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Abstract: Hybrid methods have been shown to outperform pure statistical and pure deep learning
methods at forecasting tasks and quantifying the associated uncertainty with those forecasts (pre-
diction intervals). One example is Exponential Smoothing Recurrent Neural Network (ES-RNN),
a hybrid between a statistical forecasting model and a recurrent neural network variant. ES-RNN
achieves a 9.4% improvement in absolute error in the Makridakis-4 Forecasting Competition. This
improvement and similar outperformance from other hybrid models have primarily been demon-
strated only on univariate datasets. Difficulties with applying hybrid forecast methods to multivariate
data include (i) the high computational cost involved in hyperparameter tuning for models that are
not parsimonious, (ii) challenges associated with auto-correlation inherent in the data, as well as
(iii) complex dependency (cross-correlation) between the covariates that may be hard to capture.
This paper presents Multivariate Exponential Smoothing Long Short Term Memory (MES-LSTM), a
generalized multivariate extension to ES-RNN, that overcomes these challenges. MES-LSTM utilizes
a vectorized implementation. We test MES-LSTM on several aggregated coronavirus disease of
2019 (COVID-19) morbidity datasets and find our hybrid approach shows consistent, significant
improvement over pure statistical and deep learning methods at forecast accuracy and prediction
interval construction.

Keywords: deep learning; multivariate time series forecasting; prediction intervals; mortality
modeling

1. Introduction

Morbidity and mortality modeling is crucial for planning in global economies, national
healthcare systems, and other industries such as insurance. Practitioners from statistics,
machine learning, and actuarial backgrounds have invested into improving the accuracy of
morbidity and mortality forecasting. Some recent advances have emerged from the fields
of hybrid models, and interpretable models such as Temporal Fusion Transformers [1].
Despite these advances, the recent devastating global impact of the novel coronavirus
disease of 2019 (COVID-19) virus has highlighted the importance of effective planning
from government agencies and healthcare bodies across the globe. This kind of planning
requires reliable projections into the future, and as a result there exists a need for improved
forecasting techniques and methods.

Smyl [2] developed a hybrid method for generating point forecasts and quantifying
the uncertainty associated with those point forecasts. The model quantifies uncertainty
by producing prediction intervals at the 1%, 5% and 10% levels of significance. The
hybrid method combines Exponential Smoothing (ES, [3]) with Recurrent Neural Networks
(RNN, [4]) and the resulting scheme is referred to as ES-RNN. This name is a bit of a
misnomer as Smyl’s [2] methodology actually involves combining ES, with a varaiant of
RNN called Long Short-Term Memory (LSTM, [5,6]).
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Smyl [2] purports that their method produces “. . .forecasts that are more accurate
than those generated by either pure statistical or pure [machine learning] approaches, thus
exploiting their advantages while avoiding their drawbacks”. The hybrid method, ES-RNN,
outperformed pure statistical and pure deep learning methods submitted alongside it to
the Makridakis-4 (M4) Forecasting Competition [7]. The M4 Competition provides to Com-
petition participants 100,000 datasets from a cross-section of industries and applications for
the entrants to apply their techniques to.

Redd et al. [8] extend the Smyl ES-RNN [2] hybrid technique by executing a graphical
processing unit (GPU) implementation (GPU-ES-RNN). Using a vectorized and GU-based
implementation of the original ES-RNN, Redd et al. [8] state they achieve up to 322×
increase in training speed, largely attributed to batching and parallelization. The authors
report that their network produces performance results similar to those reported in the
original Smyl submission. Furthermore, the GPU implementation migrates the original
C++ code to Python and PyTorch.

In both cases (ES-RNN and GPU-ES-RNN), the authors focus on univariate datasets.
However, a significant number of real world forecasting involves multivariate datasets [9].
In some cases, researchers have found it useful to augment their univariate models with
multivariate exogenous factors and/or multivariate analogues of their models to improve
predictive accuracy [10]. In addition, the complexities associated with modeling morbidity
and mortality often require multiple data sources in order to fit a model that better describes
the real world situation [11].

This paper extends both the ES-RNN and GPU-ES-RNN research by adapting the ES
and LSTM hybrid method to make it applicable to the multivariate case. By incorporating
exogenous factors throughout, our extension departs from the classical univariate case and,
as such, poses more complications associated with, for instance, auto-correlation inherent
in the data and cross-correlation dependencies between covariates.

Our model incorporates exogenous covariates through the use of global and local
variables, i.e., those derived from all the data or large segments of it, and those derived
from separate covariates. This combination allows the model to cross-learn at the same
time leverage information presented at a granular level.

Essentially, we have three workstreams i.e., multivariate exponential smoothing,
recurrent neural networks in general and LSTM in particular, and hybrid methods. We
review all three workstreams next.

1.1. Literature Review

There are several notable works concerning multivariate extensions of exponential
smoothing. Jones [12] applies recursion for estimating the smoothing matrix. Enns et al. [13]
consider a class of various exponential smoothing models and use them as a proxy for the
univariate exponential smoothing couterpart. Trigg and Leach [14] adapt the smoothing
matrix of their so-called adaptive models periodically, with the aid of maximum likelihood
estimation. Harvey [15] further simplifies the class of models proposed by Enns et al. [13]
and the simplifications enable the use of univariate smoothing models in forecasting tasks
for correlated time series. Moreover, Harvey’s [15] results are also valid in the case where
the smoothing models exhibit polynomial trend and seasonal components. Pfeffermann and
Allon [16] focus on structural models aimed at producing optimal forecasts. By building
upon previous multivariate time series exponential smoothing research, Pfeffermann and
Allon [16] also offer detailed instructions for parameter initialization and model-fitting.

Harvey’s approach is most suitable for our interests for two reasons. One, because of
reduced computational complexity; and two, we find that adapting Harvey’s approach
yields similar results to using an adapted version of, for example, the more complex Pfef-
fermann and Allon [16] approach. The second reason is due to the LSTM’s ability to model
complex interdependency between covariates [17,18], which negates the need to model the
cross-correlation using the preprocessing layer statistical methods.
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The recent COVID-19 pandemic has provided a unique opportunity due to (i) a
multitude of open datasets and (ii) extensive related research exploring the performance
of multivariate forecasting models. In the domain of COVID-19-related research, LSTM
networks have been applied by, for instance, Kırbaş et al. [19], who focus their attention on
the spread of the pandemic in countries including Denmark, Belgium, Germany, France,
United Kingdom, Finland, Switzerland and Turkey. Kırbaş et al. [19] model using Auto-
Regressive Integrated Moving Average (ARIMA) and Nonlinear Autoregression Neural
Network (NARNN, [20]) as benchmarks and report that LSTM has superior accuracy in
terms of forecasting the cumulative cases of infected individuals.

Chandra et al. [21] use variations of LSTM including Bidirectional LSTM (Bi-LSTM),
and encoder-decoder LSTM (ed-LSTM) models for multi-step intra-country forecasting in
the short-term in India. They cite challenges in the modeling process caused by difficulties
in capturing, in any available COVID-19 dataset, potentially important multivariate factors
such as population density, travel logistics, and other societal issues (e.g., the general
standard of living). If they were available, these exogenous factors could be useful in
improving predictive skill in the modeling process.

Chimmula and Zhang [22] base their forecasts on training data that they acquired
from the John Hopkins University and the Canadian Health Authority. They use a standard
implementation of LSTM. They forecast the pandemic ending in June 2020 (which we now
know to be incorrect).

Shahid et al. [23] model the rises and declines of confirmed cases, deaths and recoveries
in ten countries, including China. They rate their model performances from best to poorest
as Bi-LSTM, LSTM, Gated Recurrent Units (GRU, [24]), Support Vector Regressor (SVR)
and ARIMA. They report Bi-LSTM has superior performance over the other models with
the lowest MAE and RMSE values of 0.0070 and 0.0077, respectively.

As evidenced by previous related research, there are successes and failures with using
LSTM to forecast COVID-19. Various factors contribute to the at times the poor performance
of LSTM and its variations in this regard. One such factor is that the pandemic is relatively
recent, and any available dataset is a small fraction of the requisite volume of training data
the data-hungry artificial neural networks require. LSTM has been shown to perform well
in a variety of applications with datasets that are sufficiently long [25]. In our research,
we circumvent the problem of limited data by integrating a small, parsimonious LSTM
network in our model. We offer more details about the structure of our model in Section 2.3.

Univariate forecasting with the aid of pure machine learning has been conducted since
as far back as the works of Hu and Root [26]. Techniques merging machine learning with
statistical methods have since gained popularity.

Recently, the original ES-RNN hybrid technique won over hundreds of other submis-
sions both in terms of (i) point forecasts as well as (ii) their associated prediction intervals.
Both components are difficult to model, but perhaps the latter even more so. Deep learning
models often do not have a mechanism for quantifying uncertainty [27]. In such cases,
prediction intervals must be constructed using computational mechanisms [25].

Oreshkin et al. [28], however, produce forecast machinery comprised of deep, fully
connected layers and report that their model outperforms ES-RNN on the M4 Competition
dataset. Based on Neural Basis Expansion Analysis (NBEATS), Oreshkin et al. [28] conclude
that pure deep learning is better than hybrid methods as their method outperforms the
best statistical and the best hybrid method by 11% and 3%, respectively. The technique has
since been extended to include exogenous factors (NBEATS-x, [29]).

Further evidence has emerged since the end of the Makridakis-5 (M5) Accuracy and
Uncertainty Competitions [30,31] that pure deep learning models may be superior for
hierarchical forecasting. However, hybrid methods are still worth investigating in the
multivariate with exogenous variables forecasting setting. Starting here as a point of
departure, we hypothesise that a hybrid technique such as ES-RNN may work just as well
in this setting (exploiting a simple LSTM’s ability to model cross-correlation).
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Furthermore, extending the current ES-RNN hybrid forecasting research to the multi-
variate case is crucial as multivariate datasets are usually more representative of realistic
forecasting scenarios likely to be encountered in other applications.

