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Abstract: The sudden onset of the COVID-19 pandemic posed significant challenges for forecasting
professionals worldwide. This article examines the early forecasts of COVID-19 transmission, using
the context of the United States, one of the early epicenters of the crisis. The article compares the
relative accuracy of selected models from two forecasters who informed government policy in the first
three months of the pandemic, the Institute of Health Metrics and Evaluation (IHME) and Columbia
University. Furthermore, we examine whether the forecasts improved as more data became available
in the subsequent months of the pandemic, using the forecasts from Los Alamos National Laboratory
and the University of Texas, Austin. The analysis focuses on mortality estimates and compares
forecasts using epidemiological and curve-fitting models during the first wave of the pandemic from
March 2020 to October 2020. As health agencies worldwide struggled with uncertainty in models
and projections of COVID-19 caseload and mortality, this article provides important insights that can
be useful for crafting policy responses to the ongoing pandemic and future outbreaks.
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1. Introduction

The coronavirus pandemic has wreaked tremendous havoc worldwide, resulting in
the loss of human lives and severe economic disruptions. The expansion of vaccines has
reduced the mortality rates associated with the virus, but the pandemic is still far from
over. In the early days of the pandemic in 2020, policymakers around the world scurried
for containment measures and non-pharmaceutical interventions (NPIs)—including lock-
downs, quarantine protocols, and social distancing. However, the uncertainty around
virus transmission dominated the headlines, due to a wide range of forecasts put forth
by researchers. On 16 March 2020, one of the models from the Imperial College, London,
sent shockwaves across the United States, predicting 2.2 million deaths in the absence
of spontaneous changes in individual behavior and control measures [1]. In hindsight,
the model obviously had a significant error, but the counterfactual states could not be ob-
served since stringent containment measures were, indeed, put in place. Furthermore, the
vaccines arrived much earlier than anticipated in the outbreak’s initial months, changing
the trajectory of early forecasts. Since then, dozens of national and international forecasts
and projections have informed policy responses, including shutdowns and reopening
guidelines. These models broadly fall under three major categories: mechanistic models
(e.g., SEIR models), statistical time series and exponential smoothing models, and deep
learning or machine learning models. In this article, we focus on the first two categories
and examine the accuracy of these forecasts in the early days of a pandemic, when past
data and patterns were limited.

We primarily rely on the forecasts of four major agencies that informed public policy
decisions in a significant way in the United States: University of Washington’s Institute
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of Health Metrics and Evaluation (IHME); Los Alamos National Laboratory (LANL);
Columbia University’s Mailman School of Public Health (MIPH); and University of Texas,
Austin. All of these models had different estimation approaches, but the latter two were
versions of SEIR (Susceptible–Exposed–Infectious–Recovered) models that accounted for
social distancing parameters, and the former were statistical forecasts based on curve-fitting
approaches, the LANL model was an exponential smoothing time series model and IHME
was a hybrid model that combined mechanistic and time series approaches. The IHME
and Columbia models were at the center of policymaking concerning shutdowns and other
non-pharmaceutical interventions in the early weeks of the pandemic in the U.S., and the
White House heavily relied on the IHME model [2]. Governor Andrew Cuomo of New
York State, one of the earliest epicenters of the crisis, compared forecasts for these agencies,
and they informed policy choices regarding testing, purchase of medical equipment, and
social distancing guidelines [3].

The actual number of cases remains unknown, due to the asymptomatic nature of
COVID-19 for a large proportion of cases, lack of access to testing in the early days, and
issues related to the voluntary choice of not taking the test under mild symptoms. In this
context, for this analysis, we used only the number of deaths, The mortality estimates may
also be biased, because reliable excess death estimates are not available, but the bias is
relatively much smaller. In some states, the official estimates have been updated to include
the excess deaths, reducing the potential for bias in the calculated forecast deviations. We
compare the mortality forecasts to the actual number of deaths, as reported by the data
tracker, moderated by the Center for Systems Science and Engineering (CSSE) at the John
Hopkins University. The first six months of the pandemic were unique as the past data was
unavailable, but the forecasters had more tools to work with as more information became
available. On the other hand, the emergence of vaccines and new variants towards the end
of 2020 posed new challenges for forecasting the trajectory of the pandemic. Due to these
reasons, we focused on the first six months of the pandemic, from mid-March through early
October to examine the efficiency of models in the early days of the pandemic. In the United
States, the cases started to increase again in mid-October 2020, which was the beginning of
the second wave that lasted through February 2021 and peaked in January 2021.

The rest of the article is organized into four sections. The next section briefly reviews
available studies on COVID-19-related forecasts and highlights the practice and utility
of forecast evaluation and comparisons across several disciplines. Section 3 summarizes
the data and measures used in this paper, including a brief discussion on the advantages
and disadvantages of different measures. Section 4 outlines the results and discusses its
implications for forecasting the current pandemic and such events in the future. The last
section discusses the limitations of the study and concludes.

