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Abstract: This paper proposes the application of a multivariate diffusion model, based on ordinary
differential equations, to investigate the energy transition in Germany. Specifically, the model is able
to analyze the dynamic interdependencies between coal, gas and renewables in the energy market.
A system dynamics representation of the model is also performed, allowing a deeper understanding
of the system and the set-up of suitable strategic interventions through a simulation exercise. Such
simulation provides a useful indication of how renewable energy consumption may be stimulated as
a result of well-specified policies.
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1. Introduction

The expression energy transition indicates a long-term structural change in energy
systems [1]. It is not a new phenomenon: man has made several energy transitions in his
short history on Earth. One of the most significant was shifting to an energy system based
on fossil fuels (coal, oil, and natural gas) from one essentially based on wood; however,
since the 1980s, it has been realized that fossil fuels are at the root of climate change
due to carbon emissions into the atmosphere [2]. In short, rapid and deep reductions in
greenhouse gas emission are needed to avoid the dangerous effects of climate change and
guarantee energy security [3,4]. This transition is often referred to as the decarbonization of
the energy sector and aims to shift the system to renewable energy technologies (RETs) by
also implying a change from centralized to decentralized energy production. As pointed
out in [5], significant reductions can be achieved by using appropriate technologies and
policies. Besides a move from fossil fuels to renewable sources, efficiency and savings in
the use of energy are seen as complementary viable solutions. In sum, achieving a rapid
global decarbonization critically depends on activating contagious and fast-spreading
processes of social and technological change within the next few years [6]. According to
the International Renewable Energy Agency (IRENA) [7], renewable sources and energy
efficiency could potentially reduce carbon emissions from the energy sector by 90%.

With the term renewable energy, we normally refer to all forms of energy present on the
planet, whose availability is renewed indefinitely over time, unlike fossil fuels [8]. Typical
renewable sources available today are hydroelectric, wind, and solar energy, but there are
also other sources like, e.g., bioenergy generated by the fermentation or combustion of
organic mass (such as fertilizer or plants) and geothermal energy, based on heat coming
out from Earth’s crust (for example, in the form of a geyser) [9].

In the case of hydroelectric, wind, and solar power, the energy released is typically
converted into electricity, although only 25% of electricity produced worldwide comes
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from renewables [8]. Indeed, electrification of the energy system will be necessary to fully
exploit the potential of renewables and get the energy transition off the ground [10], and
forecasting electricity consumption becomes critical for improving energy management
and planning by supporting a large variety of optimization procedures. Today, there are
significant signs that a regime shift is beginning to occur in many countries [10]. A specific
case, analyzed in this paper, is the regime shift in electricity production in Germany. Indeed,
Germany has an ambitious plan to realize a transition to sustainable energy with a strong
reliance on photovoltaic and wind power for electricity provision [11]. This plan, called
“Energiewende” (the German expression for energy transition), was expected to reach 35%
of electricity production from renewable sources by 2020 and 80% by 2050. In this sense,
the Energiewende is considered the world’s most extensive embrace of the wind and solar
power [12]. The legal tool behind the Energiewende is the Renewable Energy Act (EEG),
promulgated by the German government in 2000. The EEG has favored an exceptional
growth in wind and solar energy through the system of feed-in tariffs [13]. This mechanism
guarantees a minimum purchase price of electricity produced from renewable sources.
Three characteristics of German political and cultural history have certainly stimulated
the transition: a progressive culture of the environment, legal tools to support RETs, and
a historical reluctance towards nuclear energy [14]. The technical aspects of the current
energy scenario in Germany within the goals of the Energiewende program are analyzed
for instance in [15].

The paradigmatic example of energy transition in Germany may be analyzed focusing
on the interdependencies between three energy sources for electricity production, namely
coal, natural gas and renewables. Specifically, it is interesting to understand whether
renewables have a sufficient competitive strength towards fossil fuels.

Figure 1 describes the yearly consumption time series in Exajoule (EJ) of coal and
natural gas between 1964 and 2020 and of renewables (wind and solar jointly considered)
from 1989 to 2020 (source: BP Statistical Review of World Energy [16]). As may be easily
observed, the time series of coal and gas are simultaneous, while renewables have obviously
a more recent history. A possible competitive interplay between these series seems to be
captured from the visual inspection of data, but the significance and nature of these effects
needs to be tested with a suitable model.

A well-established stream of research has analyzed the temporal dynamics of energy
sources by employing multivariate innovation diffusion models. In one pioneering contri-
bution on the topic [17], Marchetti defined energy sources as comparable to commercial
products that compete for a market niche, so it is reasonable to analyze the process of
adopting a new energy source through diffusion models. Grubler, in [18], highlighted that
energy demand and supply systems co-evolve, with technological innovations mutually
enhancing each other.

Within the literature produced in the field, in recent times, several contributions have
applied bivariate innovation diffusion models to energy contexts, in order to understand the
complex dynamics within energy systems: see for instance [1], where the case of Germany
is analyzed with reference to the competitive relationship between nuclear power and
RETs, [19], which studies the relationship between non-renewable and renewable energy
sources in US, Europe, China and India, [20], focusing on the case of energy transition in
Australia by comparing the trends of coal, gas and renewables, and [10], where bivariate
innovation diffusion models are employed to investigate the specific role of gas in the
electricity transition.