1.2. Contribution

Our contribution can be summarized as follows:

• We extend the current research, which focuses on ES and RNN hybrid methods for
univariate forecasting, to a multivariate framework. We thus test assertions on multi-
variate mortality data with exogenous variables previously only tested empirically
on univariate data, i.e., are hybrid methods better than pure statistical or pure deep
learning methods at (i) forecasting tasks and (ii) quantifying forecast uncertainty? In
particular, we present a natural extension of Smyl’s ES-RNN to higher dimensions;

• we present our forecast engine MES-LSTM, which is an efficient generalization, and
as such, may be applied not only to the multivariate case but also to the univariate
setting with ease; and

• whereas previous (univariate) research on forecasting hybrid methods primarily
focuses on the multiplicative seasonality case, we consider both multiplicative and
additive, with automatic adaptation to the case most applicable to the particular
dataset.

The remainder of this paper is organized as follows. In Section 2 we describe our
architecture in detail, and how we merge the classical state-space forecast model with
the advanced artificial neural network. We also describe how we evaluate our model’s
performance. In Section 3 we describe the datasets used. The data section is followed by
Section 4, where we discuss our results in detail. We conclude in Section 5 with a few key
points and possibilities for extending this research to future work.

2. Methods

We employ GPU computation by utilising Tensorflow’s eager execution to transform
the original Smyl [2] ES-RNN to a generalised multivariate implementation. In their GPU
implementation, Redd et al. [8] initialise per-series attributes according to the guidelines
of the M4 Competition. We initialise per-covariate parameters, and have a vectorized
ES-LSTM, which we term Multivariate ES-LSTM (MES-LSTM).

The other difference between ES-RNN and MES-LSTM is that we use the most suit-
able between additive or multiplicative seasonality, whereas previous authors have only
considered multiplicative seasonality. The most suitable seasonality structure in each case
is ascertained by tracking the exponential smoothing fit on the training data.

In the remainder of this chapter, we explicitly define the quintessential aspects of
MES-LSTM. The description is analogous to that of Smyl [2], with relevant extensions
made to suit our multivariate presentation. Our model comprises two distinct layers: an
exponential smoothing layer inside our preprocessing module, and an LSTM layer used
for learning the dependency between the covariates. This methodology is consistent with
Section 1.1, where we outline our choice to expand upon Harvey’s approach [15] over
the Pfeffermann and Allon [16] approach for multivariate exponential smoothing.

Concisely, our model learns the parameters associated with each covariate in the
preprocessing step, then learns the correlation between the covariates in the deep learning
layer. Parameters optimized in both steps are then used at the inference stage, where the
prediction of multivariate point forecasts are produced, and the uncertainty associated with
these forecasts is quantified.
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2.1. Preprocessing Layer

For each covariate in our multivariate sample space, let {y}t represent, for example,
a weekly time series (weekly series for ease of exposition only) which we assume can be
decomposed into the additive form

yt = lt + bt + st + εt, (1)

where lt is the level in week t, st the seasonal effect and εt the noise term centered at
zero with constant variance. Let l̂t denote the estimated level in week t and b̂t the corre-
sponding trend estimate. Let the estimate of the seasonal effect at time t corresponding to
week t + i, i = 1, 2, . . . , 52 be denoted by ŝt,t+i. The estimates ŝt,t+i satisfy the condition
∑52

i=1 ŝt,t+i = 0. When a new observation yt+1 becomes available, all estimated components,
i.e., seasonality, trend, and level, are updated with the aid of three smoothing constants
0 ≤ α, γ, δ ≤ 1 as follows:

l̂t+1 = α(yt+1 − ŝt,t+1) + (1− α)
(

l̂t + b̂t

)
(2)

b̂t+1 = γ
(

l̂t+1 − l̂t
)
+ (1− γ)b̂t (3)

ŝ∗t+1,t+1 = δ
(

yt+1 − l̂t+1

)
+ (1− δ)ŝt,t+1 (4)

51

∑
i=0

ŝ∗t+1,t+1+i = 0. (5)

Equations (4) and (5) define a two-step computational procedure of the seasonal effects
ŝt+1, t+1+i. The second step standardizes the initial values computed in the first (with the
asterisk indicating “intermediary value”) so that they sum to zero.

The forecast at time t of a future out-of-sample realization (m > i) yt+m is given by

ŷt,t+m = l̂t + mb̂t + ŝt,t+m. (6)

For the multiplicative seasonality case, make the substitution {y}t = ln({y}t). This
substitution amounts to assuming the original series level changes in approximately con-
stant rates instead of constant increments. The substitution also requires changing the
condition imposed on the estimates of the multiplicative seasonal factors over the 52 weeks
from summing to zero to their geometric mean equalling one. Equations (2)–(5) then
become

l̂t+1 = α(
yt+1

ŝt,t+1
) + (1− α)l̂t b̂t (7)

b̂t+1 = γ(
l̂t+1

l̂t
) + (1− γ)b̂t (8)

ŝ∗t+1,t+1 = δ
yt+1

l̂t b̂t
+ (1− δ)ŝt,t+1 (9)(

51

∏
i=0

ŝ∗t+1,t+1+i

) 1
51

= 1, (10)

and the predictive Equation (6) becomes

ŷt,t+m = l̂t
(

b̂t

)m
ŝt,t+m. (11)

In both the additive and multiplicative seasonality cases expressed above, the initial
smoothing parameters are estimated as follows. The level is taken to be the overall in-
sample average. The trend is initialized as the difference between the first and last in-sample
observations, divided by the total number of increments. Seasonality is initialized by the
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deviations between the first week’s observations and the level plus trend fit. More details
about the dimensionality of the parameter space are given in Section 2.3.

Now that we have the formulations for both the additive and multiplicative seasonality
cases, we can merge the preprocessing layer with our deep learning component as follows.
For simplicity, we keep the input size and the size of the output predictions equal.

For the univariate additive case we have

ŷt, t+1, ..., t+m = l̂t + [t + 1, . . . , t + m]> � LSTM(Xt) + ŝt, t+1, ..., t+m, (12)

where� is the Hadamard product, and Xt denotes a vector of de-trended and de-seasonaliz-
ed observations of which a scalar element xi is given by:

xi = yi − l̂i − ŝi, for i = t + 1, . . . , t + m. (13)

For the multivariate additive case we have

ŷt, t+1, ..., t+m = l̂t + [t + 1, . . . , t + m]> � LSTM(X t) + ŝt, t+1, ..., t+m, (14)

where (if we have, say, k covariates in total) X t is a k × m matrix of de-trended, de-
seasonalized features of which a vector component (for each covariate) xi is calculated via
the equation:

xi = yi − l̂i − ŝi, for i = t + 1, . . . , t + m. (15)

Here, the vectors l̂i and ŝi are the same dimension as yi.
The univariate multiplicative seasonality case is given by

ŷt, t+1, ..., t+m = LSTM(Xt)� l̂t � ŝt, t+1, ..., t+m (16)

xi =
yi

l̂i ŝi
for i = t + 1, . . . , t + m, (17)

where the LSTM takes as input a vector of de-trended and de-seasonalized observations of
which a scalar element xi is computed using Equation (17).

Finally, the multivariate multiplicative case is thus expressed as

ŷt,t+1...t+m = LSTM(X t)� l̂t � ŝt,t+1...t+m (18)

xi = yi �
(

l̂i � ŝi

)−1
for i = t + 1, . . . , t + m (19)

where the LSTM takes as input a size k × m matrix X t of de-trended, de-seasonalized
observations, where each vector component xi is computed via Equation (19).

2.2. Deep Learning Layer

Our neural network data flow is presented in Figure 1. We input a matrix composed of
k vectors each of size m. After preprocessing, we input the matrix to our LSTM layer. The
LSTM layer output (composed of j predictands each sized n) feeds into a dense layer, then
postprocessing is conducted to produce the model’s final output. LSTMs employ gated
connections, are good at modeling latent representations with temporal dependency, and
as a result, are superior to vanilla RNNs [5]. The deep learning and exponential smoothing
layers are optimized consecutively, as depicted in Figure 1.
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Figure 1. MES-LSTM Data Flowchart.

In order to quantify the uncertainty associated with our point forecasts, we modify
the above architecture as follows. Instead of the dense layer that back-propagates and
learns scalar sets of weights and biases, we employ a densely-connected layer class with
Flipout estimator [32] that learns a distribution of weights and biases. In this variational,
probabilistic setting, traditional back-propagation is replaced by Bayes-by-backprop [33].

Flipout [32], through Monte Carlo simulation, approximates a distribution of weights
by integrating over the kernel and bias. By assuming the kernel and biases are drawn from
distributions, the dense-flipout is able to implement the Bayesian Variational inference
dense-flipout layer, analogous to the above (traditional) dense layer. Using samples from
the kernel and bias posteriors, this dense-flipout layer is able to run stochastic forward
passes. Another difference between this stochastic process and the analogous densely
connected layer, is we use variational inferencing by minimizing the KL-divergence [34].
The uncertainty quantification is implemented using Tensorflow Probability [35].

In effect, we can now forecast using a sample from the distribution of weights and
biases. Applying Monte-Carlo simulation, each time we forecast, we iteratively compile
a distribution of forecasts. We then use the appropriate percentiles to extract the desired
prediction intervals from the forecast distribution. So, to compute the (1 − α) × 100%
prediction interval, we use the percentiles at(α

2
, (1− α) +

(α

2

))
. (20)

The data flow process for quantifying uncertainty is not dissimilar to Figure 1. The
only difference is that in the deep learning layer, we now produce probabilistic forecasts
instead of deterministic ones.

The variational inference approach described above is similar to two other notable
prediction interval construction techniques, i.e., Monte Carlo dropout [36] and the quantile
bootstrap [37] also known as the reverse percentile bootstrap [38]. The technique used
here, Flipout, is similar to dropout and bootstrapping as they all use quantiles extracted
from synthetic distributions to produce the final intervals. Mathonsi and van Zyl [25] offer
examples where dropout and bootstrapping have been applied and compared [25].