2. Previous Research

A vast literature in forecasting focuses on the accuracy of forecasts and its underlying
determinants [4,5]. Besides this, the practice of comparing multiple forecasts and exam-
ining variation by forecaster characteristics is also a well-established tradition, and can
be found in various domains, particularly within the disciplines of business, economics,
and finance [5–8]. Evaluation of forecasting models is also an increasing focus of short-
term disease forecasting and recent studies have focused on infectious diseases, such as
influenza and dengue [9–11]. The nature of the coronavirus pandemic and its timeline has
posed unprecedented challenges that many forecasters and forecasting models were not
prepared to account for, at least in the initial months. First, understanding how the virus
spread, how long it sustained itself in different environments, and the transmission rate
was very limited. Second, any significant precedence on social distancing outcomes and
the general population’s compliance with shutdowns was not available, so uncertainty was
inevitable. The forecasting models now have relatively much more information and robust
assumptions than they had access to in the initial months of the coronavirus outbreak.
Table 1 summarizes the major forecasts for the United States that were being aggregated
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as part of the early ensemble forecasting efforts of the Center for Disease Control and
Prevention (CDC). Some of these forecasts were epidemiological, and some were purely
statistical forecasts, based on exponential smoothening and time series of observed trends.

Table 1. Selected COVID-19 Forecasts, Methodology, Assumptions.

No. Models Method Assumptions Webpage

1.
Institute of Health

Metrics and
Evaluation (IHME)

Combination of Mechanistic
transmission model and
curve-fitting approach

Adjusted to differences in mobility. https://covid19.healthdata.org/united-
states-of-america

2. Columbia University Metapopulation SEIR model Accounts for social distancing.
https://columbia.maps.arcgis.com/apps/

webappviewer/index.html?id=ade6ba85450
c4325a12a5b9c09ba796c

3. Auquan Data Science SEIR Model No assumption about
interventions. https://covid19-infection-model.auquan.com/

4. COVID-19
Simulator Consortium SEIR Model 20% increase in contact rates after

lifting statistics at home orders. https://www.covid19sim.org/team

5. Georgia
Technology Authority Deep Learning Assumes effects of interventions

embedded in the data.
https://www.cc.gatech.edu/~badityap/

covid.html

6. Imperial
College, London

Ensembles of mechanistic
transmission models

No specific assumptions about the
interventions.

https://mrc-ide.github.io/covid19-short-
term-forecasts/index.html

7. John
Hopkins University

Stochastic Metapopulation
SEIR model

Assumes reduction in effectiveness
of mitigation after lifting

shelter-in-place.

https://github.com/HopkinsIDD/
COVIDScenarioPipeline

8. Los Alamos
National Laboratory

Statistical dynamic growth
model accounting for

population susceptibility
Assumes the NPIs would continue. https://covid-19.bsvgateway.org/

9. Massachusetts Institute
of Technology SEIR Model Assumes continuation of present

interventions. https://www.covidanalytics.io/projections

10. Northeastern University Metapopulation, age
structured SLIR model

Assumes continuation of social
distancing policies. https://covid19.gleamproject.org/

11 Iowa State University Nonparametric
spatiotemporal model

No specific assumptions related to
interventions. http://www.covid19dashboard.us/

12 Predictive Science Inc. Stochastic SEIRX model Assumes that current
interventions would not change. https://github.com/predsci/DRAFT

13
US Army Engineer

Research and
Development Center

SEIR mechanistic model Projections assume that
interventions would not change.

https://www.cdc.gov/coronavirus/2019
-ncov/covid-data/forecasting-us.html

14 University of California,
Los Angeles Modified SEIR Model Projections assume that

interventions would not change. https://covid19.uclaml.org/

15 University of
Texas, Austin

Nonlinear Bayesian
hierarchical regression with
a negative-binomial model

Estimate the extent of social
distancing, using mobile phone

geolocation data. Does not assume
changes in social distancing
during the forecast period.