Grounding on this literature, this paper presents an analysis of the case of Germany,
by proposing a multivariate innovation diffusion model, which considers the dynamic
interplay between coal, gas and renewables. This model, which is based on a system of
differential equations, is then represented within the system dynamics approach, through
the Stock-Flow Network (SFN) tool. Such complementary description encourages a deeper
understanding of the relationships within the energy market. The SFN representation aids
understanding the complex feedback process acting in the system and creates a suitable
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environment for detecting, simulating and evaluating different policy scenarios able to
speed up the renewable energy diffusion.

Figure 1. Time series of energy consumption of coal, gas and renewables in Germany (1964–2020).

The rest of the paper is organized as follows. Section 2 describes the two method-
ological approaches employed for model development, respectively based on ordinary
differential equations (ODE) and system dynamics. Section 3 describes the Unbalanced
Competition among Three Technologies (UCTT) model through its ODE and system dy-
namics representation, while in Section 4 the model is applied to the case of Germany’s
energy transition, and a detailed discussion of the results is provided. Based on the results
obtained, a simulation study is conducted in Section 5. Section 6 is left for concluding remarks.

Appendix A compares the UCTT model with the 3PM model proposed by [21], while
Appendix B discusses some details on the UCTT model.

2. Background: Innovation Diffusion Models
2.1. Ordinary Differential Equations Approach

The research carried out on diffusion of innovations originated in the 1960s through
the definition of the first models based on ordinary differential equations. Pioneering
contributions in this regard are, among others, those of [22–27].

The study of diffusion phenomena is a research area that describes and analyzes the
growing dynamic of innovations within a social system through a mathematical model [25].
In particular, understanding competition or collaboration dynamics between products or
technologies is critical in outlining and describing the trend of diffusion processes [28].
Depending on the situation, the presence of competition can act both as a barrier for the
growth of the innovation under consideration and as a stimulus for its development. In the
first studies concerning the interactions between several innovations in a single market,
researchers used a simplifying assumption to model the time series related to the processes:
competition was considered a process in which all the trajectories evolved starting from the
same instant in time (synchronic process). In [29], the first synchronic model was proposed,
which was followed by other works, such as [30,31]. However, in most economic and
commercial contexts, products and technologies enter the market at different times. From
this consideration, starting from the 2000s, other approaches were developed that consider
trajectories starting from different moments in time (diachronic process). There are two
approaches to analyze competition formalized in balanced and unbalanced models. Within
the balanced models, the same dynamic influences the competitors without distinction.
In contrast, [32] were among the first to propose an unbalanced model for competing
products by making a distinction to account for different effects within the diffusion of
a technology: an internal-influence, which reflects the internal growth dynamics of one
technology, and a cross-influence, which identifies the effect of competition exerted by the
concurrent technology.
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Some important studies that lay the foundations of the methodology used in this
work are the balanced model of [33], the mentioned unbalanced model proposed by [32]
and the Unbalanced Competition Regime Change Diachronic (UCRCD) model of [34].
Subsequently, the UCRCD model became the basis for some further developments, which
include [1,19,20,35,36]. It is important to notice that all the models recalled so far analyze
the competition between two products or technologies, while more general models have
received a limited attention in literature. To our knowledge, there is just one recent article
by [21] proposing a diffusion model for three technologies competing in the same market,
the 3PM. The 3PM model has been the starting point for the model proposed in this paper.

2.2. System Dynamics Approach

The system dynamics field came to life between the 1950s and 1960s at the Mas-
sachusetts Institute of Technology (MIT) thanks to Forrester [37]. This field has been
designed to support studying the structure and dynamics of the systems in which people
are immersed and to research the answers inside or outside a system. In particular, the
primary objective is the design of policies for continuous improvement and the facilitation
of implementations and changes. Drawing from the theory of controls developed in en-
gineering and the modern theory of nonlinear dynamic systems, system dynamics often
involves the development of formal models and related simulators to capture complex
feedback and create an environment for learning and designing system policies [37].

System dynamics allows building the model representing the system under study,
identifying the factors of interest, and researching the cause–effect relationships between
the internal or external elements of the system [38]. The systems approach complements
other approaches by studying interdependencies, allowing synthesizing insights that have
been gained through more disciplinary procedures. An essential characteristic of the
systems approach, compared to methods that focus on local and immediate effects, is
that circular-causality is considered. System dynamics focuses on how interconnected
elements affect each other and, through these other elements, themselves again over
time [39], thus capturing aspects that are typically beyond the scope of different approaches.
A cause–effect relationship can be defined as positive or negative. It is defined as positive
when the two events move in the same direction, or as negative when they move in the
opposite direction [37]. Even if it may be relatively easy to identify local relationships
between pairs of elements, it is normally difficult to evaluate the effects of interventions
on the system, due to unexpected or unwanted consequences, system inertia, and counter-
intuitive behaviors. Generally, every action generates a reaction reflected on the action itself
as feedback: the decision impacts the environment, which in turn affects the decision [40].
The circular-causality relationships cause this feedback, and complex systems are the result
of the interaction of multiple feedback. They can be described and analyzed through
a formal representation using the Causal Loop Diagram or the Stock-Flow Network’s
common languages [41]. Our work is inspired by system dynamics analyses that have been
applied to electricity generation and energy transition (such as [41–46]). In particular, we
develop a Stock-Flow Network (SFN) and present an innovative simulation study based
on it. Simulation is an essential tool to quantify the factors that determine the diffusion
of renewable energy and propose a “what if” analysis to study some scenarios that could
have occurred if the adopted policy in the faced context had been different.