The key differences in all three methods is how their respective distributions are
constructed, and their relative uncertainty quantification skill. See for instance the work
of Wen et al. [32], where Flipout has been shown to outperform dropout. In addition, a
fortuitous side-effect of the variational inference (and dropout methods) is a reduction in
epistemic uncertainty, which in turn regularizes the network and addresses any concerns
that may arise from the possibility of a lack of sufficient training data, and issues associated
with overfitting.
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To summarize, we input a matrix (sized number of training observations by number of
predictors) to the model. The preprocessing layer computes all the exponential smoothing
parameters as outlined in Section 2.1 above. We then feed the output directly to the
deep learning layer, which discerns the inherent dependency within the covariates. The
first step in our two-step methodology is inspired by the works of Harvey [15], who,
through simplifications, enables forecasting related time series through the use of univariate
smoothing models. We find this two-step methodology for MES yields similar results to
using the one-step formulation given by Pfeffermann [16], with our method enjoying the
added benefit of reduction in computational cost. The output from the LSTM is then fed
directly to the dense layer or dense-flipout layer in the case of point forecasts and prediction
interval construction, respectively. Finally, seasonality and trend estimates are added back
to these intermediate outputs. We now have the final model forecasts and prediction
intervals, respectively.

Figure 2 illustrates our model architecture zoomed in to the deep learning layer. The
input shape is (k, m) where we have k covariates each with m observations in the training
data. The network’s intermediate output (before postprocessing) is generated by feeding
the output of the LSTM through to a dense layer with a ReLU activation function. The
size of the LSTM, S, is deduced empirically using the technique described in Section 2.3
below. The size of the dense layer (or dense-flipout layer for uncertainty quantification)
and correspondingly the output layer is determined by the number of predictands j. The
output in the schematic then goes through postprocessing to meet our required format.
It is re-trended and re-seasonlized (using the parameter estimates from the exponential
smoothing equations) to arrive at the format presented by the ground truth data.

  

input cell recurrent cell

1

2

k

3

1

S

24

25

1

1

 j

11

dense cell output cell

j

12

Figure 2. MES-LSTM Architecture Diagram.

2.3. Hyperparameter Tuning

Note from our formulation given in Equations (14) and (15) (multivariate model with
additive seasonality), and Equations (18) and (19) (multivariate model with multiplicative
seasonality), we do not need to compute the estimates for the trend component b̂t and this
significantly reduces the hyper-parameter search space of the preprocessing layer. The
initial estimates of the coefficients for level and seasonality are deduced by calculating
primer estimates following the classical exponential smoothing Equations (2) and (4), as
well as Equations (7) and (9) for the respective additive and multiplicative seasonality cases.
The level is initialized as the in-sample average, and the initial seasonality is the deviations
between the level plus trend fit and the first week’s observations. If we have k attributes
in our dataset, the model computes and stores (k + 1)× (2 + P) exponential smoothing
parameters, where P indicates seasonality length.
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For the deep learning layer, we use a small model with relatively few parameters. The
reasons for this model configuration are two-fold. First, we have a relatively small amount
of data for training, and secondly, a large over-parameterized network might overfit and
not generalize well to the test data [39].

We iterate over a subset of LSTM sizes and training epochs and select the model
configuration with the best forecast accuracy for our validation data and fewest parameters
to fit. We optimize the batch size and number of samples the rolling window looks into
the past to forecast the next example. We summarize our hyperparameter search space for
the deep learning layer in Table 1. We inspect the best five configurations (w.r.t. the error
metrics detailed in the section that follows) in terms of forecasting all of the predictands.
We then select the model configuration that is most parsimonious in order to ensure our
model best mitigates overfitting over multiple runs. According to this methodology, the
best configuration is given by LSTM of size 50, trained over 25 epochs, using batches sized
16, with an input window of 14 days.

Table 1. Configuration Grid for Deep Learning Layer Hyperparameter Search Space.

Hyperparameter Search Space

LSTM size 50, 55, 60, . . ., 150
epochs 15, 20, 25, . . ., 75
batch size 8, 16, 24, . . ., 64
input window 7, 14, 21

Our train-validation-test data split is 75-15-10. The reason for this is we forecast in the
short-to-medium term, so 10% test data is sufficient to evaluate our model’s performance.

The order of our VARMAX model, (p, q), is deduced by conducting a grid search
for optimization in much the same way as above for MES-LSTM. We set the maximum
iterations for maximum likelihood search to 200 (four times the default in Python) to ensure
convergence. The trend component is deduced through a grid search varying the trend
polynomial from constant, linear, quadratic, to cubic. We auto-regress the predictors and
the predictands are declared as exogenous.

The model hyperparameter optimization process for SARIMAX is exactly the same
as for VARMAX. In both cases we perform the grid search and choose the model with
the smallest Akaike information criteria (AIC, [40]). For simplicity, we do not enforce
invertibility on the moving average polynomials. This also ensures more of the models
are estimable. In cases where there are several suitable model configurations (equal AIC
values) we choose the model that is most parsimonious (smallest product of p and q).

The MLR is fit using Ordinary Least Squares (OLS, [41]). We plug in the optimal
hyperparameters for LSTM into the DeepAR, with additional searches for the dropout rate
(0.1, 0.15, 0.2), and likelihood (noise model for probabilistic forecasts, so we can discern
uncertainty) between Gaussian and student-T. The LGB model was tuned considering tree
maximum depth (capped at 5), maximum leaves (capped at 30), number of estimators
(capped at 125), and the learning rate (same search space as DeepAR).

All the models are trained on a cluster of Intel Core i7-9750H processors each with an
Nvidia GeForce GTX 1650 GPU and 4GB RAM.

2.4. Metrics

For determining the most suitable seasonality structure in the preprocessing layer,
we use the Sum of Squared Errors (SSE). For training in the deep learning layer, we use
Mean Absolute Error loss (MAE) with Adam efficient optimizer [42]. For performance
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evaluation of the point forecasts, we employ the symmetric Mean Absolute Percent Error
(sMAPE, [43]) and Root Mean Squared Error (RMSE),

sMAPE =
2
m

m

∑
t=1

|yt − ŷt|
|yt|+ |ŷt|

(21)

RMSE =

√
1
m

m

∑
t=1

(yt − ŷt)
2, (22)

where yt is the post-sample value of the predictand at point t, ŷt the estimated forecast and
m is again the forecast horizon. The former is in line with the performance metrics from the
M4 Competition, and is used for continuity as results published by Smyl [2] also used this
metric. Further motivation for our choice is sMAPE being a median-based error criterion,
it is also useful in instances where there are large amounts of outliers in the data. Lastly,
sMAPE is symmetric on an absolute scale [44].

The latter is useful as it gives error in the same units as the forecast variable itself,
thus easily interpretable. The other reason we employ RMSE as a complement is although
symmetric on an absolute scale, sMAPE has been shown to penalize large positive errors
more than negative ones on a percentage scale [45]. Both metrics are mean absolute
differences between forecast and actual values. The key difference is how sMAPE is
normalized.

For evaluating the prediction intervals we use the Mean Interval Score (MIS, [46]),
which is averaged over all out-of-sample observations,

MISα =
1
m

m

∑
t=1

(Ut − Lt) +
2
α
(Lt − yt)1{yt<Lt} +

2
α
(yt −Ut)1{yt>Ut}, (23)

where Ut (Lt) is the upper (lower) bound of the prediction interval at time t, α is the
significance level and 1 is the indicator function.

The MISα adds a penalty at the points where future observations are outside the
specified bounds [Lt, Ut]. The width of the interval at t is added to said penalty, if any. As
such, the MISα also penalizes wide intervals. Finally, this sum at the individual out-of-
sample points is averaged.

As a supplementary metric for evaluating the performance of the prediction intervals,
we employ the Coverage Score (CSα) which indicates the percentage of observations that
fall within the prediction interval,

CSα =
1
m

m

∑
t=1

1{Ut≤yt≤Lt}. (24)

With MISα the subscript α denotes explicit dependence on the significance level,
whereas in the case of CSα the dependence is implicit.

2.5. Benchmarks

For benchmarking MES-LSTM, the statistical methods used are Multiple Linear Re-
gression (MLR, [41]), Vector Autoregression Moving-Average with Exogenous Regressors
(VARMAX, [47]) and Seasonal Autoregressive Integrated Moving-Average with Exoge-
nous Regressors (SARIMAX, [48]). For deep learning benchmarks we use a vanilla LSTM
(without direct incorporation of a preprocessing layer as described in Section 2.1) Deep
Autoregressive Recurrent neural network (DeepAR, [49]), and Light Gradient Boosting
machine (LGB, [50]).

The choice of the pure deep learning benchmarks/baselines models is based on, for
one, the architecture of our proposed model. Because we have a statistical-and-LSTM hy-
brid model, it makes sense to focus on LSTM w.r.t. pure deep learning techniques. Secondly,
the choice of LGB (and LSTM) is motivated by the findings of the M5 Competitions. Almost
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all of the top 50 submissions for the M5 Accuracy [51] and Uncertainty [52] competitions
use a variation of LGB. In particular, considering the top five: submissions ranked 1, 2,
4, and 5 from the Accuracy competition [51] incorporate LGB into their model, and the
submission ranked third uses DeepAR [49], which is built on multiple LSTMs. From the
top five submissions in the M5 Uncertainty competition [52], 1, 2, 3, and 5 incorporate LGB,
while the submission ranked fourth incorporates LSTM.

3. Datasets

We use the Our World in Data (OWID) COVID-19 dataset [53,54]. This dataset is
aggregated from various sources, and includes historical data on the pandemic up to
the date of publication, updated daily. A summary of the data and the aggregated data
sources is shown in Table 2. It is important to note that even though the actual databases
are updated at daily, weekly, and other time frequencies, the aggregated datasets used
in our study are all presented at a daily temporal resolution. This means no frequency
harmonization is required.

Table 2. OWID COVID-19 Dataset Summary.

Metrics Source Updated Countries

Vaccinations Official data collated by the Our World in Data team Daily 217
Tests & positivity Official data collated by the Our World in Data team Weekly 136
Hospital & ICU Official data collated by the Our World in Data team Weekly 34
Confirmed cases JHU CSSE COVID-19 Data Daily 194
Confirmed deaths JHU CSSE COVID-19 Data Daily 194
Reproduction rate Arroyo-Marioli F, Bullano F, Kucinskas S, Rondón-Moreno C Daily 184
Policy responses Oxford COVID-19 Government Response Tracker Daily 186
Other variables of interest International organizations (UN, World Bank, OECD, IHME. . . ) Fixed 240

The variables represent data related to confirmed cases, deaths, hospitalizations, and
testing, as well as 56 other variables. We only use a subset of the available attributes, as
detailed in the feature list shown in Table 3.

Table 3. OWID COVID-19 Dataset Feature List.