https://covid-19.tacc.utexas.edu/projections/

The epidemiological projections relied on a variety of methods, including using simu-
lations based on the behavior of earlier strains of the coronavirus family, like SARS-CoV-1
and MERS, using the transmission data from China, Italy, and Spain, and increasingly the
information gained from the U.S. transmission behavior and social distancing compliance.
Ref. [12] used a medical model of transmission behavior, based on the immunity, cross-
immunity, and seasonality for Hcov-OC43 and HcoV-HKU1, to suggest that a seasonal
resurgence is the most likely scenario, requiring intermittent social distancing through
2022 and resurgences as late as 2024. Another study used early data from Hubei province
in China. between 11 January 2020 and 10 February 2020, and predicted that the cumu-
lative case count in China by 29 February could reach 180,000 with a lower bound of
45,000 cases [13]. The official reality turned out to be much more optimistic than the one
forecasted, perhaps owing to underreporting, effective non-pharmaceutical interventions,
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or flawed model assumptions. The epidemiological model by Imperial College, that was
mentioned earlier, also deviated significantly because of the changes in underlying assump-
tions and global health response that ensued. The epidemiological models rely on various
scientific assumptions related to the behavior of viruses, underlying health conditions and
immunity, availability of health infrastructure, etc., which may pose a significant challenge
for forecasting in the initial days of a new virus, such as COVID-19. However, as data
becomes available, employing time series or purely statistical forecasting models could
also be effective. For example, [14] used exponential smoothening with multiplicative error
and multiplicative trend components to forecast the trajectory of COVID-19 outcomes. The
forecasts released by [14] and their subsequent follow-up on social media, typically showed
over-forecasting in cases and deaths, but the actual values were within the 50% prediction
level, except in the first round [15]. Ref. [16] used local averaged time trend estimation that
assumed no seasonality, and they argue that, in the short run, their forecasts outperformed
the epidemiological forecasts, such as the ones from Imperial College. A probabilistic
model from the Los Alamos National Laboratory in New Mexico compared the forecasts
to the actuals and reported fairly robust coverage of the forecasts for three-week periods
following their releases [17].

Though the statistical forecasts have immense appeal. since they can be created in
real-time and can forecast micro-level patterns, for example, state or county-level trends,
they have also come under criticism. Ref. [18] raised several concerns that warrant a
careful approach toward statistical models in the case of epidemics. They highlighted
that epidemic curves may not follow a normal distribution, and curves may fit early data
in various ways, which may change as the epidemic progresses, for example, a second
wave may occur and change things. They suggested that such models can be helpful for
short-term predictions, but, otherwise, extreme caution has to be exercised, a point that is
reaffirmed by [19]. They argued that, for long-term outcomes, only mechanistic models,
like SEIR models, are reliable—many of the forecasts listed in Table 1 used SEIR models.

Some recent studies have examined the effectiveness of different models and also
compared the individual models to ensemble forecasts. Ref. [20] evaluated the individual
and ensemble forecasts and found that ensemble forecasts outperformed any individual
forecasts, using the data from more than 90 different forecasting agencies at https://covid1
9forecasthub.org/ (last accessed: 10 September 2022). Ref. [21] evaluated the forecast
accuracy of IHME data and found that IHME data underestimated mortality, and the
results did not improve over time. Ref. [22] examined the efficacy of hybrid models against
a range of technical forecasting models, using Italian Ministry of Health data, in early 2020,
and found that hybrid models were better at capturing the pandemic’s linear, non-linear
and seasonal patterns and significantly outperformed single time series models. Ref. [23]
used the data from the second wave of the pandemic in India and the United States. They
found that the ARIMA model had the best fit for India and the ARIMA-GRNN model had
the best fit for the United States. Ref. [24] undertook an evaluation of thirteen forecasts for
Germany and Poland during the ten weeks of the second wave and found considerable
heterogeneity in both point estimates and the forecasts concerning spread. Ref. [25] argued
that the COVID-19 pandemic highlighted the weakness of epidemic forecasting, and that
when forecasts and forecast errors could determine the strength of policy measures, such
as the implementation of lockdowns, they should receive closer scrutiny. This study adds
to this growing literature and undertakes a comparative evaluation of two sets of statistical
and epidemiological models, using trend-based comparison, and a set of forecast accuracy
measures discussed in the next section. The findings have relevance for the practice of
ensemble forecasting and the study of short-term forecasting of infectious diseases.

https://covid19forecasthub.org/
https://covid19forecasthub.org/
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3. Materials and Methods

There are several challenges in comparing forecasts against actual outcomes. Agencies
involved in forecasting often revise their estimates, and older forecasts disappear from
the websites. The reporting formats of the forecasts often change, as do the assumptions
underlying the forecasts. In this study, we focused on the forecasts of selected agencies and
the information was collected as the forecasts became available from March to November
2020. The data was collected from four major sources:

� Institute of Health Metrics and Evaluation (IHME), available at http://www.healthdata.
org/covid/data-downloads, (last accessed: 10 September 2022)

� Mailman Institute of Public Health at Columbia University (MIPH), available at https:
//github.com/shaman-lab/COVID-19Projection, (last accessed: 10 September 2022)

� Los Alamos National Laboratory, available for download at https://covid-19.bsvgateway.
org/, (last accessed: 10 September 2022)

� University of Texas, Austin, available at https://covid-19.tacc.utexas.edu/dashboards/
us/, (last accessed: 10 September 2022)

All forecasts evaluated were real-time ex post forecasts as made available by the Center
for Systems Science and Engineering at John Hopkins University (CSSE) https://github.
com/CSSEGISandData/COVID-19. Although both IHME and MIPH forecasted many data
series and specified confidence intervals, for this analysis, only forecasts concerning the
central tendency for mortality (death) were evaluated, due to the unreliability of caseload
estimates in the early days of the pandemic. Mortality estimates have also come under
scrutiny, as more information on excess mortality. due to COVID-19, has been documented
(See, for example, efforts by the COVID-19 excess mortality collaborators published in the
Lancet [26], 16–22 April 2022). MIPH produced numerous forecasts reflecting a variety of
assumptions, and these assumptions have changed over time, and the MIPH data were
simulations, assigning information to every county in the United States. These data were
summarized into one nationwide forecast for each day.

