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Abstract: Forecasting daily and weekly passenger demand is a key fundamental process used by
existing urban rail transit (URT) station authorities to diagnose operational problems and make deci-
sions about train schedule patterns to improve operational efficiency, increase revenue management,
and improve driving safety. The accuracy of the forecast results will directly affect the operation
planning of urban rail transit (URT). Therefore, based on the collected inbound historical passenger
data, this study used the Box–Jenkins time series with the Facebook Prophet algorithm to analyze the
characteristics of urban rail transit passenger demand and achieved better computational forecasting
performance accuracy. After analyzing the periodicity, correlation, and stationarity, different time
series models were constructed. The Akaike information criteria (AIC), Bayesian information criteria
(BIC), mean squared error (MSE), and root mean squared error (RMSE) were used to evaluate the
adequacy of the best forecast model from among several tested candidates’ models for the Box–
Jenkins. The parameters of the daily and weekly models were estimated using statistical software.
The experimental results of this study are of both theoretical and practical significance to the urban
rail transit (URT) station authorities for an effective station planning system. The forecasting results
signify that the SARIMA (5, 1, 3) (1, 0, 0)24 model performs better and is more stable in forecasting
the daily passenger demand, and the ARMA (2, 1) model performs better in forecasting the weekly
passenger demand. When comparing the SARIMA and ARMA models with the Facebook Prophet,
results show that the Facebook Prophet model is superior to the SARIMA model for the daily time
series, and the ARMA model is superior to the Facebook Prophet model for the weekly time series.

Keywords: urban rail transit (URT); daily and weekly passenger demand forecasting; Box–Jenkin;
Facebook Prophet algorithm; time series model development

1. Introduction

Urban rail transit system (URT) passenger demand forecasting is crucial for the sta-
bility and sustainability of the public transportation system, which plays a crucial role
in people’s daily lives. URT operations planning, promoting and developing dynamic
URT scheduling, boosting management and maintenance operational efficiency, assisting
URT station authorities in minimizing the operational cost, improving service quality,
enhancing travel behaviors, reducing the passenger crowding in station facilities and in
trains, reliability, and regulation planning meet the travel needs of more passengers, which
enhance the success of revenue management for the URT station authorities. Recently, the
urbanization process has continued to accelerate, and the urban population has continued
to increase. The URT has become the preferred means of the public transportation system
and has a great influence on urban development because of its characteristics of being a
large-capacity transportation mode, having low emission, punctuality, high safety, low
failure rates, and high efficiency, being cheap, environmentally friendly, and relatively
comfortable, promoting the development of the city, enhancing the competitiveness of
the city, and making people travel more conveniently, which have succeeded in diverting
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the commuter’s choice of transportation from the private transportation system to the
URT public transportation system. Therefore, it is significantly important to identify [1] a
scientific and appropriate time series model for predicting the targeted URT station’s daily
and weekly passenger demand because historical URT passenger demand data information
usually exhibits inertia and does not change dramatically. Statistical methods are very
useful for analyzing the daily and weekly URT passenger demand. The URT public trans-
portation system comprises three main parts, namely the structure of the URT (station),
trains, and passengers. The URT includes light rail, subway, urban railway, etc. [2].

The URT passenger demand refers to the state when the passenger flow of a station
surpasses the normal URT station operation capacity within a certain period. When the
passenger demand increases in URT, it causes large crowds to gather in the URT station
facilities such as station platforms, station halls, station entrances, station exits, and trains.
URT passenger demand changes frequently at regular intervals daily, weekly, on weekends,
on holidays, and during other special events. The daily passenger demand for URT
varies most during the morning hours of operation (7:00 am to 9:00 am) when people are
commuting to work and school; after this period, the passenger demand gradually declines.
URT’s evening peak operating hours are between (5:00 pm to 7:00 pm) when people get off
work and school, after which the passengers’ demand at night gradually decreases, as well
as during peak periods for special events such as National Day, Chinese New Year (spring
festival), New Year’s Day, and festivals. Therefore, forecasting the targeted URT station
system’s future daily and weekly passenger demand is considered the most critical activity
that requires urgent attention for effective and efficient operations planning to improve
passenger comfort levels and train regulation, and enhance driving safety.

To ensure the safe operation of the URT station when a high volume of passenger
demand occurs, this study establishes a comprehensive time series forecasting modeling
approach for analyzing urban rail transit passenger demand characteristics aggregated
into daily and weekly passenger demand and captures features of the different series
using Box–Jenkins and Prophet modeling techniques based on the context of historical
urban rail transit passenger demand data and compares the computational forecasting
performance efficiency and accuracy of both algorithms when they are used to forecast
different periods of urban rail passenger demand. The daily and weekly forecasting model
incorporated the holiday and COVID-19 effects that significantly influenced the increase
or decrease in URT passenger demand operations from 2021 to 2022. Comprehensive
forecasting signifies the application of all significant statistical steps, i.e., using time series
data as input and giving the future forecast as output to achieve an accurate forecast
result. The main function of the URT daily and weekly passenger demand forecasting is
to provide adequate information for the current running lines, according to the results
of forecasts to modify the operation diagram, which directly affects the rationality of the
URT operation management, reduces the usual unnecessary train running, energy-saving,
enhances decision-making in evaluating the URT station service level and system operating
status, which provides an important basis for station passenger crowd regulation and
emergency response [3] to enable the URT transportation system to operate in a reliable
state. The findings of this study can play a fundamental role in forming the basis for the
URT operational management strategy to solve the current station situation when large or
low passenger demand occurs with the existing URT infrastructure. This study considered
the following sub-objectives:

(1) To analyze and understand the underlying structure and characteristics of the
obtained historical passenger demand data.