3. Materials and Methods
3.1. Model Definition with ODE

This section presents the structure of the model for three competitors, according to
an ODE representation. The model structure is very similar to the 3PM model proposed
by [21], but also presents some crucial differences. A comparison between the two models
to underline similarities and differences is illustrated in Appendix A.

Given its peculiar features, the model has been called Unbalanced Competition for
Three Technologies (UCTT). The UCTT is characterized by two phases: the first one,
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called competition phase, where two technologies enter the market at the same time and
interact with each other, and the second one, called double-competition phase, where the third
competitor enters the market and competes against the previous two.

The market potential m = mc + md, which is the maximum level of consumption
in that market for the analyzed technologies, takes two different sizes: mc, the global
market potential under the competition phase, and md, the global market potential under
the double-competition phase. The model assumes a residual market m− z(t) as a common
target for each competitor, with z(t) = z1(t) + z2(t) + z3(t) denoting common cumulative
consumption and zi(t), i = 1, 2, 3 indicating the cumulative consumption of technology i.
The common factor 1− z(t)

m corresponds to the residual market share achieved at time t. The
model is a system of differential equations where z′1(t), z′2(t), and z′3(t) represent instanta-
neous consumption of the first, of the second, and of the third technology respectively. The
third competitor enters the market at time t = c2, with c2 > 0, creating the two different
phases. The indicator function IA assumes a value equal to one when the event A occurs or
zero otherwise.

Parameters of the UCTT are summarized in Table 1, by making a distinction be-
tween the competition phase and the double-competition phase. Parameters referred to as
the competition phase are indicated with the subscript “c”, while those referred to as the
double-competition phase are indicated with the subscript “d”.

z′1(t) = m{[p1c + (q1c + δ)
z1(t)

m
+ q1c

z2(t)
m

]It<c2

+ [p1d + (q1d + ζ)
z1(t)

m
+ q1d

z2(t) + z3(t)
m

]It≥c2}[1−
z(t)
m

]

z′2(t) = m{[p2c + (q2c − γ)
z1(t)

m
+ q2c

z2(t)
m

]It<c2 +

+ [p2d + q2d
z2(t)

m
+ (q2d − ρ)

z1(t) + z3(t)
m

]It≥c2}[1−
z(t)
m

] (1)

z′3(t) = m{[p3d + q3d
z3(t)

m
+ (q3d − ξ)

z1(t) + z2(t)
m

]It≥c2}[1−
z(t)
m

]

m = mc It<c2 + md It≥c2

z(t) = z1(t) + z2(t) + z3(t)It≥c2

The system outlines the interaction among the three technologies that could result in
competition or collaboration. Each phase is characterized by new parameters referred to both
the internal and cross-influence for each technology. The internal growth is described through
the seed coefficient (see Table 1), which represents the initial dissemination of the technology,
and the internal-influence coefficient (see Table 1), which modulates the technology-specific
growth after the innovation phase. Interaction between competitors is outlined through
the cross-influence coefficient (see Table 1), which measures the effect of the competitors on
the consumption of the considered technology in terms of positive or negative influence.
Specifically, under the double-competition phase, the cross-influence coefficients describe the two
competitors’ effect on a technology. In this case, an assumption is made: that two competitors
have the same influence on the third technology (this is a simplifying assumption because it
assumes the same effect for two competitors over the third). A negative cross-influence coefficient
implies a dynamic of competition, while a positive one expresses a mutualistic relationship,
termed collaboration.
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Table 1. Parameters of the UCTT model (competition phase and double-competition phase).

Competition Phase

p1c Seed coefficient of technology 1
q1c + δ Internal-influence of technology 1

q1c Cross-influence of technology 2 on technology 1
p2c Seed coefficient of technology 2
q2c Internal-influence of technology 2

q2c − γ Cross-influence of technology 1 on technology 2

Double-competition phase

p1d Seed coefficient of technology 1
q1d + ζ Internal-influence of technology 1

q1d Cross-influence of technologies 2 and 3 on technology 1
p2d Seed coefficient of technology 2
q2d Internal-influence of technology 2

q2d − ρ Cross-influence of technologies 1 and 3 on technology 2
p3d Seed coefficient of technology 3
q3d Internal-influence of technology 3

q3d − ξ Cross-influence of technologies 1 and 2 on technology 3

3.2. Model Definition with System Dynamics

The ODE-based UCTT model may be defined through a System Dynamics approach,
with a special focus on the double-competition phase, where all the technologies exist in
the market. This representation allows us to describe how different system variables are
interconnected in feedback structures. In particular, this model has been described as a SFN
model and it is reported in Figure 2 (as drawn in its implementation through the simulation
software AnyLogic [47]).