The MIPH models considered hypothetical conditions labeled as follows to correspond
to changes in social distancing and person-to-person contacts under stay-at-home orders:
no intervention, 80 percent contacts, 70 percent contacts, and 60 percent contacts. For the
United States, these data were detailed at the county level for each forecast day. For this
analysis, the county-level details were aggregated to a value for the United States for each
date. These were treated as four forecast categories, which were each evaluated: MIPH No
intervention, MIPH 80, MIPH 70, and MIPH 60. However, they include substitute values
for the March and May periods. In March, the categories were no intervention, 75 percent
contacts, and 50 percent contacts. The 75 percent contacts was substituted for both MIPH
80 and MIPH 70, and the 50 percent contacts was substituted for MIPH 60. Beginning in
May, the no intervention and 70 and 60 percent contacts were eliminated, and various other
alternative 80 percent contacts were produced. For forecasts through to 7 May, a base level
of 80 percent contacts was included, but, afterwards, only alternative values were shown.
For as long as feasible the base level 80 percent contact was used for the Columbia 80 model.
Afterwards the model, “w10p”, that commonly produced the largest number of deaths,
was substituted. For MIPH 60 the base model, which had the lowest forecast of deaths, was
used for the 3 May forecast, and, afterward, the model, “w5p”. which produced the least
forecast of deaths, was used. For MIPH 70 the model, “1x”, which had an intermediate
number of deaths, was used for the 3 May forecast, and, afterwards the model, “1x5p”, was
used. The no intervention model consistently used the highest number of deaths, “w”, up
to 3 May, and, afterwards, the model “w10p” Out of all these models, we highlighted the
results of MIPH60 since that was closer to the actual social distancing during the period, as
measured by Google’s Community Mobility reports [27].

http://www.healthdata.org/covid/data-downloads
http://www.healthdata.org/covid/data-downloads
https://github.com/shaman-lab/COVID-19Projection
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https://covid-19.tacc.utexas.edu/dashboards/us/
https://covid-19.tacc.utexas.edu/dashboards/us/
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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The IHME model is relatively straightforward, showing only one central tendency
forecast. Over the period of 25 March through 23 May there were 22 unique forecasts. After
excluding observations up to and through the date of the forecast, the number of forecast
periods ranged from 74 through 112. For the evaluated period, the observations ranged
from 9 to 67, with an average of 44.

To evaluate the MIPH and IHME data, they were combined into one forecast following
four different approaches. Two composite forecasts were made: (1) When there were
two or more forecasts, the first forecast made was treated as the forecast; this procedure
roughly reflected expectations, as seen by those external to forecast making, which might
include policymakers; (2) When there were two or more forecasts, the last forecast was
treated as the forecast; this reflected the general perception of forecasters and might reflect
external expectations after longer intervals. In addition, two averages were calculated;
(3) an unweighted average and (4) a weighted average with a weight (1 > w > 0) favoring
the most recent forecast and exponentially declining for earlier forecasts, absorbing the
remaining weight in the oldest forecast. The weight factor was set at w = 0.5. As ensemble
forecasts have been used extensively for COVID-19 [28,29], an additional set of forecasts
were computed by averaging each of the four combined IHME forecasts with its match
from the 70 percent contact forecast from Columbia University. Forecast averaging, or other
forms of combining, is a well-established practice [30,31].

The data from Los Alamos National Laboratory and the University of Texas at Austin
was collected through October 2020, which was the beginning of the second wave of
COVID-19 infections and deaths in the U.S. Using this data, we examined whether the
forecasts improved over time as more data became available and forecasters gained a
better understanding of models and assumptions. The forecasts were evaluated with the
following error measures where Ft = Forecast, At = Actual values for a particular date, and
n = number of forecast periods. Following [4], we calculated a series of error measures:

Mean Error (ME) =
1
n ∑n

t=1(Ft − At)