Variable Description

total cases Total confirmed cases of COVID-19
new cases New confirmed cases of COVID-19
total cases per million Total confirmed cases of COVID-19 per 1,000,000 people
new cases per million New confirmed cases of COVID-19 per 1,000,000 people
total deaths Total deaths attributed to COVID-19
new deaths New deaths attributed to COVID-19
total deaths per million Total deaths attributed to COVID-19 per 1,000,000 people
new deaths per million New deaths attributed to COVID-19 per 1,000,000 people
icu patients Number of COVID-19 patients in intensive care units (ICUs) on a given day
icu patients per million Number of COVID-19 patients in ICUs on a given day per 1,000,000 people
hosp patients Number of COVID-19 patients in hospital on a given day
weekly icu admissions Number of COVID-19 patients newly admitted to ICUs in a given week
weekly icu admissions per million Number of COVID-19 patients newly admitted to ICUs in a given week per 1,000,000 people
weekly hosp admissions Number of COVID-19 patients newly admitted to hospitals in a given week
weekly hosp admissions per million Number of COVID-19 patients newly admitted to hospitals in a given week per 1,000,000 people
stringency index Government Response Stringency Index: composite measure based on 9 response indicators
reproduction rate Real-time estimate of the effective reproduction rate (R) of COVID-19
total tests Total tests for COVID-19
new tests New tests for COVID-19 (only calculated for consecutive days)
positive rate Share of COVID-19 tests that are positive, rolling 7-day average (inverse of tests per case)



Forecasting 2022, 4 12

Table 3. Cont.

Variable Description

tests per case Tests conducted per new confirmed case of COVID-19, rolling 7-day average (inverse of positive rate)
total vaccinations Total number of COVID-19 vaccination doses administered
people vaccinated Total number of people who received at least one vaccine dose
people fully vaccinated Total number of people who received all doses
new vaccinations New COVID-19 vaccination doses administered (only calculated for consecutive days)
total vaccinations per hundred Total number of COVID-19 vaccination doses administered per 100 people
people vaccinated per hundred Total number of people who received at least one vaccine dose per 100 people
people fully vaccinated per hundred Total number of people who received all doses prescribed by the vaccination protocol per 100 people
location Geographical location
date Date of observation
population Population in 2020
population density Number of people divided by land area, measured in square kilometers
median age Median age of the population, UN projection for 2020
aged 65 older Share of the population that is 65 years and older, most recent year available
aged 70 older Share of the population that is 70 years and older in 2015
gdp per capita Gross domestic product at purchasing power parity
extreme poverty Share of the population living in extreme poverty
cardiovasc death rate Death rate from cardiovascular disease in 2017
diabetes prevalence Diabetes prevalence (% of population aged 20 to 79) in 2017
female smokers Share of women who smoke, most recent year available
male smokers Share of men who smoke, most recent year available
handwashing facilities Share of the population with basic handwashing facilities on premises
hospital beds per thousand Hospital beds per 1000 people, most recent year available since 2010
life expectancy Life expectancy at birth in 2019
human development index Composite average achievement in (i) a long, healthy life (ii) knowledge (iii) standard of living
excess mortality Excess mortality P-scores for all ages

We choose this aggregated dataset over other available COVID-19 datasets because it
does to some extent mitigate the concerns raised by Chandra et al. [21], for example. As
highlighted in Section 1.1, some exogenous factors not directly related to COVID-19 may
be useful in the modeling process. For instance, the OWID COVID-19 dataset includes
covariates such as human development index, extreme poverty, and handwashing facilities.

The variables that we have omitted from our study are duplicates where numerical
data has been smoothed, e.g., new cases smoothed. The smoothed attributes are removed
for two reasons: OWID offers no insights on how the data is smoothed, and we avoid any
duplication as our model also conducts preprocessing.

In particular, we use our model to forecast and quantify the associated prediction
uncertainty for two attributes of interest: total cases and total deaths. The predictions and
uncertainty quantification can be conducted for a single country, or easily across a multitude
of countries or even averaged over a specific region. Regional or multi-country inferencing
can assist policy-makers to make tough decisions like restricting inter-provincial/state
travel or closing national borders completely.

Below we present results for the Southern African Development Community (SADC).
SADC is a regional economic community comprising 16 member states: Angola, Botswana,
Comoros, Democratic Republic of Congo (DRC), Eswatini, Lesotho, Madagascar, Malawi,
Mauritius, Mozambique, Namibia, Seychelles, South Africa, Tanzania, Zambia and Zim-
babwe.

4. Results and Discussion

In this section, we detail the results for multivariate point forecasts as well as the
prediction intervals for our predictands total cases and total deaths. The results are presented
for the analysis conducted for the SADC region. In order to mitigate the stochastic nature
of the probabilistic forecasts from MES-LSTM and some of the benchmark models, the
experiments are repeated 35 times. The results presented are the aggregates of all the
repeated independent trials. The code repository for the empirical experiments is available
online at the link provided directly in Supplementary Material after Section 5 below.
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4.1. Forecast Performance for SADC

The results for point forecasts for SADC are tabulated in Tables 4 and 5, for each of
our predictands. We note MES-LSTM outperforms the benchmarks for all the nations in
SADC, except sMAPE for total cases in South Africa. The best performer in each instance is
highlighted for ease of interpretation. Interestingly, overall, the worst forecast performance
from MES-LSTM is in South Africa and this could be a result of the nation presenting the
most accurate data. The other nations possibly don’t update their data as frequently, and
the model learns easier as there isn’t a lot of variability. Furthermore, the (less accurate)
data from the other nations is closer to the linear assumptions of the statistical benchmark
models, i.e., VARMAX, SARIMAX and MLR.

In Figure 3 we average the forecast results across the entirety of the SADC region. We
note MES-LSTM is the best aggregate performer. This figure also illustrates the importance
of choosing multiple error metrics. In Figure 3a SARIMAX for instance, seems to perform
fairly poorly for both predictands, but this as a stand-alone interpretation would be inac-
curate. From Figure 3b we note that in terms of regional skill for total deaths, SARIMAX
is actually competitive. Recall that RMSE gives the error in the same units as the original
predictand. South Africa has a total population of 65 million, so any model that over- or
under-forecasts total cases by a few thousand cases could still be useful for planning and
management of the pandemic outbreak in question.
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Figure 3. Forecast Accuracy in the SADC Region. (a) sMAPE. (b) RMSE.

4.2. Prediction Interval Performance for SADC

The results for the prediction interval are documented in Tables 6 and 7. The best
performer or best tied performers are highlighted. We note that MES-LSTM MIS is superior
to the other models for both predictands for almost the entire SADC region.

Recall from Section 2.4, the MIS penalizes large intervals, so our model generally
has the narrowest prediction intervals. In Figure 4 we average the results for prediction
intervals across the entirety of the SADC region. MES-LSTM consistently has the narrowest
aggregate intervals for both predictands at all prediction intervals, as evidenced in Figure
4a–c.

In terms of Coverage, our model outperforms the benchmarks for the individual
countries except in a few instances. In most of the exceptions, the difference is minuscule,
whereas in other instances (e.g. South Africa) it is admittedly not negligible. What is more
important however, is the aggregate performance over the entire region, where MES-LSTM
scores better (as can be seen in Figure 4d–f).
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4.2. Prediction Interval Performance for SADC

The results for the prediction interval are documented in Tables 6 and 7. The best
performer or best tied performers are highlighted. We note that MES-LSTM MIS is superior
to the other models for both predictands for almost the entire SADC region.

Recall from Section 2.4, the MIS penalizes large intervals, so our model generally has
the narrowest prediction intervals. In Figure 4 we average the results for prediction intervals
across the entirety of the SADC region. MES-LSTM consistently has the narrowest aggregate
intervals for both predictands at all prediction intervals, as evidenced in Figure 4a–c.

In terms of Coverage, our model outperforms the benchmarks for the individual
countries except in a few instances. In most of the exceptions, the difference is minuscule,
whereas in other instances (e.g., South Africa) it is admittedly not negligible. What is more
important however, is the aggregate performance over the entire region, where MES-LSTM
scores better (as can be seen in Figure 4d–f).
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Table 4. Forecast Accuracy Averaged Over All Trials for total cases in the SADC Region.

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
Country sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE
Angola 0.7 563.1 68.9 28,023.4 5.6 28,524.5 59.0 23,811.6 76.4 35,442.3 107.1 59,732.6 77.6 35,830.6
Botswana 1.6 5817.7 85.5 94,414.1 5.8 32,635.2 62.9 72,983.0 99.5 125,387.6 71.0 123,392.6 114.6 137,334.7
Comoros 1.1 52.5 16.5 623.3 5.3 32,005.1 50.1 1443.4 6.2 313.8 23.6 1058.6 17.6 704.2
DRC 0.8 468.3 72.6 25,987.3 5.3 29,933.9 41.9 17,302.5 12.8 7047.8 27.6 15,527.6 83.9 34,102.8
Eswatini 1.3 617.7 59.1 18,348.9 5.7 31,572.0 61.2 17,619.4 63.6 23,417.0 37.9 16,687.6 110.6 33,055.4
Lesotho 0.7 167.2 47.2 7324.4 5.5 28,662.4 33.9 5484.3 35.2 6478.7 137.8 24,942.5 42.4 7603.3
Madagascar 1.3 636.6 35.1 12,019.8 5.5 29,387.4 45.6 13,719.5 11.1 5495.1 8.8 3889.1 22.3 9014.0
Malawi 1.3 817.5 22.0 11,967.0 5.9 30,163.2 14.1 8183.4 10.4 7629.0 9.7 5956.9 42.2 23,504.7
Mauritius 3.8 2056.8 99.8 9891.6 5.8 29,677.4 91.1 8643.8 179.5 17,135.7 242.9 32,875.6 171.3 16,742.4
Mozambique 1.1 1685.0 5.0 7457.6 5.2 29,234.1 3.0 4438.9 2.5 3946.2 90.5 125,768.7 10.3 15,089.2
Namibia 1.1 1508.8 5.2 7516.3 5.6 26,149.9 2.3 2969.0 12.0 17,579.1 25.3 32,551.7 7.7 10,010.1
Seychelles 0.9 266.7 59.9 8908.6 5.4 27,596.0 62.1 8596.8 11.4 2428.1 47.4 10,115.2 99.0 14,797.0
South Africa 5.0 26,979.2 4.8 150,416.4 5.6 30,420.9 7.8 212,612.0 2.8 87,376.0 8.2 265,998.0 4.0 118,139.5
Tanzania 0.3 134.6 116.3 15,445.1 6.0 30,900.7 96.5 12,839.8 184.1 25,060.9 636.9 87,188.8 194.9 25,818.8
Zambia 1.2 2499.0 6.4 15,567.7 5.8 28,686.9 2.0 4333.4 7.3 16,766.9 72.1 143,490.3 2.1 6120.9
Zimbabwe 1.1 1518.5 8.6 10,652.2 5.4 32,284.2 5.7 7251.2 8.4 12,296.7 6.4 9733.6 2.6 4164.0

Table 5. Forecast Accuracy Averaged Over All Trials for total deaths in the SADC Region.