The SFN approach allows defining the presence of cause–effect relationships identify-
ing different types of variables: stocks represent state variables that accumulate or deplete
over time and thus have a certain level (or state) at a given time; flows are the variables that
alter the stocks and detect their variation per time unit; lastly, some auxiliary variables help
improve the system readability making the functions that determine the flows’ structure
more explicit [37].

The system has four stock variables: the residual market, mRES, and the three cu-
mulative consumption flows, z_1_t, z_2_t, z_3_t, connected by causal links (the flows).
These three flows, z′_1_t, z′_2_t, z′_3_t, represent the instantaneous consumption variables.
The flows’ presence explicitly indicates cause–effect relationships that lead to feedback
effects, which could be a balancing or reinforcing feedback effect based on the specific case
study data. Moreover, several auxiliary variables help to refine the system and are defined
as follows. The residual market share, mSHARE, which influences the instantaneous
consumption variables, is determined by the ratio between the residual market, mRES,
and the market potential, mPOT. The market potential is given by the sum between the
residual market and the cumulative consumption of the three technologies, z_i_t. The
cross-influence of each technology is calculated as the difference between its own internal-
influence coefficient and the respective parameter, ζ, ρ, ξ. The value of these parameters
will be founded on the results of the UCTT model estimation through Nonlinear Least
Squares (NLS).

In this way, after identifying the stock and flow system variables, an SFN can be trans-
lated into differential equations [37]. Therefore, what distinguishes these models from many
other dynamic models is the specification of the equations that outline the modeling pro-
cess. All non-trivial models with high order and many non-linearities cannot be solved
analytically, but numerical integration methods solve the differential equations. SFN mod-
els are generally formulated as high-order, non-linear systems translated into stochastic
differential equations.



Forecasting 2022, 4 444

Figure 2. UCTT-SFN model. Cause–effect relationships affecting market potential (yellow), market
share (brown), coefficients of the technologies diffusion dynamics (green). Cause–effect relationships
determined by market share (purple), residual market (light blue), cumulative consumptions on the
same (internal-influence, in grey), as well as on different (cross-influence, in black) technologies.

The equations describing the stock variables and the evolution of the system in quanti-
tative terms are:

mRES′(t) = −(z′_1_t(t) + z′_2_t(t) + z′_3_t(t))

z_1_t′(t) = z′_1_t(t)

z_2_t′(t) = z′_2_t(t)

z_3_t′(t) = z′_3_t(t)

The residual market is depleted by the flows that represent the instantaneous consump-
tion of each technology; meanwhile, these flows, that increase the stocks of the cumulative
consumption, are characterized by three differential equations that recall the definitions in
Equation (1):

z′_1_t(t) = max{p_1d ·mRES(t) + (q_1d + ζ) · z_1_t(t) ·mSHARE +

+ q_1d · (z_2_t(t) + z_3_t(t)) ·mSHARE, 0.001}
z′_2_t(t) = max{p_2d ·mRES(t) + q_2d · z_2_t(t) ·mSHARE +

+ (q_2d + ρ) · (z_1_t(t) + z_3_t(t)) ·mSHARE, 0.001}
z′_3_t(t) = max{p_3d ·mRES(t) + q_3d · z_3_t(t) ·mSHARE +

+ (q_3d + ξ) · (z_2_t(t) + z_3_t(t)) ·mSHARE, 0.001}

4. Model Application and Results

This section presents the results of the UCTT model to the yearly time series of
consumption of coal, gas and renewables (solar and wind) in Germany (Figure 1). The
UCTT allows to statistically test the nature and significance of interactions between these
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three energy sources. The estimates obtained are then employed in the SFN, in order
to detect reinforcing and balancing feedback loops and to structure and implement the
simulation study.

4.1. UCTT Model Application

This section describes the application of the UCTT model. The model fitting is illus-
trated in Figure 3.

Figure 3. UCTT model for coal, natural gas, and renewables in Germany from 1964 to 2020.

The model obtained a satisfactory result in terms of goodness-of-fit (R2 = 0.9903495) and
significance of parameters as a general outcome. Parameter estimates are outlined in Table 2.
As may be observed, despite some slight instabilities in some parameters concerning
the double-competition phase, namely p3d, q2d and ρ, the model is well identified and the
relationships between the three competitors take a clear meaning. A visual inspection
of Figure 3 allows us to appreciate the ability of the model to account for these patterns:
renewables exhibit an initial exponential consumption trend that seems to be affecting
coal and natural gas trajectories, outlining the decarbonization process. Coal consumption
is in a clear decline phase: after an initial period of stability, a sharp decline is evident
around the early 1990s; in particular, this is the crucial moment when renewables entered
the market. The curve for natural gas also has a particular shape: during the first phase,
where it is competing with coal, its consumption is increasing, while it has a more stable
structure, around a value of 3 EJ, after the introduction of renewables in the market.

The model allows identifying the main result in terms of “competition-collaboration”,
by interpreting the cross-influence coefficients. These parameter estimates, concerning the
double-competition phase, when coal, gas and renewables are all in the market, are reported
in Table 3.