Mean Percent Error (MPE) =
1
n ∑n

t=1
(Ft − At) ∗ 100

At

Mean Absolute Percent Error (MAPE) =
1
n ∑n

t=1
|(Ft − At)|∗100

|At|

Symmetrical Mean Absolute Percent Error (SMAPE) =
1
n ∑n

t=1
|(Ft − At)|
(Ft + At)/2

Root Mean Squared Error (RMSE) =
2

√
∑n

t=1 (Ft − At)
2

n

As even the most cursory review of the graphic data shows, there was a weekly
seasonal pattern in the daily death count. This pattern appeared to reflect the relative access
to health care (and, thus, observation) available during the working week compared to the
weekend. We compared the forecasts against the weekly moving average of mortality and
calculated the errors, as well as depicted them graphically on a daily scale. Alternatively,
we also examined the total deaths summed for each week. The weekly analysis was
informative but had very few observations, since our core analysis of IHME and MIPH
data focused on only three early months of the pandemic, reported in Appendix A.
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Another important consideration was how far into the future the agencies could
reliably forecast COVID-19 mortality. To examine this issue, we reported average and
percent error for IHME and MIPH, using subsamples of weekly horizons. The MIPH data
consistently made 41-day forecasts, so we organized the results into six weeks. The IHME
model, on the other hand, had a longer forecast horizon of up to 12–16 weeks, but, in
the early months, errors were significantly large in the later weeks, so we did not report
results beyond the 8-week horizon. To examine whether forecast performance improved
over time, we used the data from Los Alamos National Laboratory and the University of
Texas at Austin. We divided the data into bi-monthly periods for the first six months of the
pandemic, i.e., until the end of the first wave, and calculated disaggregated mean error and
mean absolute percent error. The next section summarizes the key results in the graphs
and tables.

4. Results and Discussion

A comparative assessment of IHME and MIPH forecasts showed significant variation,
depending on the forecast aggregation technique and underlying assumptions about social
distancing. Figure 1 shows an overlay of the 22 IHME forecasts from the first forecast
during early days of the pandemic through the end of the series (beyond the end of the
evaluation period during the initial months of the pandemic). Except for the last few, these
forecasts were similar with the right-hand tail expanding up the X axis as later forecasts
were made. This expansion was substantially higher for the last five forecasts.
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However, the predictions by the IHME for the right-hand tail were significantly
underestimated, as shown in Figure 2, which compares the four combined forecasts with
the actual data, as reported by CSSE through August 2020. For the period beginning around
May 7th, the first forecast, and much of the influence of many of the other forecasts. as
shown in the average, produced a much lower forecast for later periods than was found
with the last forecast and the weighted average. IHME was the key forecast that was used
in the White House Press Briefings on the pandemic situation, and appeared to have shown
an optimistic picture (underestimated the number of deaths) in the spring and summer of
2020. This had significant implications for how the non-pharmaceutical recommendations
were implemented at the national and local levels. For instance, the CDC guidance on
non-medical face coverings for the general public was not issued until 3 April 2020. More
accurate early forecasts from organizations that were informing government policy might
have led to prompt action in such matters. Comparatively, while MIPH data, shown
later, exhibited some large errors, including underestimation in the early period, it more
accurately reflected the early summer period, which might have led to more aggressive
action early on.
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Table 2 reports the error measures for the four combined IHME forecasts. These show
the “last” forecast made, and the weighted average favoring the last forecast, substantially
outperformed the “first” forecast made or the average of all forecasts. However, the
estimated mean errors (MEs) and mean percent errors (MPEs) of all approaches showed
that IHME significantly underestimated mortality attributable to the pandemic. Mean
Absolute Percent Error, however, remained relatively stable across estimation approaches.
MAPE is an asymmetric metric that has no bounds for forecasts that are higher than actuals.
We calculated the SMAPE that addressed this issue. For IHME, the difference between
MAPE and SMAPE was higher for the first forecast than for the last forecast.

The mean errors for MIPH data vary across the social distancing assumptions. The
largest errors obviously arose under the “no intervention” assumption, which was indeed
not true, due to policy changes of closures and shutdowns enacted in March 2020. MIPH60,
the most conservative contact assumption, came closest to actual levels of changes in
mobility in the United States, as per Google Community Mobility Reports, which could be
used as a proxy for infectious contacts. Therefore, we primarily focused on MIPH 60 for
comparisons with IHME, but the error measures of all the contact thresholds are reported in
Table 2. Figure 3 shows the forecasts as made over various dates by MIPH, which showed
remarkably high forecasts on the beginning date of 31 March 2020, sharply dwarfing all
other forecasts. Figure 4 shows the combined MIPH forecast against the weekly moving
average of actual deaths. One thing that can be observed is that the forecasts substantially
lagged behind the actual data in the early period. Similarly, the “first” forecast composite,
substantially overran the actual data. MIPH, however, did not tend to flatten the curve at
the tail-end of the summer, even under the 60 percent contact assumption, which suggested
that the model was fairly more reliable in predicting the trajectory of the pandemic, as
compared to the IHME model.

Table 2 reports detailed error measures across the physical contact thresholds for MIPH
data as well. MIPH 60 was the only physical contact threshold that had a consistently
negative ME/MPE across the estimation approaches. The average of forecasts by day was
lowest for MIPH 60 and error measures were highest for the “no intervention” category.
MIPH 60 had lower mean errors than IHME and did a better job of predicting mortality, on
average, but the MAPE values were higher for MIPH 60 than for the IHME forecasts.

