), we use the values of u(t) averaged over a centered
time-averaging window with length Tw, so the averaged signal is defined as

ū(t) =
1

Tw

∫ t+Tw/2

t−Tw/2

u(s)ds (S6)

To define the decorrelation time T d, we use the auto-correlation function, ACF (τ) = E[u(t)u(t +
τ)]/var[u(t)] = C(τ)/C(0) for time lag τ where C(τ) is the auto-covariance function for lag τ . Then
the analytic formula for the de-correlation time of u(t) is defined as

T d =

∫ ∞

0

ACF (τ)dτ

=

∫ ∞

0

C(τ)

C(0)
dτ

=

∫∞
0

C(τ)dτ

C(0)
.

(S7)

The next goal is to find the formula for C(τ). To do this, it is convenient to re-write the definition
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of u(t) as

ū(t) =
1

Tw

∫ t+Tw/2

t−Tw/2

u(s)ds

=
1

Tw

∫ ∞

−∞
u(s)1[t−Tw/2,t+Tw/2](s)ds

=

∫ ∞

−∞
u(α)g(t− α)dα

= (g ∗ u)(t)

(S8)

where 1(t) is the indicator function and g(t) = 1
Tw
1[−Tw/2,Tw/2](t). Hence, this expresses ū(t) as a

convolution between the original signal u(t) and a rectanglar function g(t). By now transforming to
Fourier space, the convolution will become a multiplication and allow several useful formulas to be
obtained:

ûν = ĝν ûν ,

|ûν |2 = |ĝν |2|ûν |2,
E|ûν |2 = |ĝν |2 · E|ûν |2,

Ĉ(ν) = Ĝ(ν) · Ĉ(ν)

(S9)

Ĝ(ν) = |ĝ(ν)|2 = |
∫ ∞

−∞

1

Tw
1[−Tw/2,Tw/2](x)e

−2πxνidx|2

= | 1

Tw

∫ Tw/2

−Tw/2

e−2πxνidx|2

= | 1

−2πTwνi
(e−πνTwi − eπνTwi)|2

= | 1

2πTwν
i(cos (πνTw)− i sin (πνTw)− cos (πνTw)− i sin (πνTw))|2

= | 1

πTwν
sin (πνTw)|2

=
sin2 (πTwν)

π2T 2
wν

2

(S10)

From these expressions, one can see that the problem of finding C(τ) is equivalent to the problem of

finding Ĉ(ν), since the two quantities are related by a Fourier transform.

To find an analytic expression for ̂̄C(ν), we start from the definition of the OU process to find ûν :

du(t)

dt
= −ut/Td + σẆt∫ ∞

−∞

du(t)

dt
e−2πiνtdt = −ûν/Td + σ̂̇W ν

u(t)e−2πiνt|∞−∞ + 2πiν

∫ ∞

−∞
u(t)e−2πiνtdt = −ûν/Td + σ̂̇W ν

2πiνûν = −ûν/Td + σ̂̇W ν

ûν =
σ̂̇W ν

1/Td + 2πνi

(S11)

E[ûν û
∗
ν′ ] =

σ

1/Td + 2πνi
· σ

1/Td − 2πν′i
E[̂̇W ν

̂̇W ∗

ν′ ]

=
σ2

1/T 2
d + 4π2ν2

δ(ν − ν′)

(S12)
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Hence

Ĉ(ν) =
σ2

1/T 2
d + 4π2ν2

(S13)

By the equality in (S9),

Ĉ(ν) = Ĝ(ν) · Ĉ(ν) =
sin2 (πTwν)

π2T 2
wν

2

σ2

1/T 2
d + 4π2ν2

(S14)

Returning now to C(τ), the numerator
∫∞
0

C(τ)dτ in the definition of the decorrelation time (7)
can be derived as ∫ ∞

0

C(τ)dτ =
1

2

∫ ∞

−∞
C(τ)dτ

=
1

2

∫ ∞

−∞
C(τ)e−2πiντdτ

∣∣∣∣
ν=0

=
1

2
Ĉ(ν = 0)

=
1

2
lim
ν→0

Ĉ(ν)

=
1

2
lim
ν→0

sin2 (πTwν)

π2T 2
wν

2

σ2

1/T 2
d + 4π2ν2

=
σ2T 2

d

2

(S15)

Then what remains needed from (S7) is the denominator, C(0). From the equation (52) in the paper [2], 
for a complex-valued OU process, the variance of the time avaraged signal has been calcuated. By taking 
the γ = 1/Td and ω = 0, the auto-covariance function for the averaged real-valued OU process can be 
found as

C(0) =
σ2T 3

d

T 2
w

(Tw/Td − 1 + e−Tw/Td) (S16)

Finally, from the definition of the decorrelation time in (S7), we find

T d =

∫∞
0

C(τ)dτ

C(0)

=
σ2T 2

d /2
σ2T 3

d

T 2
w

(Tw/Td − 1 + e−Tw/Td)

= Td ·
(Tw/Td)

2

2(Tw/Td − 1 + e−Tw/Td)
,

(S17)

which is the desired result of an analytic expression for the decorrelation time of the time-averaged 
process u(t).