Analyzing the double-competition phase, the seed coefficients, p1d, p2d and p3d present low
values; in particular, for renewables, the weak and not significant value of parameter p3d
reflects the initial difficulty of these technologies in entering the market and the subsequent
need of incentives to stimulate their initial growth.

After the innovation phase, renewables have been experiencing a strong internal
growth, as testified by the high value of the internal-influence coefficient, q3d = 0.3123. At the
same time, the corresponding estimates for coal and natural gas are negative and relatively
weak, q1d + ζ = −0.0553, q2d = −0.0708, which is coherent with the declining trend of
both series. Specifically, the internal-influence parameter for gas q2d is not significant, a
reasonable outcome given its stable trend in this phase.

Regarding the interplay between the three technologies, the cross-influence coefficients
help interpret how the three technologies interplay. Coal and natural gas are characterized
by a positive cross-influence effect, i.e., q1d = 0.0707 and q2d − ρ = 0.0936, which highlights
that the competitors collaborate with coal and gas; in particular, renewables do not seem
to be able to exert a sufficiently strong competitive power. In contrast, renewables are
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characterized by a negative, but weak, cross-influence parameter, q3d − ξ = −0.0014, which
shows that coal and natural gas compete with the new entrant technologies, trying to limit
their expansion. However, it should be remarked that renewables are characterized by
a strong and rapid growth, as already noticed from the value of the internal-influence
parameter, q3d = 0.3123.

A similar result concerning renewables was evidenced in [1], where the interplay be-
tween nuclear and renewables was studied through the UCRCD model. The UCRCD model
made it possible to uncover the direct relationship between the nuclear and renewables
in terms of internal and cross influence. Specifically, the authors found that renewables
exerted a significant and measurable effect in determining the observed decline of nuclear
power consumption.

The UCTT model deals with a more complex case, where the action of three energy
sources is considered.

4.2. UCTT—SFN Model Application

Based on the estimates obtained, it is interesting to analyze the cause–effect interdepen-
dencies between the entities and recognize the feedback acting in the system. In particular,
after assigning the estimated value found through the UCTT model (see Table 2) to each
entity of the SFN model in Figure 2, balancing and reinforcing feedback may be captured.
Coal, gas, and renewables are, respectively, referred to elements 1, 2, and 3 of Figure 2. The
relevant feedback loops of the SFN for the UCTT model for the German case are reported
in Figure 4. These elements will be essential to make dynamic hypotheses on the system
evolution and identify where to take action to reinforce or balance specific tendencies.

Figure 4. UCTT-SFN relevant feedback loops. Cause–effect relationships affecting market potential
(yellow), market share (brown). Cause–effect relationships determined by market share (purple),
cumulative consumptions on the same (internal-influence, in gray), as well as on different (cross-
influence, positive in blue and negative in red) technologies.
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The first three feedback loops describe each technology’s dynamic as reinforce feed-
back: an increase of the potential market generates an expansion of the market share,
implying an increase of instantaneous consumption that elicits a push on effect-variable,
i.e., the cumulative consumption, causing an increase in the market potential.

The following feedback loops are the ones that determine the interaction between
the three energy sources. The most critical element is the connector that goes from the
cumulative consumption of an energy source to the instantaneous consumption of the
other technology (the connectors from z_i_t to z’_j_t, with i, j = 1, 2, 3, i 6= j) representing
the cross-influence, which defines the relationship between the two competitors. These
connectors are colored in blue or red in Figure 4 depending on the parameter estimates in
Tables 2 and 3: the blue link defines a positive cause–effect relationship, while the red one
underlines the presence of a negative cause–effect relationship.

Table 2. UCTT model parameter estimates.

Parameter Estimate Std.Error Lower c.i. Upper c.i. p-Value

mc 483.5858 116.9050 254.4561 712.7154 0.0002
p1c 0.0142 0.0036 0.0072 0.0213 0.0003
p2c −0.0009 0.0004 −0.0018 −0.0001 0.0266
q1c 0.1500 0.0417 0.0683 0.2317 0.0008
q2c −0.0389 0.0279 −0.0936 0.0157 0.1690
δ −0.1694 0.0454 −0.2584 −0.0804 0.0006
γ −0.0775 0.0331 −0.1424 −0.0126 0.0240

md 370.7024 23.0794 325.4677 415.9372 0.0000
p1d 0.0135 0.0011 0.0113 0.0157 0.0000
p2d 0.0048 0.0007 0.0035 0.0061 0.0000
p3d 0.0002 0.0003 −0.0005 0.0009 0.5960
q1d 0.0707 0.0213 0.0290 0.1124 0.0013
q2d −0.0708 0.0510 −0.1707 0.0292 0.1690
q3d 0.3123 0.0423 0.2294 0.3952 0.0000
ζ −0.1260 0.0391 −0.2027 −0.0494 0.0018
ρ −0.1643 0.0915 −0.3436 0.0149 0.0759
ξ 0.3137 0.0438 0.2279 0.3995 0.0000

R2 = 0.9903495
SSE = 6.622326

Table 3. UCTT model parameter estimates (double-competition phase) and their description.