(2) To capture different dependencies and features corresponding to the data that
produced the observed time series, concerning stationarity, periodicity, correlation, het-
eroscedastic, and volatility, and extract meaningful statistics characteristics of the data, then
have different time series to be measured (daily, and weekly), which are constructed based
on available passenger demand characteristics.
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(3) To develop the parametric models and output the time series prediction of the
different series by applying the Box–Jenkins and Facebook Prophet (FB Prophet) models
and evaluate the models’ performance accuracy using MSE, RMSE, and MAE.

(4) To better analyze the characteristics of the URT station passenger demand; wide
gaps were determined between weekdays and weekends.

The forecasting accuracy of the URT station greatly relies on the nature and character-
istics of the historical passenger data. The observations made from the collected inbound
URT historical passenger data proved that the data rely on the time of the weekdays,
weekends, and holidays, and the aim is to forecast the value of passengers for the next
periods. The effectiveness of the URT station passenger demand predictions depends on
extrapolating the time series patterns and the model assumption’s capability to capture
these patterns.

The remaining sections of this study are structured as follows. Section 2 is the literature
review related to existing URT passenger demand parametric forecasting models. Section 3
presents data collection, analysis, and an overview of the time series prediction models
construction and development of the different corresponding forecast models based on
daily and weekly time series. Section 4 shows the application of the well-fitted models’ pre-
dictions to output the passenger demand prediction and measure the model’s performance
efficiency and accuracy. Section 5 is the conclusion.

2. Literature Review

Urban rail transit (URT) passenger demand forecasting is very advanced currently
compared to a few decades ago. Urban rail transit demand analysis and forecasting are
essential prerequisites for daily operations and management [4]. Recently, many passenger
demand forecasting methodologies and techniques have been proposed. These techniques
are categorized into the following: (1) parametric techniques, (2) non-parametric techniques,
(3) and hybrid techniques have been developed. In this study, the non-parametric and
hybrid techniques were briefly reviewed because of space limitations [5–7]. This section
particularly reviewed the parametric model technique, which indicated the gap and, as
such, motivated the choice of this study.

Various parametric model techniques are typical tools that have been widely applied
for predicting traffic demand for public transportation systems, such as passenger demand,
traffic flow [8], and traffic volume. Ref. [9] used a subset autoregressive integrated mov-
ing average (ARIMA) model to investigate short-term traffic volume forecasting, travel
time [10], speed [11], and occupancy [12,13] and have achieved great results. The paramet-
ric techniques include the exponential smoothing technique [8], linear regression, and the
autoregressive integrated moving average model (ARIMA) [14,15]. The ARIMA model
technique developed by the Box and Jenkins model [16] has been one of the common
parametric forecasting techniques applied for decades to forecast traffic demand for various
transportation demand purposes [12]. Ref. [17] applied the ARIMAX model to motor-
way data. Refs. [9,18] used the ARIMA model technique to predict freeway traffic flow,
and the model was found to be more accurate in representing freeway time series data.
Ref. [19] investigated the application of analysis techniques developed by Box and Jenkins
to freeway traffic volume and occupancy. The ARIMA models were found to be more
accurate in representing freeway time series data in terms of mean absolute error and mean
squared error than the moving average, double-exponential smoothing, and Trigg and
leach adaptive models.

With the presence of seasonality and trend components in time series data, some
researchers have applied seasonal ARIMA to predict traffic flow [20]. Ref. [8] used the
seasonal ARIMA model technique to forecast urban traffic flow. The obtained results proved
that the model performance was well compared with the neural network algorithm and
the historical average. Ref. [21] applied SARIMA-SVM to develop a traffic flow prediction
model. The results show that the proposed model can effectively improve prediction
accuracy and reduce errors in traffic flow management. Ref. [22] conducted an experiment
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that shows seasonal ARIMA models perform better than other time series techniques
and that the forecasts produced using seasonal ARIMA models are more accurate than
non-seasonal ARIMA models. Ref. [23] applied the SARIMA method for fitting and
forecasting monthly passenger flow on a time series that spans from January 2004–June
2014. The experimental results show good predictive performance. Ref. [24] developed
the corresponding prediction models ARMA, SARIMA, and ARIMA to capture different
features of time series and suggested choosing a suitable approach for modeling the
aggregated data. Ref. [3] used the SARIMA model to capture the inherent periodicity of
ridership and proposed a support vector machine overall online model (SVMOOL), which
insets the weekly periodic characteristics and trains the updated data day by day. The
research uses the 5 min ridership at Zhujianglu and Sanshanjie Stations of Nanjing Metro to
compare the support vector machine combined online model (SVMCOL) model with three
well-known prediction models, namely the SARIMA, back-propagation neural network
(BPNN), and SVM models. The resultant performance comparisons suggest that SARIMA
is superior to other models for stable weekday ridership. Yet, the SVMCOL model is the
best performer for unstable weekend ridership and holiday ridership. Ref. [25] applied
the SARIMA model for short-term prediction of traffic flow using only limited input data.
The results were promising and the prediction scheme proposed for traffic flow prediction
could be considered in situations where the database is a major constraint during model
development using ARIMA. Ref. [26] used the SARIMA and Facebook Prophet package
in R software for short-term traffic-volume prediction. The model accuracy was checked
using mean absolute percentage error (MAPE) and root mean squared error (RMSE).