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
Country sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE
Angola 0.9 19.8 74.6 783.5 6.6 2886.7 60.8 687.0 89.9 1055.7 71.6 1038.1 89.4 1052.1
Botswana 1.0 26.1 86.1 1203.9 6.7 2909.9 77.2 1128.8 97.6 1576.5 15.7 363.9 120.8 1806.0
Comoros 1.5 2.4 12.5 16.7 6.2 3069.4 72.4 66.8 15.6 27.3 13.5 20.6 10.9 16.0
DRC 1.0 12.0 67.2 470.1 6.1 3059.6 38.2 326.4 2.4 34.2 11.6 128.9 74.0 594.3
Eswatini 1.1 14.2 49.6 435.1 7.0 2594.2 58.8 490.0 46.3 525.6 35.3 403.1 95.1 801.0
Lesotho 0.8 5.4 47.2 222.9 6.9 2790.2 42.4 207.1 46.8 249.7 97.4 516.2 44.5 240.8
Madagascar 1.2 12.2 48.1 330.3 6.6 2820.6 71.5 431.7 4.2 44.6 2.0 20.4 41.7 335.9
Malawi 1.2 28.7 27.1 518.9 6.6 3072.6 20.4 416.1 14.5 349.6 14.2 314.9 46.2 958.7
Mauritius 1.7 39.9 103.0 109.6 6.9 3014.0 104.4 110.3 173.1 183.1 300.2 341.7 172.7 183.1
Mozambique 1.1 21.9 5.1 96.7 6.4 3269.7 4.5 85.6 4.9 98.7 9.2 180.1 15.6 281.4
Namibia 1.1 41.9 7.9 333.8 6.1 3200.6 4.9 174.9 19.6 848.9 17.2 601.2 29.3 913.9
Seychelles 1.7 7.0 71.9 54.0 7.1 3288.2 82.4 58.9 5.9 8.3 43.5 47.7 116.9 88.8
South Africa 4.9 446.2 7.8 7902.4 5.9 2773.4 10.4 8515.8 10.7 10,806.6 16.1 15,438.9 6.5 6276.2
Tanzania 0.3 3.8 114.7 425.6 6.7 3143.2 113.7 423.5 179.3 685.9 362.3 1379.1 193.0 712.9
Zambia 1.3 47.7 6.6 266.8 6.6 2806.5 4.3 174.2 7.5 301.4 1.9 87.8 11.7 420.1
Zimbabwe 1.1 53.4 6.5 298.2 6.3 3067.7 8.1 361.0 14.8 791.5 5.8 289.7 6.7 345.0
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Table 6. Prediction Interval Accuracy Averaged Over All Trials for total cases in SADC (α = 0.05).

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
Country MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage
Angola 1910.8 95.2 116,739.1 0.0 55,663.7 81.6 54,875.9 0.0 902,714.3 0.0 814,594.0 0.0 660,826.0 0.0
Botswana 11,735.6 85.2 378,936.2 0.0 164,794.4 77.6 171,350.6 0.0 4,572,270.6 0.0 1,203,716.2 0.0 4259,387.7 0.0
Comoros 172.9 97.4 360.0 87.6 3908.4 84.4 5064.1 0.0 3085.7 40.9 1790.1 59.1 5461.2 100.0
DRC 2351.8 97.6 102,410.9 0.0 45,538.0 65.2 68,391.5 0.0 143,127.3 0.0 137,288.5 0.0 413,486.5 0.0
Eswatini 1837.3 91.0 86,314.2 0.0 44,987.2 79.6 44,252.9 0.0 518,283.5 14.3 140,160.1 0.0 683,626.1 0.0
Lesotho 750.4 97.4 24,269.2 0.4 20,065.3 89.0 18,693.3 0.0 218,810.3 0.0 310,359.2 0.0 24,172.3 55.8
Madagascar 2310.7 83.6 25,720.5 16.9 30,953.7 83.1 19,934.0 56.3 139,138.3 0.0 5270.5 100.0 48,987.3 100.0
Malawi 2503.3 88.0 27,408.2 38.8 40,635.9 78.9 31,982.9 0.0 60,588.0 70.2 33,628.7 100.0 303,117.6 55.3
Mauritius 2460.2 90.1 44,971.4 0.0 21,957.8 77.6 43,120.5 0.0 625,931.1 0.0 441,038.4 0.0 592,480.4 0.0
Mozambique 5249.2 94.2 17,924.2 92.1 68,002.5 86.0 3197.7 46.2 23,040.1 100.0 1,364,340.7 0.0 83,378.3 22.9
Namibia 4487.2 93.1 18,930.5 93.9 53,947.4 79.7 1726.9 59.2 48,9847.0 0.0 28,333.2 38.8 45,068.1 67.3
Seychelles 728.2 93.1 32,422.8 0.0 20,364.2 73.7 17,835.9 14.3 68,568.1 0.0 103,106.7 0.0 232,264.3 0.0
South Africa 193,075.6 80.7 348,860.7 97.7 1,418,713.2 86.6 239,009.3 100.0 740,131.9 100.0 1,061,162.0 100.0 828,447.2 100.0
Tanzania 943.6 96.2 67,427.5 0.0 32,459.5 77.3 67,350.0 0.0 990,720.2 0.0 1,279,781.1 0.0 1,018,128.2 0.0
Zambia 8972.0 89.2 24,151.6 96.4 89,095.3 73.5 8316.6 16.6 489,501.1 0.0 1,509,742.0 0.0 36,167.6 95.8
Zimbabwe 4770.4 87.7 23,667.6 85.8 63,299.2 77.9 2987.9 100.0 367,165.9 0.0 14,904.8 95.8 16,359.3 100.0

Table 7. Prediction Interval Accuracy Averaged Over All Trials for total deaths in SADC (α = 0.05).

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
Country MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage
Angola 53.2 94.0 3206.0 0.0 3348.1 77.1 2089.5 0.0 29,346.8 0.0 24,022.4 0.0 23,844.1 0.0
Botswana 106.4 93.3 4803.4 0.0 4357.0 75.1 1706.3 10.6 53,087.1 0.0 1079.0 48.9 51,432.7 0.0
Comoros 5.9 95.3 12.5 86.3 318.6 78.3 189.9 0.0 575.5 0.0 34.5 100.0 225.3 100.0
DRC 46.1 95.7 1725.4 0.0 1636.2 84.0 1013.0 20.4 163.4 100.0 336.5 100.0 4297.0 20.4
Eswatini 49.0 90.7 2,236.0 0.0 2350.4 90.2 671.6 0.0 8795.5 42.9 7693.3 0.0 10,342.2 0.0
Lesotho 22.8 97.6 795.3 0.3 1302.8 85.2 677.5 0.0 8941.9 0.0 11,845.1 0.0 1408.6 23.3
Madagascar 46.5 85.4 733.9 11.8 1787.3 77.7 894.2 2.1 244.4 56.3 108.1 100.0 1108.4 100.0
Malawi 89.4 88.8 1223.5 29.5 3526.6 85.7 1202.7 0.0 3309.8 61.7 1153.1 100.0 15,170.2 31.9
Mauritius 75.8 74.0 468.6 0.0 484.5 79.9 454.8 0.0 6978.1 0.0 8379.1 0.0 6861.6 0.0
Mozambique 66.8 94.2 244.7 91.2 1928.7 75.0 70.9 42.1 341.8 100.0 602.0 22.9 2707.0 22.9
Namibia 134.0 91.3 587.2 90.8 3411.9 81.7 101.4 89.7 21,239.2 0.0 23,742.4 0.0 10,490.6 0.0
Seychelles 5.8 91.0 188.7 0.0 258.6 76.1 143.5 0.0 33.4 77.6 694.2 0.0 1984.9 0.0
South Africa 5785.9 79.8 10,713.1 97.4 97,311.6 84.7 9589.2 17.6 63,626.1 48.1 33,910.2 100.0 26,489.6 100.0
Tanzania 28.4 94.7 1853.4 0.0 1911.1 85.9 1844.1 0.0 27,048.4 0.0 35,267.8 0.0 28,062.0 0.0
Zambia 150.0 89.7 429.3 94.9 3701.5 77.6 429.3 19.1 6940.6 6.3 458.3 100.0 1731.8 77.1
Zimbabwe 169.9 87.3 810.4 85.8 5004.7 84.6 119.7 100.0 26,898.9 0.0 746.0 95.8 4778.9 20.8
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Figure 4. Prediction Interval Accuracy in the SADC Region. (a) MIS (α = 0.05). (b) MIS (α = 0.1). (c) MIS (α = 0.2). (d)
Coverage Score (α = 0.05). (e) Coverage Score (α = 0.1). (f) Coverage Score (α = 0.2).

4.3. Forecast Performance for South Africa

After noting the relatively poor performance for South Africa, we believe this requires
further probing.

We first present our observed error metrics distribution over the independent trials
for all the models for both predictands in South Africa. Tables 8 and 9 show the forecasting
error for total cases and total deaths respectively. The models VARMAX, SARIMAX and MLR
are all deterministic, so the output for different trials is identical. As a result, there is no
variation in the accuracy of these models and the standard deviation is zero. For total cases,
VARMAX (DeepAR) has the lowest (highest) average sMAPE, and MES-LSTM (SARIMAX)
has the lowest (highest) average RMSE. For total deaths, MES-LSTM has the lowest average
sMAPE and RMSE, while and SARIMAX has the highest figures for both.

Table 8. Forecast Accuracy Distribution for All Trials for total cases in South Africa.