In summary, for the period examined, the IHME forecasts outperformed the MIPH
forecasts, regardless of which set of assumptions MIPH used. This also held true for the
average between the two forecasting groups. However, visual inspection of the MIPH fore-
casts suggested certain anomalous forecasts that, if eliminated, might result in a beneficial
effect of combined forecasts. In a secondary finding, the method of combining forecasts of
the same series using the same assumptions in the form of always using the most recently
made forecast generally outperformed other methods of working with frequently updated
forecasts; however, it was essentially tied with using a weighted forecast with exponentially
declining weights. Due to current research timelines, only one arbitrary initial weight
was considered.

We also created the weekly aggregates of the MIPH60 and IHME forecasts to assess the
weekly forecast performance. Due to the short time frame of the early COVID-19 forecasts,
we had a limited number of weeks. These results are reported in the Appendix A, Table A1.
The facet plots in Figure A1 show weekly errors for the first forecast, last forecast, average,
and weighted average. Generally speaking, the weekly patterns were consistent with the
daily patterns for IHME and MIPH60. The first forecasts of the IHME model consistently
underestimated on a weekly scale as well, but had much smaller absolute errors than
MIPH60, as shown in Table A1.
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Table 2. Aggregated Error Measures for IHME and MIPH Forecasts.

Model/Aggregated (Multiple Forecasts) ME MPE MAPE SMAPE RMSE

IHME

Composite with first forecast of daily value −558.6 −58.90% 61.34% 104.79% 655
Composite with last forecast of daily value −215.5 −22.56% 34.15% 49.37% 470

Average of forecasts by day −516.6 −53.45% 55.63% 88.52% 449
Average with exponentially declining weights −242.1 −22.91% 31.28% 44.78% 0

MIPH no intervention

Composite with first forecast of daily value 7824.7 707.45% 755.79% 135.76% 17,196
Composite with last forecast of daily value 167.0 30.90% 67.79% 55.20% 920

Average of forecasts by day 3060.9 270.23% 306.43% 121.69% 4864
Average with exponentially declining weights 566.0 75.89% 110.23% 76.11% 1194

MIPH 80

Composite with first forecast of daily value 1938.1 168.74% 224.88% 104.93% 4861
Composite with last forecast of daily value 143.2 29.75% 68.85% 57.69% 952

Average of forecasts by day 491.9 76.48% 118.65% 83.56% 1342
Average with exponentially declining weights 285.4 53.82% 92.18% 68.22% 1121

MIPH 70

Composite with first forecast of daily value 1462.7 109.94% 183.10% 109.81% 4676
Composite with last forecast of daily value −109.9 −4.38% 36.03% 46.47% 640

Average of forecasts by day −51.6 −11.49% 59.24% 64.54% 852
Average with exponentially declining weights −93.5 −3.22% 42.84% 51.84% 688

MIPH 60

Composite with first forecast of daily value 119.7 28.36% 114.72% 110.09% 1651
Composite with last forecast of daily value −59.3 −4.09% 45.20% 51.43% 720

Average of forecasts by day −197.5 −8.17% 66.84% 68.54% 902
Average with exponentially declining weights −44.1 −13.14% 54.28% 57.08% 788

Averaged IHME and MIPH 70
Composite with first forecast of daily value 798.7 45.00% 111.83% 75.44% 3414
Composite with last forecast of daily value −109.1 −6.53% 23.75% 29.38% 468

Average of forecasts by day −184.7 −7.44% 33.28% 38.93% 584
Average with exponentially declining weights −122.6 −3.21% 27.42% 32.61% 500