Researchers have used other methods to forecast passenger demand. Ref. [27] pro-
posed a multi-task convolutional recurrent neural network (MT-CRNN) framework to
forecast passenger demand with multiple features from different domains. Experimental
results show that the model significantly outperforms a series of baselines and gains a 3.8%
improvement (RMSE) over state-of-the-art methods and that the auxiliary task can improve
the final passenger demand prediction accuracy. Ref. [28] applied a hybrid methodology
that combines ARIMA and RNN models to take advantage of the unique strength of
ARIMA in seasonal component modeling and RNN in trend forecasting. Experimental re-
sults with real datasets indicate that the hybrid modeling approach can be an effective way
to make forecasting accuracy higher than what it would have been by either of the models
used separately. Ref. [29] combined the support vector regression model with continuous
ant colony optimization algorithms (SVRCACO) to forecast inter-urban traffic flow. The
forecasting results indicate that the proposed model yields more accurate forecasting results
than the seasonal autoregressive integrated moving average (SARIMA) time series model.
Ref. [12] applied a hybrid EMD-BPN forecasting approach, which combines empirical
mode decomposition (EMD) and back-propagation neural networks (BPN) developed to
predict the short-term passenger flow in metro systems. The experimental results indicate
that the proposed hybrid EMD-BPN approach performs well and stably in forecasting the
short-term metro passenger flow. Ref. [30] proposed a deep-learning architecture called
Conv-GCN that combines a graph convolutional network (GCN) and a three-dimensional
(3D) convolutional neural network (3D CNN). First, introduce a multi-graph GCN to deal
with three inflow and outflow patterns (recent, daily, and weekly) separately. Results show
that this model yields the best performance compared with the seven other models. In
terms of the root mean squared errors, the performances under the three time intervals
have been improved by 9.402%, 7.756%, and 9.256%, respectively. Ref. [31] proposed a
hybrid prediction model with a time series decomposition and explored its performance
for different types of passenger flows with varied characteristics in urban railway systems.
Seasonal and trend decomposition using loess (STL) is used to decompose passenger flow
into the seasonal, trend, and residual time series, representing constant, long-term fluctuant,
and stochastic passenger demand patterns, respectively. Based on the reviewed literature,
we made the following observations:

1. Accuracy of data aggregation techniques.



Forecasting 2022, 4 908

2. Study the time dependence of URT passenger data before data are input into the model.
3. The combined time series forecasting model has become more popular for improving

URT passenger forecasting performance over the use of a single model.
4. Among several combined time series models, the Box–Jenkins models are more popu-

lar and their forecasting efficiency and accuracy have been proven in different studies.
5. Future passenger demand forecasting is important to the URT public transporta-

tion industry. This point has been proved in several studies on future passenger
demand prediction.

The motivation of this study was to establish a comprehensive forecasting approach
for analyzing passenger demand characteristics based on daily and weekly time series. We
used the existing inbound historical passenger demand data aggregated into daily and
weekly time series to analyze and forecast the future daily and weekly passenger demand
values for this targeted URT station using the Box–Jenkins algorithm and Facebook Prophet
built to evaluate the characteristics and capture different features of the daily and weekly
time series. The goal is to examine the forecasting computational performance efficiency
and accuracy of the algorithms in the context of aggregated URT passenger demand and to
compare the model’s forecasting performance using mean squared error (MSE), root mean
squared error (RMSE), and mean absolute error (MAE) performance indexes. In this study,
we assume that the different time series data incorporate the variability effects of external
factors, e.g., holiday effects, weather effects, and the current COVID-19 pandemic effect.
Therefore, we do not perform any special modification in handling these variable effects.

3. Data and Methods

This section introduces the targeted URT station passenger demand data and the
statistical techniques used. Time series forecasting is a technique used to achieve the goals
and objectives of this study. The observed data used to predict future passenger demand is
based on existing URT historical inbound data collected at specific intervals of time (one
hour). Figure 8 shows the empirical passenger-data-based conceptual framework adopted
for analyzing and modeling different time series.

3.1. Data Analysis

To construct the different time series models, namely daily and weekly, the data used
are extracted from the smart card in the targeted URT station. The URT passenger demand
data extracted depends on the corresponding entry station time by which the passengers
entered the stations, as the outflow time of each passenger differs from station to station.
The extracted historical passenger data covered the period from 1 January 2021 to 31
December 2021 and constituted 9125 observations aggregated in one hour. The time series
data obtained were first plotted to observe the patterns and behaviors in the historical
data over time. The time series plot shows the monthly numbers of passenger demand for
arrival at this station against the date in months. Figure 1 displays the original inbound
historical passenger demand. From the plot, we can observe that the passenger demand
is far too dense to make much sense for the time series analysis. Therefore, to gain more
insight into the original series, we aggregated the original time series data into daily and
weekly time series (Figure 2), through which the forecast for the future passenger demand
is made. After aggregating the data into the daily and weekly time series data, we further
divided the daily and weekly data into a training dataset and a test dataset. The training
and test dataset plots are displayed in Figures 3 and 4. The train dataset consisting of data
from 1 January 2021 to 31 October 2021 was used to develop the daily and weekly time
series models and to calibrate the different models’ parameters. The test dataset consisting
of data from 1 November 2021 to 31 December 2021 was used to validate the prediction
computational efficiency and accuracy of different dependent models.
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From Figures 1 and 2, we can observe that the passenger demand values recorded in
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Chinese New Year (spring festival), Dragon boat festival, Mid-Autumn Festival, and New
Year’s Day events, that contribute greatly to the rise in passenger demand values, while
the observed decrease in passenger demand values in some months, i.e., February and
August, are less caused by the impact of COVID-19, educational holidays, reduction in
work trips, etc.