Estimate Description

md 370.70 Market Potential
p1d 0.0135 Coal—Seed

q1d + ζ −0.0553 Coal—Internal-influence
q1d 0.0707 Coal—Cross-influence
p2d 0.0048 Natural Gas—Seed
q2d −0.0708 Natural Gas—Internal-influence

q2d − ρ 0.0936 Natural Gas—Cross-influence
p3d 0.0002 Renewables—Seed
q3d 0.3123 Renewables—Internal-influence

q3d − ξ −0.0014 Renewables—Cross-influence

In this way, loops 4, 5, 6, 7 represent reinforcing feedback (highlighted with a “R” in
the center) and explain how the instantaneous consumptions of coal and natural gas are
affected positively by the competitors’ consumption in a cooperative manner. According
to feedback loops 4 and 5, for example, an increase in natural gas and renewable energy
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consumption helps the consumption expansion of coal, and an increase in coal and re-
newable energy values “reinforces” the diffusion of natural gas. An increase in renewable
energy consumption stimulates growth even in gas consumption and vice versa, due to the
presence of the reinforcing feedback loop 7. We notice that the cross-influence connector
that identifies a positive relationship of renewables over gas plays a key role in this loop.

The last two feedback loops, 8 and 9, present a red arrow that defines a competitive
situation for renewable energy. These are balancing feedback loops (highlighted with a "B"
in the centre) that point out how the other two technologies hold back the expansion of
the renewable source. For example, balancing feedback loop 8 suggests that an increase in
coal consumption may even cause renewables’ dampening. Furthermore, an increase in
renewables consumption will affect coal consumption in turn, as a brake on this spread.

The initial value of the three stock variables, representing the cumulative consumption,
is the first available value for each technology series in the double-competition phase (the
value observed of yearly consumption in 1989). The initial value of the potential market is
calculated by the difference between the md value in Table 2 and the first values of the other
three stocks. Furthermore, even the auxiliaries variables or parameters values are taken
from Table 2. After assigning each entity of this system the correctly estimated value, the
SFN, implemented and run in AnyLogic [47], allows us to simulate the double-competition
phase case. Figure 5 illustrates the trajectories of the instantaneous consumption of the
three technologies. The curves on the time plot are very similar to the predicted ones in
Figure 3, since the differential equations that determine the instantaneous consumption
are similar to those in System (1). In addition to the time plot, it is provided a bar chart
that highlights the EJ cumulative consumption of each energy source: coal and natural gas
dominate the market; however, renewable energy is spreading quickly.

Figure 5. Simulation of coal, natural gas, and renewable energy consumption in the observed scenario.

5. Simulation Study for Alternative Scenarios

This section analyzes two possible scenarios that Germany could have faced instead
of the observed one, by performing different policy choices. It is interesting to discover
what would have happened, on the one hand, if the government had set an increase in
incentives to renewable energy consumption; on the other hand, if the government had
enacted restrictions on consumption of coal and natural gas. The study focuses on acting on
specific cause–effect relationships identified by the analysis of the feedback loops presented
in Figure 4, as to determine where to intervene effectively with policy actions.

5.1. Policy 1: Stimulate Consumption of Renewable Energy

The first proposed simulation study focuses on a crucial aspect of the diffusion of
an energy source: incentives. Governments and institutions typically use the incentive
tool to stimulate demand for new technologies. In this sense, it is interesting to ask what
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would have happened if the German government had-ideally-increased the incentives
for renewable energy consumption. This increase would have led to a reduction in the
competition of fossil fuels towards renewables. In practical terms, this would have de-
creased (in absolute value) renewable energy’s cross-influence coefficient value, which it
is represented by connectors {z_1_t - z’_3_t} and {z_2_t - z’_3_t} in balancing feedback
loops 8 and 9 of Figure 4. For this reason, a situation has been simulated in which an
(absolute) value lower than that previously estimated is assigned to the cross-influence
of renewables. Specifically, the hyperparameter ξ value has been changed from 0.3137 to
0.3127. Consequently, the cross-influence coefficient goes from a value of −0.0014 to −0.0004.
This is a substantial decrease (in absolute value), in line with an ideal significant change in
consumption. Figure 6 shows the graphical results of this simulation.

Figure 6. Simulation results of Policy 1.

This simulation leads to several interesting conclusions. An increase in incentives to
consume renewable energy causes an evident acceleration of the diffusion. In fact, this
source reaches a peak of 4 EJ, while, according to the model based on real data, it reached a
maximum yearly consumption of 2.2 EJ. Renewable energy outperforms coal and natural
gas in this simulated scenario. Coal and natural gas trajectories are not overly modified:
they are detected by a declining evident phase, but the curves are similar to those observed.

5.2. Policy 2: Limit Consumption of Coal and Natural Gas

Another viable strategy to stimulate the consumption of renewable energy by a gov-
ernment is to impose restrictions on the consumption of competitive sources. In this
case, the situation that would have occurred if the German government had imposed
restrictions on coal and natural gas use has been simulated. This barrier penalizes the
internal growth of the two non-renewable sources, favoring, in this way, the expansion of
renewable technology.