Another issue of interest was the accuracy of the forecasts over different forecasting
horizons. Figures 5 and 6 plot the forecasts and actuals for MIPH60 and IHME that were
stratified over weekly forecasting horizons. Since the MIPH forecasts had a consistent
41-day forecasting window, we stratified the data over six weeks, as shown below. In the
early days of the pandemic, the forecasters struggled to make even short-term forecasts
and errors were significantly large. However, as the pandemic progressed, and some
information about the dynamics of virus transmission, such as value of R0, became available,
the forecasts had improved by the end of April. After that, the 1-week, 2-week, and 3-week
forecasts were not significantly different for MIPH60, but the errors were relatively larger
beyond that. The errors for IHME also tended to get considerably larger around the 3 to
4-week mark. Due the variation in the mortality data, percent errors did a better job of
depicting the changes in forecast horizon trends. We plotted percent errors in for the two
forecasters and stratified the data monthly for the first three months of the pandemic in
Figures A3 and A4 in the Appendix A. Figure A3 shows an apparent increase in MIPH60
errors beyond the 3-week forecasting horizon. The patterns for IHME varied much more
significantly across the months of forecasts, but the errors tended to increase significantly
for IHME as well, beyond the 3 to 4-week mark. In summary, the results of stratifying
over forecasting horizons suggested that COVID-19 mortality forecasts beyond three weeks
were subject to significant errors, but the IHME and MIPH models improved as the first
wave progressed.
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The MIPH and IHME forecasts used in this study started providing forecasts early on
in the pandemic and might have influenced public behavior and government policy. In
the subsequent months, other forecasters, such as the University of Texas, Austin and Los
Alamos National Laboratory, also joined the fray, so we did not compare them directly to
IHME and MIPH. The forecasts from mid-April by these organizations had the benefits
of knowing the government policy, more data, and the trajectory of previous estimates by
IHME and MIPH and other early forecasters. Therefore, these agencies had, on average,
significantly lower mean error and mean absolute percent error than the early forecasters.
Figure 7 plots the Los Alamos National Laboratory forecasts with actual mortality between
mid-April to early October. The curve-fitting model used by LANL had larger errors
in the initial months, and, as the pandemic progressed, the errors became significantly
lower. The LANL model also tended to over-forecast mortality throughout the first wave
of the pandemic, but the errors reduced significantly after June 2020. The upper bound of
the UT-Austin forecast had significant errors and outliers, so, therefore, we reported the
upper and lower bounds separately (Figure 8). While the errors were significant in the
early months, the UT-Austin forecast performed well in June and July. Their forecast was
also relatively efficient in predicting the spike in the early weeks of the second wave of
the pandemic.
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The key error measures, namely, MPE and MAPE, for the average of forecasts by LANL
and UT-Austin are reported in Table 3. The UT Austin model, which was a SEIR model that
accounted for actual social distancing trends, had a lower mean percent error compared to
the LANL model, which was a time-series model. These models differed from IHME and
MIPH in that they significantly overestimated mortality. While the UT-Austin model had
lower MPE, the LANL model had lower MAPE, suggesting a higher forecast accuracy.

Table 3. Average Errors LANL and UT-Austin Forecasts, Smooth Aggregates and Bi-Monthly.

Mean Percent Error (MPE) Mean Absolute Percent Error (MAPE)

LANL UT-Austin LANL UT-Austin

Average of forecasts by day 14.65 11.23 28.05 31.07

Bi-Monthly Errors

April–May 2020 39.32 11.90 59.60 38.71
June–July 2020 14.21 3.96 25.79 18.24

August–October 2020 * 7.56 32.20 20.30 43.02
* Until the first week of October 2020.
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These models also improved over time, as more data about virus transmission became
available. Table 3 also reports ME and MAPE for bi-monthly forecasts from mid-April to
the beginning of October. The mean percent error significantly reduced as the pandemic
progressed and forecasters had an opportunity to validate their models and assumptions.
Mean percent error in LANL estimates reduced from 39.32 percent during the April–May
period to 14.21 during the June–July period, and subsequently to 7.56 in the August to early
October period. We see a similar decline in UT-Austin estimates in the June–July period, but
the errors increased in the subsequent period. UT Austin suspended publishing forecasts
and undertook a change in their methodology during this period that could potentially
explain this variation. The estimates of absolute error were also consistent and suggested
that forecast accuracy improved as the pandemic progressed, but the second wave again
tested the reliability of these models, which could be explored in future research.

5. Conclusions

This study examines the forecasts of four major agencies that provided COVID-19
forecasts in the initial months of the pandemic in the United States. First, we compared the
forecasts of two agencies, IHME and Columbia University, that actively produced forecasts
in the early days of the pandemic and were instrumental in shaping public behavior and
government policy. We found that the IHME forecasts sharply underestimated mortality.
However, we found that the forecasts made by IHME better reflected the actual progression
of COVID-19 deaths in the United States, but this could be because it was picking up
underlying social distancing trends. MIPH forecasts, on the other hand, were widely
discussed and influenced the behavior of the public at large. Thus, the very large expansion
rates shown in the early MIPH might have had a causal relationship with the subsequent
public self-sequestering and quarantine, which ultimately led to their deviating from
actual data. It is, nevertheless, remarkable that for the earliest MIPH forecasts, even
the forecasts of the most aggressive intervention, far overshot the actual instances of
death. Two possible considerations are: (1) there is a widespread belief that failure to test,
particularly of people who died before receiving medical attention, may have resulted
in systematic undercounting of the actual death rate [32,33], and (2) actual response,
such as self-sequestering, may have exceeded the most aggressive level forecast in the
localities that were early hotspots of the pandemic. These concerns muddied the ability
to refer to accuracy, as opposed to the efficacy, of pandemic forecasting in motivating
behavioral change. We also examined the forecasts of Los Alamos National Laboratory
and the University of Texas at Austin and found that they had significantly lower mean
errors compared to MIPH and IHME, the plausible explanation was that they were late
entrants and had better data available when they started forecasting. The forecasts from
the University of Texas at Austin had a lower mean percent error than the forecasts of
the Los Alamos National Laboratory, while the LANL model had lower absolute errors.
Mean percent error in the early months of the pandemic was higher and reduced as more
information became available and models and assumptions were possibly revised. We also
found that forecasts of the pandemic beyond 3–4 weeks produced much larger errors and
tended to be unreliable. However, more research and an inquiry into the second-wave
forecasts could possibly shed light on this finding.