For a better in-depth understanding of the obtained historical passenger demand
data, the original time series and the aggregated daily and weekly time series were further
decomposed into separate components Figure 5, i.e., seasonal components Sm(t), trend
components Tm(t), and residual components Rm(t), that a time series contained.

Original time series : Ym(t) = Sm(t) + Tm(t) + Rm(t) (12) (1)
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From the daily and weekly decomposed time series plot Figures 6 and 7, we can ob-
serve that the daily time series seasonal decomposed box displayed repeated peaks, which
signifies that the daily time series has seasonality. The trend component box indicates that
the trend contributes greatly to the series and requires further time series transformation.
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3.2. Methodology

To forecast passenger demand for the targeted URT station, this study used the
Box and Jenkins (1976) time series modeling technique and the Facebook Prophet time
series modeling technique to build the daily and weekly time series model because of
their stationarity nature, power, suitability, and flexibility to our dataset. The prediction
models take into consideration the statistical theory and method as a foundation. Statistical
software was used to analyze the daily and weekly time series characteristics and give a
sense of how strong the underlying patterns such as trend Tm(t), seasonality Sm(t), mean,
and variance are. The accuracy of Box–Jenkins and Facebook Prophet forecasting depends
on the nature of the time series, which must first be made stationary. Stationarity tests
were conducted using the augmented Dickey–Fuller test statistics (ADF) Equation (21)
and the Kwiatkowski–Phillips–Schmidt–Shin test statistics (KPSS) Equation (22) for the
daily and weekly time series forecasting models’ development before and after the series
transformations. This study covered four major stages for the Box–Jenkins time series
construction, such as identification of the time series models, estimation of the time series
models’ parameters, diagnostic checking of the fitted models, and forecasting of the future
station passenger demand. Figure 8 defines the model development stages explored in
this study.
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3.3. Box–Jenkins Forecasting Models

The introduction of the Box and Jenkins time series models and the AR, MA, ARMA,
ARIMA [32], and SARIMA models were first illustrated.

3.3.1. Autoregressive (AR) (p) Models

Autoregressive models operate under the premise that the current passenger demand
values of the series, ymt , can simply be defined as a linear combination of p previous
passenger demand values, ϕm1 ymt−1 , ϕm2 ymt−2 , . . . , ϕmp ymt−p , with a random error in the
same series. An autoregression of the term (p) model AR (p) can be of the form:

ymt = c +
p

∑
i=1

ϕmi ymt−i + εmt (4)

ymt = c + ϕm1 ymt−1 + ϕm2 ymt−2 + · · ·+ ϕmp ymt−p + εmt (5)

where ϕm1 , ϕm2 , . . . ., ϕmp are the autoregressive coefficients or parameters of the model,
ymt are the actual values, εmt is the residual error term of the series, c is the constant value
derived from the mean of the series, and ymt−p is the previous time series value of ym.
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3.3.2. Moving Average (MA) (q) Model

The moving average of the term MA (q) is a model that measures only the direct effect
of previous time lags on the current value. The MA of the term (q) model can be defined in
the form:

ymt = c + εmt +
q

∑
i=1

θmi εmt−i (6)

ymt = c + εmt + θm1 εmt−1 + θm2 εmt−2 + . . . + θmq εmt−q (7)

where θm1 , θm2 , . . . .., θmq are the moving average coefficients or parameters of the model,
ymt are the actual values, εmt is the residual error term of the series, and c is the constant
value derived from the mean of the series.

3.3.3. Autoregressive Moving Average (ARMA) (p, q) Model

The autoregressive moving average model, also called the ARMA (p, q) term, is
developed by combining both the AR (p) terms and the MA (q) terms. The combination of
Equations (4) and (6) gives the ARMA (p, q) model, defined as the following:

ymt = c +
p

∑
i=1

ϕmi ymt−1 + εmt +
q

∑
i=1

θmi εmt−i (8)

where ymt is the prediction result of the ARMA (p, q) model, εmt is the residual error term of
the series, ϕmi and θmi are the coefficient or parameters of the model (p, q), c is the constant
value derived from the mean of the series, ymt−1 is the previous time series value of ym, and
εmt−i is the previous residual error value.