In particular, analyzing the observed gas and coal consumption trajectories, a decrease
in the value of these two technologies’ internal-influence is hypothesized in two different
ways, respectively. The consumption of coal is in a phase of decline, so a restriction will
have a more significant influence on the negativity of internal-influence compared to the
gas source, which has a more constant trend. For this reason, within the simulation, the
internal-influence coefficient of the coal source is decreased by about 20%, while the one of
the natural gas source by 10%. These changes are affecting, respectively, the connectors
{z’_1_t - z_1_t} and {z’_2_t - z_2_t} and, hence, all the reinforcing feedback loops of Figure 4
(except loop 3). The graphic result of the simulation is shown in Figure 7.

The decrease in the internal-influence of the two technologies causes some significant
changes in the trajectories of the curves. The gas and coal curves show a drop in the level of
consumption: in reality, both move around the values of 3 and 4 EJ, while in this simulation,
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they stabilize around a value below 3 EJ. The trend in gas consumption remains pretty
constant, while the downward trend in coal consumption is more pronounced. Renewable
energies benefit from this situation by acquiring ever greater market shares. The expansion
has an exponential trend that brings the consumption of this energy source to a peak
over the 5 EJ. The observations confirm that a restriction applied to the consumption of
competitive sources could have created an advantage for renewable energy technologies.

Figure 7. Simulation results of Policy 2.

6. Conclusions

Achieving sustainable, stable and secure energy systems is reaching the top of many
countries’ agendas in recent years. Besides climate change problems, the COVID-19 pan-
demic, with the long periods of lockdowns imposed on populations, has strongly high-
lighted the critical importance of resilient and affordable electricity systems. Moreover,
energy security is increasingly becoming a major issue. At the time of writing this paper,
the world’s attention is focused on the terrible events occurring in Ukraine. While there is
no certainty on how this situation will evolve in the future and the need to find a solution
to the conflict is the priority, one point that has become clearer than ever, especially to
European countries, is that energy independence from oil and gas is a primary objective in
the short-term. The importance of an energy transition, by investing in renewables growth,
has become central in the public discourse in the last few weeks.

In March 2022, right after the outbreak of war in Ukraine, the IEA provided a 10-point
plan for the European Union, in order to reduce consumption of Russian gas and support
the European Green Deal [48]. One of the points foresees an acceleration in the deployment
of new wind and solar projects. At the same time, the report clearly states that the process
of cut imports of Russian gas will not be simple. Two major aspects will be crucial for a
successful implementation according to [48], (i) a concerted and sustained policy effort with
a strong dialogue on energy market and security, and (ii) a clear communication between
governments, industry and consumers.

The analysis conducted in this paper obviously does not consider these recent events,
but it may provide a useful mean to describe and study, in a relatively simplified way, the
dynamics occurring between these critical energy sources. We selected the paradigmatic
case of Germany which, thanks to the Energiewende, is projected to become a low-carbon,
nuclear-free energy system by the middle of the century [15]. Focusing on the interdepen-
dencies between renewables and the most used sources for electricity production, gas and
coal, the UCTT model indicated that renewables are strongly growing and sustained by
a widespread belief of people towards sustainability objectives. This essentially confirms
the findings of [1]. On the other hand, the model suggested the presence of a significantly
negative effect played by gas and coal on renewables, limiting their expansion, while there
appeared to be a kind of “collaboration” between coal and gas, testified by the positive sign
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of the respective cross-influence parameters, giving rise to a lock-in situation [10]. This is a
different and more complex outcome with respect to that observed in [1], where renewables
were found to have a significantly negative strength on nuclear power. However, in [1], it
was also acknowledged that Germany was ready to implement policies to accelerate the
regime shift favoring renewables at the expense of nuclear consumption well before the
Fukushima disaster influence.

This stresses the essential role played by policies, helping Germany in realizing a cost-
efficient, fair and sustainable path towards its very ambitious energy transition goals [49].
The SFN approach yielded significant results both qualitatively and quantitatively. The
most interesting qualitative result is the direct identification of further feedback compared to
the ODE approach: the feedback loops of Figure 4 allowed a preliminary contextual analysis
of the cause–effect relationship acting in the system, the related feedback and interplay, as
well as their role in determining the dynamic of the energy market. This analysis helps to
identify the points where to act in order to reinforce or balance consumptions’ trends, and
can be conveniently exploited for the preparation of policy scenarios. From a quantitative
point of view, the SFN model allowed measuring the cause–effect relationships, which is
the base for scenarios simulation. This aids evaluations on how possible changes could
influence the consumptions trends. In this perspective, the results of the SFN model and the
related simulation analysis may be a useful tool to study and forecast the technology trends
in the following years, by analyzing different market scenarios based on well-defined
policies. In our paper, the most important result deriving from the simulation exercise
is the emphasis on the central role of social forces and demand dynamics in renewable
energies adoption: both increasing renewable energy incentives and restricting coal and
natural gas use would have accelerated the decarbonization in Germany and the energy
transition towards renewable sources. Comparing Figures 6 and 7, Policy 2 appears to be
more promising and conducive to an expansion of renewables. The analysis of the SFN
model suggests that this occurs because Policy 2 affects connectors representing causal
relationships observed in many of the feedback loops compared to Policy 1.