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE

mean 5.0 26,979.2 4.8 150,416.4 5.6 30,420.9 7.8 212,612.0 2.8 87,376.0 8.2 265,998.0 4.0 118,139.5
std 1.1 5,641.0 3.8 121,306.0 1.3 12,885.4 0.1 1,192.2 0.0 0.0 0.0 0.0 0.0 0.0

Table 9. Forecast Accuracy Distribution for All Trials for total deaths in South Africa.

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE

mean 4.9 446.2 7.8 7,902.4 5.9 2,773.4 10.4 8,515.8 10.7 10,806.6 16.1 15,438.9 6.5 6,276.2
std 1.2 106.0 5.3 5,578.8 2.2 1,259.7 0.1 61.2 0.0 0.0 0.0 0.0 0.0 0.0

Figure 4. Prediction Interval Accuracy in the SADC Region. (a) MIS (α = 0.05). (b) MIS (α = 0.1).
(c) MIS (α = 0.2). (d) Coverage Score (α = 0.05). (e) Coverage Score (α = 0.1). (f) Coverage Score
(α = 0.2).

4.3. Forecast Performance for South Africa

After noting the relatively poor performance for South Africa, we believe this requires
further probing.

We first present our observed error metrics distribution over the independent trials
for all the models for both predictands in South Africa. Tables 8 and 9 show the forecasting
error for total cases and total deaths respectively. The models VARMAX, SARIMAX and MLR
are all deterministic, so the output for different trials is identical. As a result, there is no
variation in the accuracy of these models and the standard deviation is zero. For total cases,
VARMAX (DeepAR) has the lowest (highest) average sMAPE, and MES-LSTM (SARIMAX)
has the lowest (highest) average RMSE. For total deaths, MES-LSTM has the lowest average
sMAPE and RMSE, while and SARIMAX has the highest figures for both.
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Table 8. Forecast Accuracy Distribution for All Trials for total cases in South Africa.

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE

mean 5.0 26,979.2 4.8 150,416.4 5.6 30,420.9 7.8 212,612.0 2.8 87,376.0 8.2 265,998.0 4.0 118,139.5
std 1.1 5641.0 3.8 121,306.0 1.3 12,885.4 0.1 1192.2 0.0 0.0 0.0 0.0 0.0 0.0

Table 9. Forecast Accuracy Distribution for All Trials for total deaths in South Africa.

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE

mean 4.9 446.2 7.8 7902.4 5.9 2773.4 10.4 8515.8 10.7 10,806.6 16.1 15,438.9 6.5 6276.2
std 1.2 106.0 5.3 5578.8 2.2 1259.7 0.1 61.2 0.0 0.0 0.0 0.0 0.0 0.0



Forecasting 2022, 4 18

MES-LSTM and SARIMAX results generally being on opposite sides of the spectrum
is also evidenced by the box and whisker plots in Figure 5.
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Figure 5. Forecast Accuracy Distribution Boxplots for All Trials in South Africa. (a) sMAPE for
total cases. (b) RMSE for total cases. (c) sMAPE for total deaths. (d) RMSE for total deaths.

The results from the LSTM are far more variable for each trial than MES-LSTM.
LSTM seems competitive to our model for some trials but shows little consistency for
multiple independent runs. The LSTM’s relatively poor and oft-inconsistent performance
with COVID-19 modeling agrees with observations by other researchers (as detailed in
Section 1.1.)

When viewed together with the bar graphs presented in Figure 6, one possible intepre-
tation of all the forecast results is a ranking of the best performance for South Africa in
increasing order as SARIMAX, VARMAX, LSTM, DeepAR, MLR, LGB, and MES-LSTM.
MES-LSTM shows consistent outperformance over (or at least competitiveness to) the
benchmarks. Our model also presents results with a tight distribution, second in terms of
tightness to DeepAR (from the probabilistic forecasts models). Even in instances where
outliers are present in the forecast distribution of our model, these outliers are still very
close to the core distribution. This tendency reaffirms the robustness of our model when it
comes to producing accurate forecasts.

Figure 5. Forecast Accuracy Distribution Boxplots for All Trials in South Africa. (a) sMAPE for
total cases. (b) RMSE for total cases. (c) sMAPE for total deaths. (d) RMSE for total deaths.

The results from the LSTM are far more variable for each trial than MES-LSTM.
LSTM seems competitive to our model for some trials but shows little consistency for
multiple independent runs. The LSTM’s relatively poor and oft-inconsistent performance
with COVID-19 modeling agrees with observations by other researchers (as detailed in
Section 1.1).

When viewed together with the bar graphs presented in Figure 6, one possible intepre-
tation of all the forecast results is a ranking of the best performance for South Africa in
increasing order as SARIMAX, VARMAX, LSTM, DeepAR, MLR, LGB, and MES-LSTM.
MES-LSTM shows consistent outperformance over (or at least competitiveness to) the
benchmarks. Our model also presents results with a tight distribution, second in terms of
tightness to DeepAR (from the probabilistic forecasts models). Even in instances where
outliers are present in the forecast distribution of our model, these outliers are still very
close to the core distribution. This tendency reaffirms the robustness of our model when it
comes to producing accurate forecasts.
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Figure 6. Forecast Accuracy in South Africa. (a) sMAPE. (b) RMSE.

4.4. Prediction Interval Performance for South Africa

We turn our attention to the prediction interval accuracy for South Africa. Tables 10
and 11 show the prediction interval summary statistics at the α = 0.05 level of significance
for our respective predictands. We note that the distribution for MES-LSTM is tight and
this characteristic persists throughout all significance levels.

Table 10. Prediction Interval Accuracy Distribution for All Trials for total cases in South Africa (α = 0.05).

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage

mean 193,075.6 80.7 348,860.7 97.7 1,418,713.2 86.6 239,009.3 100.0 740,131.9 100.0 1,061,162.0 100.0 828,447.2 100.0
std 13,881.3 11.2 76,242.6 13.7 0.0 30.2 1,674.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 11. Prediction Interval Accuracy Distribution for All Trials for total deaths in South Africa (α = 0.05).

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage

mean 5,785.9 79.8 10,713.1 97.4 97,311.6 84.7 9,589.2 17.6 63,626.1 48.1 33,910.2 100.0 26,489.6 100.0
std 1,714.1 15.1 3,448.0 15.6 0.0 28.5 723.9 6.5 0.0 0.0 0.0 0.0 0.0 0.0

Examining the bar graphs in Figure 7, we note that even though our model’s coverage
score is outperformed in some instances, it is not by a great margin. Furthermore, our
model has the benefit of the lowest MIS, indicating the tightest prediction intervals. The
second benefit is consistency, i.e., where other models may only have decent coverage for
one predictand, our model has a consistent level of coverage across all the predictands.
Moreover, we can depend on the significance level, with stricter levels leading to marginally
higher coverage. This coverage-alpha dependence from MES-LSTM is important as it also
speaks to the robustness of our model. In contrast, DeepAR for instance, goes from almost
complete coverage (α = 0.05, α = 0.1) for total cases to none (α = 0.02) and MLR presents
close to perfect coverage for total cases throughout. This does not instill much trust in the
statistical method’s uncertainty quantification.

Overall, all models perform worse for the SADC region than for South Africa. The
worse performance is due to more variability introduced in the data and thus a higher
level of uncertainty. This variability can be seen when comparing the Coverage scores from
Figure 7 to those we presented in Figure 4.

As an additional point, we perform a one-sided t-test to check whether or not the
distribution of our model’s forecast and prediction interval results are significantly better
than those produced by the benchmark models. Concisely, we compare MES-LSTM, to each
of the other models in turn. The t-test results are presented in Tables 12–15 truncated to
three decimal places. Our null hypothesis is H0: The benchmark models produce forecasts
that are more accurate and prediction intervals superior to those produced by MES-LSTM.

Figure 6. Forecast Accuracy in South Africa. (a) sMAPE. (b) RMSE.

4.4. Prediction Interval Performance for South Africa

We turn our attention to the prediction interval accuracy for South Africa.
Tables 10 and 11 show the prediction interval summary statistics at the α = 0.05 level
of significance for our respective predictands. We note that the distribution for MES-LSTM
is tight and this characteristic persists throughout all significance levels.

Examining the bar graphs in Figure 7, we note that even though our model’s coverage
score is outperformed in some instances, it is not by a great margin. Furthermore, our
model has the benefit of the lowest MIS, indicating the tightest prediction intervals. The
second benefit is consistency, i.e., where other models may only have decent coverage for
one predictand, our model has a consistent level of coverage across all the predictands.
Moreover, we can depend on the significance level, with stricter levels leading to marginally
higher coverage. This coverage-alpha dependence from MES-LSTM is important as it also
speaks to the robustness of our model. In contrast, DeepAR for instance, goes from almost
complete coverage (α = 0.05, α = 0.1) for total cases to none (α = 0.02) and MLR presents
close to perfect coverage for total cases throughout. This does not instill much trust in the
statistical method’s uncertainty quantification.

Overall, all models perform worse for the SADC region than for South Africa. The
worse performance is due to more variability introduced in the data and thus a higher
level of uncertainty. This variability can be seen when comparing the Coverage scores from
Figure 7 to those we presented in Figure 4.

As an additional point, we perform a one-sided t-test to check whether or not the
distribution of our model’s forecast and prediction interval results are significantly better
than those produced by the benchmark models. Concisely, we compare MES-LSTM, to each
of the other models in turn. The t-test results are presented in Tables 12–15 truncated to
three decimal places. Our null hypothesis is H0: The benchmark models produce forecasts
that are more accurate and prediction intervals superior to those produced by MES-LSTM.
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Table 10. Prediction Interval Accuracy Distribution for All Trials for total cases in South Africa (α = 0.05).

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage

mean 193,075.6 80.7 348,860.7 97.7 1,418,713.2 86.6 239,009.3 100.0 740,131.9 100.0 1,061,162.0 100.0 828,447.2 100.0
std 13,881.3 11.2 76,242.6 13.7 0.0 30.2 1674.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 11. Prediction Interval Accuracy Distribution for All Trials for total deaths in South Africa (α = 0.05).