3.3.4. Autoregressive Integrated Moving Average (ARIMA) (p, d, q) Model

The ARIMA model of the terms (p, d, q) adds lags of different series AR terms and
lags of forecast error MA terms to the prediction. The general ARIMA model equation is
defined as the following:

ymt −
p

∑
i=1

ϕmi ymt−i = ymt −
q

∑
j=1

θmj ymt−j (9)

Differencing the series back one period gives the first-order difference and the general
equation can be written as the following:

yi
mt = ymt−ymt−1 = ymt − Bmymt = (1− Bm)ymt (10)

When the order of the differencing d (I) term is combined with the AR (p) term and
MA (q) term model, a non-seasonal ARIMA model is found as defined in Equation (11):

y′mt = c + ϕm1 y′mt−1
+ . . . + ϕmp y′mt−p + θm1 εmt−1 + θm2 εmt−2 + . . . + θmq εmt−q + εmt (11)

where ymt is the most current value in the time series, yi
mt is the transformed series, εmt is a

set of uncorrected random shocks, Bm is the backshift operator, ϕm1 y′mt−1
+ . . .+ ϕmp y′mt−p is

a non-seasonal AR operator, MA operator of order ‘p’, θm1 εmt−1 + θm2 εmt−2 + . . . + θmq εmt−q

is a non-seasonal MA operator of order ‘q’, d is the differencing term, and c is the constant
value derived from the series.

3.3.5. Seasonal Autoregressive Integrated Moving Average (SARIMA) Models

The SARIMA model is developed by including additional seasonal terms in the
ARIMA Equation (11) models, defined as the following:
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ARIMA (p, d, q)(P, D, Q)m

ϕm(Bm)ϕm(B)(1− Bm)D(1− B)dymt = θm(Bm)θm(B)εmt (12)

where m is the number of observations, B is the back shift operator, p and P, q and Q
are the seasonal and non-seasonal AR and MA terms, respectively, used to determine the
lagged values of ϕm and θm, and d and D define the order of seasonal and non-seasonal
differencing, respectively.

3.3.6. Facebook Prophet (FB Prophet) Model

The Facebook Prophet is a powerful forecasting tool built by Facebook. Ref. [33] used
a decomposable time series model with three main model components: trend, seasonality,
and holidays, as defined in Equation (13):

y(t) = g(t) + s(t) + h(t) + r(t) + εt (13)

where g(t) is the trend component, s(t) is the seasonality, h(t) is the holiday effects, εt is
the error term, and y(t) is the prediction.

3.4. Forecasting Models Selection

Selecting a forecasting model depends mainly on the identified features and char-
acteristics of the time series. The different time series data were analyzed through the
application of statistical and mathematical models to make forecasts for future passenger
values and provide appropriate information to the URT station authorities concerning
strategic planning and decision-making. The choice of select Box–Jenkins and Facebook
Prophet time series modeling techniques used in this analysis was due to the models’
designed abilities for univariate time series datasets. Both models are suitable for time
series data with trend and seasonality effects and play a fundamental role in understanding
how passenger demand values change over a period.

3.4.1. Box–Jenkins Model Selection Criterions

The Akaike information criterion (AIC), Bayesian information criterion (BIC), and
maximum likelihood rule (ML) were considered the best model selection criteria among
several tested candidate models in this study. The model with the least possible AIC value
and BIC value information criteria is considered the most appropriate model. The AIC and
BIC equations are written as in Equations (14) and (15):

AICp,q = 2k− 2In(L) = 2k + nIn
(

RSS
n

)
(14)

BICp,q = In(n)k− 2In(L) = nln
(

σ2
e

)
+ ln(n)k (15)

where k is p + q estimated parameters in the model, while L = maximized likelihood value
for the estimated model, n = number of observations (sample size), RSS = residual sum of
squares of the estimated model, and σ2

e is the error variance.

3.4.2. Performance Evaluation Index

The models’ results were compared by evaluating the performance of the best-fitted
models using five model performance indexes to measure the model’s accuracy: mean
squared error (MSE), mean absolute error (MAE), root mean square error (RMSE), root
mean squared log error (RMSLE), and mean squared log error (MSLE). Mean square error
(MSE) is the most commonly used error indicator in this study because of its usefulness in
comparing different models; it shows the ability to predict the correct output. The RMSE is
another error estimation used, which shows the error in the unit of actual and predicted
data. Mean absolute error is used as the sum of absolute differences between the actual time
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series values and the forecasted values. The following performance evaluation equations
were used in this study:

MSE =
1
N

n

∑
i=1

(yi − ŷi)2 (16)

MAE =
1
N

n

∑
i=1
|yi− ŷi| (17)

RMSE =

√
1
N

n

∑
i=1

(yi− ŷi)2 (18)

MSLE =
1
N

n

∑
i=1

(log(yi + 1)− (ŷi + 1))2 (19)

RMSLE =

√
1
N

n

∑
i=1

(log(yi + 1)− (ŷi + 1))2 (20)

where yi = actual values, ŷi = forecasted values, and N = number of observations.
Equation (16) measures the model goodness of fit and was also used as a model

selection criterion. Equations (17) and (18) measure the average absolute and relative errors
to determine how well the model can generate the time series data that are already available.
Equations (19) and (20) are used to measure the ratio between actual values and forecasted
values to penalize underestimated values more than overestimated values.

4. Results and Discussions

Each variable time series for evidence of stationarity and non-stationarity to be able to
fit it into the proposed models was first examined.