A limitation of the analysis proposed in this paper is the lack of a forecasting exercise on
future evolution of this market, with a specific attention to renewables. Indeed, forecasting
the diffusion of renewables is critical for planning a suitable energy agenda and setting
achievable targets in terms of electricity generation, although the available time series
are typically short and pose some difficulty in modeling [50]. A further development of
this work should certainly try to employ the UCTT-SFN model for scenario building and
forecasting, by also extending its application to a wide number of countries. This could
offer a larger perspective on decarbonization and sustainability aims, by accounting for the
uncertainties and perturbations to energy systems occurring in the upcoming years.
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ODE Ordinary Differential Equations
RETs Renewable Energy Technologies
SFN Stock-Flow Networks
UCTT Unbalanced Competition among Three Technologies
UCRCD Unbalanced Competition Regime Change Diachronic

Appendix A

Appendix A presents a comparison between the model UCTT and the 3PM model
proposed by [21]. The 3PM model, which has been the starting point for the UCTT model
development, is characterized by the following ODE structure.
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z1(t)

m
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m
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z′3(t) = m{[p3 + (q3 − δβ)
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m
+ q3
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m

]It>c2}[1−
z(t)
m

]x3(t)

m = mα(1− It>c2) + mβ It>c2

z(t) = z1(t) + z2(t) + z3(t)It>c2

Despite a clear similarity between the 3PM and the UCTT model, there are also
some crucial differences. In both phases, the 3PM structure is characterized by a constant
dynamic that influences the competitors without distinctions through the parameters δα

and δβ. Unlike the 3PM model, the UCTT model is based on the assumption that cross-
influence can lead to effects of different magnitudes that are not equally divided between
the three products. Specifically, regarding the phase where all the three technologies are
present, the two models differ in this:

• 3PM model uses δβ as a constant hyperparameter to determine the cross-influence in
all the equations;

• UCTT model uses ζ, ρ, and ξ to distinguish the effects of the cross-influence effect on
each of the three technologies.

In this sense, the UCTT model may be seen as a generalization of the 3PM model. If
the restriction ζ = ρ = ξ applies on the UCCT model, that leads to the 3PM model. It
is also noteworthy that in the Appendix of [21], a larger model without any restrictions
is presented. The equations defining the second phase of this more complex model are
described through multiple parameters, implying a larger generalization of the 3PM and
UCTT models.
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Appendix B

Appendix B is devoted to a deeper interpretation of the internal and cross-influence
coefficients of the UCTT model in the Germany energy context. To this end, Figure A1
displays the three relationships that have been modeled through the UCTT: specifically, the
first graph represents the trajectory of renewables compared with that of coal and natural
gas together; the second shows natural gas versus coal and renewables; the third displays
coal versus natural gas and renewables jointly considered.

In the double-competition phase of the UCTT, the cross-influence coefficient refers to the
combined influence of two technologies over the third. In this sense, the UCTT provides a
general market analysis, where it is possible to understand how each technology is affected
by the combined presence of competitors, while it does not study the reverse, i.e., how a
single technology affects a couple of competitors (this is a significant difference compared
to the UCRCD model, which allows to estimate and interpret the effect of a technology on
the other and viceversa).

Figure A1. Relationships between energy sources as studied in the UCTT model.

By inspecting the first panel in Figure A1, one may observe an almost exponential
trend for renewables, consistent with the internal-influence coefficient estimated, which is
positive and relatively high. On the other hand, the cross-influence of the joint coal and gas
series on renewables shows how the "global market" influences their entrance. In this case,
the negative but not exceptionally high cross-influence coefficient indicates that the market
is not yet ready to fully embrace renewables, as the presence of coal and gas limits, albeit
in a relatively slight way, their diffusion. The model results suggest that the diffusion of
renewables is supported and well-sustained, but it is held back by the competition of the
other two technologies that still have a dominant presence in the market.

Regarding the relationship between gas and coal-renewables displayed in second panel
of Figure A1, the negative internal-influence coefficient of the natural gas is not significant,
and the parameter ρ is significant at a level of 10%, thus the positive cross-influence coefficient
does not have a strong significance. This result probably depends on comparing the natural
gas stable trend in this phase and a series that, after an initial shock, similarly has a quite
stable trajectory.

The third panel in Figure A1 depicts the time series of coal consumption and that
formed by natural gas and renewables. The UCTT model outlines a negative internal-
influence coefficient that entails the declining trend of the series. Instead, the positive
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cross-influence coefficient emphasizes a support for the individual series by the “global
market”. The joint trajectory of natural gas and renewables does not have a rapid growth,
except for the last observations; it has a considerable slight growth period between 1995
and 2015, in contrast to coal’s slightly downward trend. The two evident collapses of coal
consumption (the initial and the final one in the double-competition phase) may be not directly
attributable to the joint influence of competitors, but rather to restrictions enacted by the
German government in order to reduce consumption of coal (emphasized through the
negative internal influence). This is coherent with the positive effect exerted by natural gas
and renewables on coal.
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