MES-LSTM LSTM LGB DeepAR VARMAX SARIMAX MLR
MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage MIS Coverage

mean 5785.9 79.8 10,713.1 97.4 97,311.6 84.7 9589.2 17.6 63,626.1 48.1 33,910.2 100.0 26,489.6 100.0
std 1714.1 15.1 3448.0 15.6 0.0 28.5 723.9 6.5 0.0 0.0 0.0 0.0 0.0 0.0

Table 12. Student’s t-test for Forecast RMSE (H0: Benchmark Forecasts Outperform MES-LSTM).

Total Cases Total Deaths
LSTM LGB DeepAR VARMAX SARIMAX MLR LSTM LGB DeepAR VARMAX SARIMAX MLR

statistic −6.014 −1.448 −190.477 −63.342 −250.673 −95.605 −7.906 −10.891 −389.954 −578.058 −836.515 −325.283
p-value 0.000 0.077 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 13. Student’s t-test for Forecast sMAPE (H0: Benchmark Forecasts Outperform MES-LSTM).

Total Cases Total Deaths
LSTM LGB DeepAR VARMAX SARIMAX MLR LSTM LGB DeepAR VARMAX SARIMAX MLR

statistic 0.270 −1.883 −15.455 12.180 −17.383 5.616 −3.216 −2.422 −27.328 −29.110 −56.140 −8.166
p-value 0.606 0.032 0.000 1.000 0.000 1.000 0.001 0.009 0.000 0.000 0.000 0.000

Table 14. Student’s t-test for Prediction Interval MIS (H0: Benchmark Prediction Intervals Outperform MES-LSTM).

Total Cases Total Deaths
LSTM LGB DeepAR VARMAX SARIMAX MLR LSTM LGB DeepAR VARMAX SARIMAX MLR

statistic −5.328 −25.791 −2.851 −22.095 −34.220 −25.119 −2.299 −37.924 −10.070 −40.222 −20.029 −14.501
p-value 0.000 0.000 0.004 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000

Table 15. Student’s t-test for Prediction Interval Coverage (H0: Benchmark Prediction Intervals Outperform MES-LSTM).

Total Cases Total Deaths
LSTM LGB DeepAR VARMAX SARIMAX MLR LSTM LGB DeepAR VARMAX SARIMAX MLR

statistic −1.8770 1.6106 0.2267 −2.7459 −2.7459 −2.7459 −2.8639 −0.2274 8.3710 3.5521 −3.5613 −3.5613
p-value 0.9666 0.0567 0.4110 0.9952 0.9952 0.9952 0.9968 0.5895 0.0000 0.0006 0.9994 0.9994
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Figure 7. Prediction Interval Accuracy in South Africa. (a) MIS (α = 0.05). (b) MIS (α = 0.1). (c) MIS (α = 0.2). (d)
Coverage Score (α = 0.05). (e) Coverage Score (α = 0.1). (f) Coverage Score (α = 0.2).
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Total Cases Total Deaths
LSTM LGB DeepAR VARMAX SARIMAX MLR LSTM LGB DeepAR VARMAX SARIMAX MLR

statistic −1.8770 1.6106 0.2267 −2.7459 −2.7459 −2.7459 −2.8639 −0.2274 8.3710 3.5521 −3.5613 −3.5613
p-value 0.9666 0.0567 0.4110 0.9952 0.9952 0.9952 0.9968 0.5895 0.0000 0.0006 0.9994 0.9994

We note in terms of forecasting accuracy (Tables 12 and 13) in each instance that the
null hypothesis w.r.t. both predictands is rejected at the α = 0.01 level of significance, except

Figure 7. Prediction Interval Accuracy in South Africa. (a) MIS (α = 0.05). (b) MIS (α = 0.1). (c) MIS
(α = 0.2). (d) Coverage Score (α = 0.05). (e) Coverage Score (α = 0.1). (f) Coverage Score (α = 0.2).

We note in terms of forecasting accuracy (Tables 12 and 13) in each instance that the
null hypothesis w.r.t. both predictands is rejected at the α = 0.01 level of significance, except
for LSTM, LGB, VARMAX, and MLR. This may seem contrary to previously presented
results in this section, but the box plots in Figure 5 explain this. Although the core and
lower distributions may overlap (the box and bottom whisker) for the distributions in
questions compared to MES-LSTM, the higher levels of inaccuracy are only reported for
the benchmarks, i.e., the upper whiskers for the benchmarks peak higher than MES-LSTM.

For the prediction interval performance (Tables 14 and 15) we note that we are able
to reject the null hypothesis at the α = 0.01 level of significance for MIS in all instances.
Finally, we are unable to conclude that our model’s Coverage Score is not outperformed
except perhaps by DeepAR and VARMAX for total deaths. Again, the t-test results are
consistent with the results previously discussed.

We also conduct a Diebold-Mariano (DM, [55]) test to compare the out-of-sample
predictive skill of MES-LSTM to the benchmark models (Table 16). The test is configured
to use Mean Absolute prediction Error (MAPE, [56]) and the null hypothesis is H0: There
is no significant difference in the accuracy of the competing forecasts. We reject the null
hypothesis w.r.t. both predictands at the α = 0.01 level of significance.

Table 16. Diebold-Mariano test for Forecast accuracy (H0: Benchmark Forecasts Outperform MES-
LSTM).

Total Cases Total Deaths
LSTM LGB DeepAR VARMAX SARIMAX MLR LSTM LGB DeepAR VARMAX SARIMAX MLR

statistic −19.817 −277.776 −144.279 −12.665 −16.160 −8.048 −5.567 −374.711 −112.500 −7.066 −11.817 −43.647
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

We conclude this chapter with a deeper look into the effects of introducing more
variability on our model’s performance.



Forecasting 2022, 4 22

4.5. Effects of Variability on Model Performance

Our methodology suggests that the introduction of more variability into the data
impacts both forecasting accuracy and prediction interval construction. We focus here
specifically on MES-LSTM. We note from Figures 8 and 9 that in most instances, the
countries in which the predictions are least (most) accurate are also the countries in which
the prediction intervals are widest (narrowest). This direct correlation reinforces the
consistency of our model. We have normalized the MIS in Figure 9 before plotting the maps
for ease of interpretation.
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specifically on MES-LSTM. We note from Figures 8 and 9 that in most instances, the
countries in which the predictions are least (most) accurate are also the countries in which
the prediction intervals are widest (narrowest). This direct correlation reinforces the
consistency of our model. We have normalized the MIS in Figure 9 before plotting the
maps for ease of interpretation.
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Figure 8. MES-LSTM Forecast Accuracy Ranked for Each Country in the SADC Region. (a) sMAPE
for total cases. (b) sMAPE for total deaths.
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for total cases. (b) sMAPE for total deaths.
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Figure 9. MES-LSTM Prediction Interval Accuracy (normalized MIS) Ranked for Each Country in
the SADC Region. (a) total cases (α = 0.05). (b) total cases (α = 0.1). (c) total cases (α = 0.2). (d) total
deaths (α = 0.05). (e) total deaths (α = 0.1). (f) total deaths (α = 0.2).

In terms of Coverage, MES-LSTM is in instances outperformed by the benchmark
methods. This Coverage is an area where the model can be improved. However, there
are some crucial areas where the model improves on the skill of its counterparts. Our
methodology suggests that the hybrid MES-LSTM is indeed able to outperform statistical
methods and deep learning techniques at both forecasting tasks and prediction interval
construction for morbidity and mortality data with exogenous factors. In terms of the
overall prediction error, there is a significant improvement over the benchmark models
considered. Our model reports forecast consistently within a tight range for multiple
independent trials. We also note that MES-LSTM offers the narrowest prediction intervals
for all the predictands for all geographical regions at all the significance levels considered.

5. Conclusions

We introduce a hybrid model, MES-LSTM, for multivariate prediction and forecast
uncertainty quantification and apply it to morbidity and mortality data with exogenous
factors. The univariate counterpart, Smyl’s ES-RNN [2], has been shown to perform well
in the univariate case, outperforming both pure machine learning and pure statistical
methods. We hypothesise that our multivariate extension also outperforms statistical and
machine learning models at both forecasting tasks and constructing prediction intervals.
With the methodology presented and the aggregated datasets considered, MES-LSTM
generally improves upon the skill of its classical probabilistic and pure deep learning
counterparts.

MES-LSTM shows consistent outperformance with forecast accuracy and the MIS of
the prediction intervals constructed at all significance levels considered. There remains
room for improvement when it comes to the coverage of the prediction intervals.

In this paper we mostly limit our attention to the multivariate setting (except in
Section 2.1 where we use the univariate exposition as a building block before introducing
our model). Future work may include running our model on univariate datasets as well.
The benchmarks can also be applied with ease since both SARIMAX and VARMAX are
univariate models if no exogenous inputs are declared, MLR is fit using OLS, and gradient
boosting techniques can also be applied to univariate data.

Figure 9. MES-LSTM Prediction Interval Accuracy (normalized MIS) Ranked for Each Country in the
SADC Region. (a) total cases (α = 0.05). (b) total cases (α = 0.1). (c) total cases (α = 0.2). (d) total deaths
(α = 0.05). (e) total deaths (α = 0.1). (f) total deaths (α = 0.2).

In terms of Coverage, MES-LSTM is in instances outperformed by the benchmark
methods. This Coverage is an area where the model can be improved. However, there
are some crucial areas where the model improves on the skill of its counterparts. Our
methodology suggests that the hybrid MES-LSTM is indeed able to outperform statistical
methods and deep learning techniques at both forecasting tasks and prediction interval
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construction for morbidity and mortality data with exogenous factors. In terms of the
overall prediction error, there is a significant improvement over the benchmark models
considered. Our model reports forecast consistently within a tight range for multiple
independent trials. We also note that MES-LSTM offers the narrowest prediction intervals
for all the predictands for all geographical regions at all the significance levels considered.

5. Conclusions

We introduce a hybrid model, MES-LSTM, for multivariate prediction and forecast
uncertainty quantification and apply it to morbidity and mortality data with exogenous
factors. The univariate counterpart, Smyl’s ES-RNN [2], has been shown to perform well in
the univariate case, outperforming both pure machine learning and pure statistical methods.
We hypothesise that our multivariate extension also outperforms statistical and machine
learning models at both forecasting tasks and constructing prediction intervals. With the
methodology presented and the aggregated datasets considered, MES-LSTM generally
improves upon the skill of its classical probabilistic and pure deep learning counterparts.