4.1. Time Series Stationarity Test

Before the different time series (daily and weekly) models were built first, a stationarity
test was conducted, as shown in Figure 8. The stationarity test in time series forecasting
analysis indicates the constant nature of a series of statistical attributes, i.e., mean, variance,
auto-correlation, etc., which implies the series exhibits low heteroskedasticity. In this study,
the primary methods adopted to test the stationarity nature of the different series before and
after the transformation among several other methods are the augmented Dickey–Fuller
stationarity test (ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) stationarity test.
The regression equation given by Dickey–Fuller (1979) and KPSS for the stationarity test is
written as in Equations (21) and (22):

∆ymt = µ0t + µ1t +∅ymt−1 +
t

∑
j−1

αj∆ymt−j + εmt (21)

yt = µ + αt + βt + εt (22)

where t = p + 1, p + 2 . . . ..., T, µ0 = intercept, µ1t = coefficient trend when present, ∅ =
coefficient of the lagged dependent variable ymt−1 = p lags of ∆ymt−j with coefficient αj are
added to account for the series correlation in the residuals, αt is the random walk, βt is
the deterministic trend, εt is the stationary error term, and µ is the constant. If H0: ∅ = 0
means not stationary and the H0 is not rejected; also, if ∅ > 0, means stationary and the H0
is rejected, while the H1: ∅ 6= 0 means stationary. The ADF test statistics can be written as
the following:

ADF =
∅

SE(∅)
(23)

where SE(∅) = standard error for denotes estimates.
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After the stationarity test, the next stage adopted is model identification. The model
identification process was done by checking stationarity, trailing, and truncation features
of the autocorrelation function ACF and partial autocorrelation function PACF to find the
initial orders of seasonal and non-seasonal model hyperparameters, p, q, and P, Q, MA (q)
terms and AR (p) terms. After the appropriate model has been identified by the number of
significant spikes, the stability of the estimated parameters was examined to the period
frame adopted in Figure 8. The goal is to generate statistically adequate representations
of the different series and to select a model that has significant computing coefficients
and a good fit. The ACF and PACF model behaviors are summarized in Table 1. The
Ljung–Box (Q) test statistics model diagnostic checking was considered important to verify
the adequacy of the good fit model. In addition, we repeated all these stages, which have
a restatement condition if the model is invalid for the forecast. The Ljung–Box (Q) test
equation can be defined as Equation (24):

QLB = n(n + 2)
m

∑
k−1

r̂2
k

n− k
(24)

where r̂k = estimated residual autocorrelation of the different series at lag k, m = number
of lags.

Table 1. ACF and PACF model behavior.

Categories AR (p) MA (q) ARMA (p, q)

ACF Tails off exponentially Shuts off after lag q Tails off exponentially

PACF Shuts off after lag p Tails off exponentially Tails off exponentially

4.2. Daily Time Series Model

The development of the daily forecasting model consists of daily passenger demand
data extracted from the obtained original time series passenger data defined at the same
period. In the daily passenger demand time series forecasting model development, the
time series forecasting period is considered one day. By checking the ACF and PACF plots,
Figure 9 and ADF stationarity test statistics, and KPSS stationarity test statistics conducted
on the daily time series before transformation, results indicate that the daily time series
ADF and KPSS shows no stationarity since the p-value of the series is 0.077616 > 0.05 for
ADF and 0.024237 < 0.05 for KPSS. Therefore, to make the daily time series data that was
not stationary become stationary, the auto-ARIMA modeling technique was used because
of its power to automatically transform the data, output different candidates’ models, and
suggest an appropriate model that satisfies the steps defined in Figure 8. Twenty-four
hours was considered the daily time series frequency; this means that for the same period,
existing passenger demand information can be utilized to forecast passenger demand data
the next day.
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The SARIMA model (p, d, q) (P, D, Q)m is considered appropriate for handling the
daily transformed time series. After checking the different combinations of the candidates’
models, empirical results showed that the SARIMA (5, 1, 3) (1, 0, 0)24 model proved to have
the best model performance among several tested candidates’ models for forecasting the
future daily passenger demand for this targeted station line. The daily SARIMA (5, 1, 3) (1,
0, 0)24 model can be written as the following:

yd(t) = ϕd1 yd(t− 1) + ϕd2 yd(t− 2) + ϕd3 yd(t− 3)
+ ϕd4 yd(t− 4) + ϕd5 yd(t− 5) + ϕd6 yd(t− 24)
+ ϕd7 yd(t− 25) + ϕd8 yd(t− 26) + εd(t)
+ θd1 εd(t− 1) + θd2 εd(t− 2) + θd3 εd(t− 3),

where yd is the prediction result of the daily SARIMA model, εd is the white noise of the
daily series, and ϕd, and θd are the parameters of the daily model.

The daily time series model parameters, such as standard error, p-values results, etc.,
are shown in Table 2. Table 3 presents the fitting model’s performance evaluation index
results for the daily series. From the observations made, the daily time series developed
model accurately captures both the trend and seasonal fluctuations of the series and
stipulates a suitable forecast for both weekdays and weekends. The developed SARIMA
model (5, 1, 3) (1, 0, 0)24 proved to have good performance, especially on weekdays.