As a consistency check, it can be verified that, for the original unaveraged signal u(t), the decorre-
lation time is just Td; to see this, take the limit Tw → 0 in (S17) to see that

lim
Tw→0

T d = lim
Tw→0

Td ·
(Tw/Td)

2

2(Tw/Td − 1 + 1− Tw/Td +
(Tw/Td)2

2 +O(T 3
w))

= Td lim
Tw→0

(Tw/Td)
2

(Tw/Td)2 +O(T 3
w)

= Td.

Furthermore, a simpler, approximate version of (S17) can be derived as follows, assuming that Tw/

Td
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is small:

T d = Td ·
(Tw/Td)

2

2(Tw/Td − 1 + e−Tw/Td)

= Td ·
(Tw/Td)

2

2(Tw/Td − 1 + (1− Tw/Td +
(Tw/Td)2

2! − (Tw/Td)3

3! +O((Tw/Td)4))

= Td ·
(Tw/Td)

2

(Tw/Td)2 − 1
3 (Tw/Td)3 +O((Tw/Td)4)

= Td ·
1

1− 1
3 (Tw/Td) +O((Tw/Td)2)

= Td(1 +
1

3
(Tw/Td) +O((Tw/Td)

2))

= Td +
1

3
Tw + Td ·O(T 2

w/T
2
d )

(S18)

For small Tw/Td, equation (S18) leads to

T d ≈ Td +
1

3
Tw. (S19)

3 Performance increase in terms of percentages

In the main text in Figures 3–6 we have shown how the absolute correlation coefficient in a forecast
changes when different time averaging windows and spatial avearging windows are applied. Some
of the locations have very good performance skill already when no averaging is used, especially for
surface temperature. It is therefore also informative to show the percentage increase in the correlation
coefficient when time/space averaging is applied with respect to the baseline (1-day averaging and
100km spatial averaging). These figures are shown here as Figures S7–S10.
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Figure S7: Effects of time averaging on forecast performance, for surface temperature, with 100-km
spatial averaging, at several locations around the globe: (a) Honolulu, Hawaii (21◦N, 158◦W ), (b)
Madison, Wisconsin (43◦N, 89◦W ), (c) Miami, Florida (26◦N, 80◦W ), (d) Oklahoma City, Oklahoma
(35◦N, 98◦W ), (e) Singapore (1◦N, 104◦E), and (f) Suzhou, China (31◦N, 120◦E). Performance per-
centage change is calculated by comparing to the baseline skill with 1-day time averaging and 100-km
spatial averaging.
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Figure S8: Effects of spatial averaging on forecast performance, for surface temperature, with 100-km
spatial averaging, at several locations around the globe: (a) Honolulu, Hawaii (21◦N, 158◦W ), (b)
Madison, Wisconsin (43◦N, 89◦W ), (c) Miami, Florida (26◦N, 80◦W ), (d) Oklahoma City, Oklahoma
(35◦N, 98◦W ), (e) Singapore (1◦N, 104◦E), and (f) Suzhou, China (31◦N, 120◦E). Performance per-
centage change is calculated by comparing to the baseline skill with 1-day time averaging and 100-km
spatial averaging.
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Figure S9: Effects of time averaging on forecast performance, for precipitation, with 100-km spatial av-
eraging, at several locations around the globe: (a) Honolulu, Hawaii (21◦N, 158◦W ), (b) Madison, Wis-
consin (43◦N, 89◦W ), (c) Miami, Florida (26◦N, 80◦W ), (d) Oklahoma City, Oklahoma (35◦N, 98◦W ),
(e) Singapore (1◦N, 104◦E), and (f) Suzhou, China (31◦N, 120◦E). Performance percentage change is
calculated by comparing to the baseline skill with 1-day time averaging and 100-km spatial averaging.
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Figure S10: Effects of spatial averaging on forecast performance, for precipitation, with 100-km
spatial averaging, at several locations around the globe: (a) Honolulu, Hawaii (21◦N, 158◦W ), (b)
Madison, Wisconsin (43◦N, 89◦W ), (c) Miami, Florida (26◦N, 80◦W ), (d) Oklahoma City, Oklahoma
(35◦N, 98◦W ), (e) Singapore (1◦N, 104◦E), and (f) Suzhou, China (31◦N, 120◦E). Performance per-
centage change is calculated by comparing to the baseline skills with 1-day time averaging and 100-km
spatial averaging.
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