MES-LSTM shows consistent outperformance with forecast accuracy and the MIS of
the prediction intervals constructed at all significance levels considered. There remains
room for improvement when it comes to the coverage of the prediction intervals.

In this paper we mostly limit our attention to the multivariate setting (except in
Section 2.1 where we use the univariate exposition as a building block before introducing
our model). Future work may include running our model on univariate datasets as well.
The benchmarks can also be applied with ease since both SARIMAX and VARMAX are
univariate models if no exogenous inputs are declared, MLR is fit using OLS, and gradient
boosting techniques can also be applied to univariate data.

Applying the kind of techniques discussed in this paper to varied data with expedience
is still a major limitation in related research. For example, the M5 Competitions although
arguably among the most important forecast competitions globally, only considers retail
units for one supermarket chain. Future work may also include applying our model to
more multivariate datasets from a broader cross-section of industries and applications
beyond morbidity and mortality modeling.

We motivate our choice of benchmark models in Section 2.5, but we also consider
future work comparing MES-LSTM against more deep learning models such as convo-
lutional, attention and transformer models. We also consider future applications where
an adaptation or extension of our model can be applied, such as in multivariate anomaly
detection. Explainability and interpretability of our model and its results is also an avenue
worth considering for future work.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/zulucomputer/MES_LSTM, code repository: MES-LSTM.
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19. Kırbaş, I.; Sözen, A.; Tuncer, A.D.; Kazancioğlu, F.Ş. Comparative analysis and forecasting of COVID-19 cases in various European

countries with ARIMA, NARNN and LSTM approaches. Chaos Solitons Fractals 2020, 138, 110015. [CrossRef]
20. Ibrahim, M.; Jemei, S.; Wimmer, G.; Hissel, D. Nonlinear autoregressive neural network in an energy management strategy for

battery/ultra-capacitor hybrid electrical vehicles. Electr. Power Syst. Res. 2016, 136, 262–269. [CrossRef]
21. Chandra, R.; Jain, A.; Chauhan, D.S. Deep learning via LSTM models for COVID-19 infection forecasting in India. arXiv 2021,

arXiv:2101.11881.
22. Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons

Fractals 2020, 135, 109864. [CrossRef]
23. Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos

Solitons Fractals 2020, 140, 110212. [CrossRef] [PubMed]
24. Chung, J.; Gülçehre, Ç.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.

In Proceedings of the NIPS 2014 Deep Learning and Representation Learning Workshop, Montreal, QC, Canada, 12 December
2014.

25. Mathonsi, T.; van Zyl, T.L. Multivariate Anomaly Detection based on Prediction Intervals Constructed using Deep Learning.
arXiv 2021, arXiv:2110.03393.

26. Hu, M.J.C.; Root, H.E. Application of the Adaline System to Weather Forecasting; Technical Report 6775-1; Stanford Electronic
Laboratories: Stanford, CA, USA, 1964.

27. Mathonsi, T.; v. Zyl, T.L. Prediction Interval Construction for Multivariate Point Forecasts Using Deep Learning. In Proceedings
of the 2020 7th International Conference on Soft Computing Machine Intelligence (ISCMI), Stockholm, Sweden, 14–15 November
2020; pp. 88–95.

28. Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series
forecasting. arXiv 2020, arXiv:1905.10437.

29. Olivares, K.G.; Challu, C.; Marcjasz, G.; Weron, R.; Dubrawski, A. Neural basis expansion analysis with exogenous variables:
Forecasting electricity prices with NBEATSx. arXiv 2021, arXiv:2104.05522.

30. Makridakis, S.; Spiliotis, E. The M5 Competition and the Future of Human Expertise in Forecasting. Foresight Int. J. Appl. Forecast.
2021, 60, 33–37.

http://doi.org/10.1016/j.ijforecast.2021.03.012
http://dx.doi.org/10.1016/j.ijforecast.2019.03.017
http://dx.doi.org/10.1016/S0169-2070(01)00110-8
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.ijforecast.2019.04.014
http://dx.doi.org/10.1016/j.matpr.2020.12.1090
http://dx.doi.org/10.1111/j.2517-6161.1966.tb00637.x
http://dx.doi.org/10.1287/mnsc.28.9.1035
http://dx.doi.org/10.2307/3010768
http://dx.doi.org/10.1287/mnsc.32.3.374
http://dx.doi.org/10.1016/0169-2070(89)90066-6
http://dx.doi.org/10.1088/1742-6596/1982/1/012013
http://dx.doi.org/10.1016/j.chaos.2020.110015
http://dx.doi.org/10.1016/j.epsr.2016.03.005
http://dx.doi.org/10.1016/j.chaos.2020.109864
http://dx.doi.org/10.1016/j.chaos.2020.110212
http://www.ncbi.nlm.nih.gov/pubmed/32839642


Forecasting 2022, 4 25

31. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M5 competition: Background, organization, and implementation. Int. J.
Forecast. 2021. [CrossRef]

32. Wen, Y.; Vicol, P.; Ba, J.; Tran, D.; Grosse, R. Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches.
In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

33. Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight Uncertainty in Neural Networks. In Proceedings of the 32nd
International Conference on International Conference on Machine Learning—Volume 37. JMLR.org, 2015, ICML’15, Lille, France,
7–9 July 2015; pp. 1613–1622.

34. Joyce, J.M., Kullback-Leibler Divergence. In International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany,
2011; pp. 720–722. [CrossRef]

35. Dillon, J.V.; Langmore, I.; Tran, D.; Brevdo, E.; Vasudevan, S.; Moore, D.A.; Patton, B.; Alemi, A.A.; Hoffman, M.; Saurous, R.
TensorFlow Distributions. arXiv 2017, arXiv:1711.10604.

36. Gal, Y.; Ghahramani, Z. Dropout As a Bayesian approximation: Representing Model Uncertainty in Deep Learning. In
Proceedings of the 33rd International Conference on International Conference on Machine Learning. JMLR.org, ICML’16, New
York, NY, USA, 19–24 June 2016; Volume 48, pp. 1050–1059.

37. Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: New York, NY, USA, 2013.
38. Hesterberg, T. What Teachers Should Know about the Bootstrap: Resampling in the Undergraduate Statistics Curriculum. Am.

Stat. 2014, 69, 371–386. [CrossRef]
39. Lever, J.; Krzywinski, M.; Altman, N. Points of Significance: Model selection and overfitting. Nat. Methods 2016, 13, 703–704.

[CrossRef]
40. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on

Information Theory; Petrov, B.N.; Csaki, F., Eds.; Akadémiai Kiado: Budapest, Hungary, 1973; pp. 267–281.
41. Matthews, D.E., Multiple Linear Regression. In Encyclopedia of Biostatistics; American Cancer Society: Atlanta, GA, USA, 2005;

Chapter 5, pp. 119–133.
42. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.
43. Makridakis, S.; Hibon, M. The M3-Competition: Results, conclusions and implications. Int. J. Forecast. 2000, 16, 451–476.

[CrossRef]
44. Koehler, A. Commentaries on the M3-Competition. Int. J. Forecast. 2001, 17, 537–584.
45. Goodwin, P.; Lawton, R. On the asymmetry of the symmetric MAPE. Int. J. Forecast. 1999, 15, 405–408. [CrossRef]
46. Gneiting, T.; Raftery, A.E. Strictly Proper Scoring Rules, Prediction, and Estimation. J. Am. Stat. Assoc. 2007, 102, 359–378.

[CrossRef]
47. Hannan, E.J.; Deistler, M. The Statistical Theory of Linear Systems. Econom. Theory 1992, 8, 135–143.
48. Arunraj, N.; Ahrens, D.; Fernandes, M. Application of SARIMAX Model to Forecast Daily Sales in Food Retail Industry. Int. J.

Oper. Res. Inf. Syst. 2016, 7, 1–21. [CrossRef]
49. Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks.

Int. J. Forecast. 2020, 36, 1181–1191. [CrossRef]
50. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient gradient boosting decision

tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154.
51. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M5 Accuracy Competition: Results, Findings and Conclusions. Available on-

line: https://www.researchgate.net/publication/344487258_The_M5_Accuracy_competition_Results_findings_and_conclusions
(accessed on 23 October 2021).

52. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V.; Chen, Z.; Gaba, A.; Tsetlin, I.; Winkler, R. The M5 Uncertainty competition:
Results, findings and conclusions. Int. J. Forecast. 2021. [CrossRef]

53. Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C. A global database of COVID-19 vaccinations.
Nat. Hum. Behav. 2021, 5, 947–953. [CrossRef]

54. Hasell, J.; Mathieu, E.; Beltekian, D.; Macdonald, B.; Giattino, C.; Ortiz-Ospina, E.; Roser, M.; Ritchie, H. A cross-country database
of COVID-19 testing. Sci. Data 2020, 7, 345–347. [CrossRef]

55. Diebold, F.; Mariano, R. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263.
56. Mean Absolute Percentage Error. In Encyclopedia of Production and Manufacturing Management; Swamidass, P.M., Ed.; Springer:

Boston, MA, USA, 2000; pp. 462–462.

http://dx.doi.org/10.1016/j.ijforecast.2021.07.007
http://dx.doi.org/10.1007/978-3-642-04898-2_327
http://dx.doi.org/10.1080/00031305.2015.1089789
http://dx.doi.org/10.1038/nmeth.3968
http://dx.doi.org/10.1016/S0169-2070(00)00057-1
http://dx.doi.org/10.1016/S0169-2070(99)00007-2
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.4018/IJORIS.2016040101
http://dx.doi.org/10.1016/j.ijforecast.2019.07.001
https://www.researchgate.net/publication/344487258_The_M5_Accuracy_competition_Results_findings_and_conclusions
http://dx.doi.org/10.1016/j.ijforecast.2021.10.009
http://dx.doi.org/10.1038/s41562-021-01122-8
http://dx.doi.org/10.1038/s41597-020-00688-8

	Introduction
	Literature Review
	Contribution

	Methods
	Preprocessing Layer
	Deep Learning Layer
	Hyperparameter Tuning
	Metrics
	Benchmarks

	Datasets
	Results and Discussion
	Forecast Performance for SADC
	Prediction Interval Performance for SADC
	Forecast Performance for South Africa
	Prediction Interval Performance for South Africa
	Effects of Variability on Model Performance

	Conclusions
	References