Figures 10 and 11 displays the significant fluctuations between the weekday and
weekend passenger demands for the targeted URT station. The figures show that passen-
ger demand decreased starting on Monday and reached its lowest level on Tuesday, but
passenger demand started to increase and found Friday to be the strongest day with maxi-
mum passenger demand. In addition, passenger demand tended to increase on weekends
compared to working days because the URT station is linked to tourist attractions and
commercial centers. The weakest day with the minimum passenger demand was Sunday.
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Table 2. Parameters of daily and weekly time series model for the Box–Jenkins.

Model Parameters Coefficient Std Error z p-Value

Daily Time Series
Model

SARIMA (5, 1, 3)
(1, 0, 0)24

ϕd1
−0.02 0.17 −0.12 0.91

ϕd2 −0.81 0.11 −7.06 0.00 ***

ϕd3 0.25 0.20 1.21 0.23

ϕd4
−0.08 0.07 −1.23 0.22

ϕd5 −0.18 0.07 −2.70 0.01 ***

θd1
−0.17 0.17 −0.99 0.32

θd2 0.72 0.07 9.83 0.00 ***

θd3 −0.56 0.16 −3.46 0.00 ***

AR.S. L24 −0.14 0.07 −1.89 0.06

Weekly Time
Series Model

AR (2)
ϕw1 1.01 0.15 6.76 0.00 ***

ϕw2 −0.32 0.15 −2.19 0.03 ***

ARMA (2, 1)

ϕw1 1.72 0.08 20.62 0.00 ***

ϕw2 −0.81 0.09 −9.37 0.00 ***

θw1 −0.99 0.07 −14.86 0.00 ***

Where *** signified a 5% level of significance.

Table 3. Prediction performance of the different models SARIMA vs. Prophet models.

Model RMSE MAE MSLE RMSLE

SARIMA (5, 1, 3) (1, 0, 0) 1346.908 1109.53 0.043 0.208

AR (2) 719.674 643.19 0.013 0.113

AR (3) 719.528 645.18 0.013 0.113

AR (6) 780.641 666.30 0.015 0.124

ARMA (2, 1) 469.818 360.54 0.005 0.072

ARMA (0, 3) 676.571 580.62 0.011 0.105

ARMA (1, 3) 680.431 588.11 0.011 0.106

Facebook Prophet Time Series Model

Daily Time Series RMSE MSE MAE

Baseline Model 634.47 402,553.33 421.74

Baseline Model with
Seasonality 683.96 467,800.51 475.55

Weekly Time Series

Baseline Model 844.39 712,998.67 730.00

Baseline Model with
Seasonality 6304.62 38,497,293.63 6161.41
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Figure 12 define the forecasted daily passenger demand for the additional 365 days
using the Prophet model. As shown in the Figure 12, the black dots represent the actual
training data, the blue lines represent time series model predictions, and the shaded area
represents the 95% prediction interval (upper and lower).
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4.3. Weekly Time Series Model

The development of the weekly passenger demand forecasting model consists of the
weeks (i.e., traditional working weeks, festivals, and holidays) and passenger demand data
extracted from the obtained inbound historical original time series data being defined at the
same period on the same weekday. In the weekly series forecasting model development,
the weekly time series forecasting period is considered one week. To build the weekly time
series model, we first conducted a stationarity test using the ADF test statistics and KPPS
test statistics. From the stationarity test statistic results, it was observed that the ADF test
statistic −3.096067 is significantly smaller than the two critical values (i.e., critical values at
5% and 10%) with a p-value of 0.026846 < 0.05.05. In this case, we failed to accept the (Ho:)
null hypothesis, and the (Ha:) alternative hypothesis is accepted. In addition, the KPSS
test statistic is 0.087391, and the p-value 0.10000 > 0.05.05. In this case, we accepted the
(Ho:) null hypothesis but failed to accept the (Ha:) alternative hypothesis. We concluded
that the weekly time series data proved to be stationary with no power transformation
and does not have a unit root. By checking the ACF and PACF plots, Figure 13. The ACF
displays a tail-off exponentially while the PACF plot shuts off after different significant lags
for different periods of the day. For the stationary time series, both the AR (p) and ARMA
(p, q) models are considered suitable for modeling the weekly stationary series.
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In modeling the AR (p) model, several candidate models of order p were first tested to
select a suitable AR (p) model. The AIC, BIC, ML, and MSE model selection criteria were
also used for the optimal model selection. The result proved that AR (2) is the appropriate
model among several tested candidate models. In addition, model testing was employed in
the ARMA (p, q) model considering different ARMA (p, q) model combinations. ARMA (2,
1) proved to be the best among the different tested candidate models. We further compared
the two developed models, the AR (2) and ARMA (2, 1) models. The empirical results
showed that the ARMA (2, 1) model was considered appropriate for modeling the weekly
time series. The ARMA (2, 1) model can be written as the following:

yw(t) = ϕw1 yw(t− 1) + ϕw2 yw(t− 2) + εw(t) + θw1 εw(t− 1)

where yw is the prediction result of the ARMA (p, q) model, εw is the white noise of the
time series, and ϕw and θw are the parameters of the model.

The weekly time series model parameters, such as standard error results, etc., are
shown in Table 2. The fitting model’s performance evaluation index results for the weekly
time series model are shown in Table 3. Based on the observations made, the weekly time
series model accurately captures the trends of the weekly series and provides a suitable
prediction for weeks of the year 2021 (Figure 14).
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Figure 14. Passenger demand by weeks of the year.