Lastly, the forecasts from the Columbia University and University of Texas, Austin
were based on SEIR models, and the models used by the IHME and LANL relied more
on curve-fitting approaches. The results suggested that errors in both SEIR models (using
MIPH60 as the reference) were lower than the IHME and LANL. However, IHME and
LANL models had lower mean absolute percentage error. This could suggest that the
SEIR models were effective in predicting the trajectory and direction of the pandemic,
while the curve fitting approaches might have had higher short-term forecast accuracy.
Comparative analysis of more forecasts by different agencies could provide more insights,
having implications for the practice of ensemble forecasting, which organizations like the
Center for Disease Control and Prevention are actively using to aggregate forecasts.
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There are several limitations of this analysis that we would like to highlight. First,
the data availability limited the scope of forecast comparison, since the timelines and
approaches varied significantly. Second, the social distancing assumptions and actuals
varied substantially across models, rendering some forecasts, such as several thresholds
of MIPH, less useful for comparisons. Third, we did not adjust for seasonality in COVID-
19 transmission patterns since we were exclusively focusing on six months during the
first wave of the pandemic, but any longer-term forecast evaluation should account for
seasonality in COVID-19 infections and mortality. Fourth, we mostly used the central
tendency of forecasts, but the forecasters, in most instances, provided a range under
different assumptions and comparisons of point estimates had inherent disadvantages.
Fifth, the evaluation of these forecasts rested on the assumption that the reported mortality
by the CSSE was accurate, which we now know was often not the actual number of
deaths, given the large number of studies documenting excess mortality due to COVID-19.
Lastly, as the pandemic evolved and health systems became more prepared, a reduction in
mortality was evident, and it would have been challenging for any forecast to significantly
account for variation in policy responses.
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Composite with last forecast of daily value  −977.6  −160.59%  180.63%  169.27%  3853 

Average of forecasts by day  −556.5  −180.57%  205.39%  198.59%  5698 

Avg with exponentially declining weights  −859.4  −165.65%  189.04%  181.66%  4384 

MIPH 60            

Composite with first forecast of daily value  535.1  347.61%  393.96%  393.96%  10,611 

Composite with last forecast of daily value  −756.5  −166.60%  206.09%  188.53%  4188 

Figure A4. Average Percent Error and Forecast Horizon for IHME, By Month of Forecast.
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Table A1. Weekly Aggregated Error Measures for IHME and MIPH Forecasts.

Model/Aggregated (Multiple Forecasts) ME MPE MAPE SMAPE RMSE

IHME

Composite with first forecast of daily value −3764.1 −57.03% 60.35% 101.87% 4456
Composite with last forecast of daily value −1250.2 −18.97% 30.28% 42.24% 2832

Average of forecasts by day −3462.1 −51.44% 54.32% 85.12% 4117
Avg with exponentially declining weights * −1451.7 −19.46% 27.54% 38.13% 2807

MIPH no intervention

Composite with first forecast of daily value 55,776.4 122.44% 232.16% 232.16% 113,389
Composite with last forecast of daily value 531.8 141.94% 158.47% 136.33% 4696

Average of forecasts by day 21,409.2 112.41% 204.00% 188.05% 33,653
Avg with exponentially declining weights 3409.8 137.54% 169.62% 155.36% 7194

MIPH 80

Composite with first forecast of daily value 13,308.6 154.41% 222.21% 222.21% 31,804
Composite with last forecast of daily value 359.9 154.55% 177.79% 162.53% 4979

Average of forecasts by day 2875.3 144.83% 217.27% 202.89% 8404
Avg with exponentially declining weights 1385.9 149.86% 197.89% 183.30% 6610

MIPH 70

Composite with first forecast of daily value 10,367.9 209.27% 273.41% 273.41% 30,546
Composite with last forecast of daily value −977.6 −160.59% 180.63% 169.27% 3853

Average of forecasts by day −556.5 −180.57% 205.39% 198.59% 5698
Avg with exponentially declining weights −859.4 −165.65% 189.04% 181.66% 4384

MIPH 60

Composite with first forecast of daily value 535.1 347.61% 393.96% 393.96% 10,611
Composite with last forecast of daily value −756.5 −166.60% 206.09% 188.53% 4188

Average of forecasts by day −1753.1 −240.41% 266.08% 226.01% 5961
Avg with exponentially declining weights −646.8 −179.09% 213.85% 200.62% 4895

Averaged IHME and MIPH 70
Composite with first forecast of daily value 12,588.2 130.95% 130.95% 95.06% 19,630
Composite with last forecast of daily value 8424.6 93.61% 93.61% 95.50% 9321

Average of forecasts by day 7277.4 82.64% 82.64% 0.00% 7981
Avg with exponentially declining weights 8316.0 96.58% 96.58% 96.54% 8909
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