Figure 15 define the forecasted weekly passenger demand for the additional 53 weeks
using the Box-Jenkins model. As indicated, the blue line represents the actual data, the
red line shows the predicted time series, and the black line represents the post-future
forecasted demand.
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Figure 15. Weekly passenger demand plot with forecasted values using the Box–Jenkins model.

4.4. Forecasting with the Selected Model

The principal objective of developing the prediction model is to test whether it is
capable of forecasting future passenger demand accurately or not for the same series. To
build the model, the stages defined in Figure 8 were critically observed for the model
development accuracy. The suitably selected models were used to create forecasts for
the next 12 months of 2022. The forecasting performance, as well as the fitted model, is
measured by evaluating the model performance index generated directly from Equations
(16)–(20), the form of the model procedure.

Figures 16 and 17 show the model diagnostic plot for the developed daily and weekly
time series models. The model residual quantile-quantile Q-Q plots and histogram followed
a normal distribution. In addition, the model correlogram plot indicates that the residuals
did not show any significant correlation.
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5. Conclusions

The lack of studies in the context of URT passenger demand forecasts and the extent of
including real-time data in forecasting models have propelled the analysis and development
of daily and weekly URT passenger demand time series forecasting. The studied results
are recapitulated as follows:

1. This study used the actual 365 days of historical inbound-passenger-demand data
collected from the targeted URT station to construct the different time series forecasting
models based on the Box–Jenkins and FB Prophet forecasting models’ approach applied
to predict the post-daily and weekly passenger demand of the same station being studied
and to examine the forecasting performance of the algorithms used, based on the context of
aggregated URT-passenger-demand data. These predictions are more productive for URT
authorities for operational scheduling.

2. After the correlation, stationarity and periodicity analysis of the passenger demand
characteristics were conducted to determine the appropriate forecasting models. The daily
and weekly passenger demand forecasting method of URT is proposed using a time series
algorithm, and the effectiveness of the method is examined through the display of predic-
tion results and comparative analysis. The corresponding forecasting models, the SARIMA,
ARMA, and FB Prophet models, were developed to capture different characteristics and
features of the series.

3. We investigated the different models’ forecast performance accuracy of the different
constructed time series models and chose the optimal models. Based on the algorithms
used, the daily and weekly passenger demand forecasting model of URT was constructed,
with MAE, RMSE, and MSE as the performance evaluation indicators of the model, and
the parameters of each model were optimized and validated, and the optimal prediction
results of each model were output.

4. To achieve better forecast results, we experimented with several candidate models
for the different Box–Jenkins time series (daily and weekly) models, as shown in Table 4.
For each developed candidate model, we estimated the parameters thereafter. Using the
model selection criteria explored, it was observed that the ARMA (2, 1) model for the
weekly time series forecast and the SARIMA (5, 1, 3) (1, 0, 0)24 model for the daily time
series forecast satisfied the selection conditions as the suitable models. Implying that the
choice of ARMA (2, 1) and SARIMA (5, 1, 3) (1, 0, 0)24 are appropriate and ideal, we further
compared the Box–Jenkins model with the FB Prophet model as in Table 3. As a next
step, we made forecasts for the next 12 months of 2022. Finally, the prediction results
show that the passenger demand for this targeted URT station line has shown a trend
toward an increase and decrease in passenger demand for both daily and weekly time
series forecasts. In addition, because of the fluctuation effect of demand on weekdays and
weekends, heteroskedasticity was considered.

Table 4. Performance evaluation of different models for Box–Jenkins.

SARIMA (p, d, q) (P, D,
Q)m Models

Daily Time Series

AIC BIC MSE Log-Likelihood

SARIMA (5, 1, 3) (1, 0, 0)24 4828.786 4865.923 1,814,162.356 −2404.393

Weekly Time Series

AR (2) 722.86 729.99 517,930.55 −357.43

AR (3) 724.73 733.65 517,720.89 −357.36

AR (6) 723.74 738.01 609,400.54 −353.87

ARMA (2, 1) 722.28 731.20 220,728.66 −356.14

ARMA (0, 3) 720.32 729.25 457,775.37 −355.16

ARMA (1, 3) 721.985 732.690 462,986.61 −354.99
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Future lines of study include improving the performance and practicality of the study
by considering predicting weekends, working weeks before the summer holidays, holidays,
and some sudden passenger demand, making the forecast range more comprehensive. In
this study, only inbound passenger demand at the targeted URT station was considered.
In the future, we can predict the regional passenger demand at the station and the cross-
sectional passenger demand of the line and then optimize the URT operation organization.
In the forecasting process of this study, the impact factors such as passenger transfers,
access to new lines in the network, weather changes, and other means of transport are not
considered. To further improve the accuracy of the forecast, comprehensive considerations
can be carried out in the future steps of the study to enhance the persuasiveness of the
study. Finally, this study has proved that researchers can achieve impressive increases in
forecasting accuracy through the application of Facebook Prophet time series modeling
techniques because of the model’s designed ability to capture yearly, weekly, and daily
seasonality and trend components in the time series. The comparative evaluation as in
Table 3 of the Box–Jenkins against Facebook Prophet time series models has indicated
the overall superiority of the Facebook Prophet in modeling the daily URT forecasts of
passenger demand values. The Box–Jenkins model shows superiority over Facebook
Prophet in modeling the weekly time series.
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