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Abstract: Forecasting volatility from econometric datasets is a crucial task in finance. To acquire
meaningful volatility predictions, various methods were built upon GARCH-type models, but these
classical techniques suffer from instability of short and volatile data. Recently, a novel existing
normalizing and variance-stabilizing (NoVaS) method for predicting squared log-returns of financial
data was proposed. This model-free method has been shown to possess more accurate and stable
prediction performance than GARCH-type methods. However, whether this method can sustain
this high performance for long-term prediction is still in doubt. In this article, we firstly explore
the robustness of the existing NoVaS method for long-term time-aggregated predictions. Then, we
develop a more parsimonious variant of the existing method. With systematic justification and
extensive data analysis, our new method shows better performance than current NoVaS and standard
GARCH(1,1) methods on both short- and long-term time-aggregated predictions. The success of our
new method is remarkable since efficient predictions with short and volatile data always carry great
importance. Additionally, this article opens potential avenues where one can design a model-free
prediction structure to meet specific needs.

Keywords: ARCH-GARCH; model-free; aggregated forecasting

1. Introduction

Accurate and robust volatility forecasting is a central focus in financial econometrics.
This type of forecasting is crucial for practitioners and traders to make decisions in risk
management, asset allocation, pricing of derivative instruments and strategic decisions re-
garding fiscal policies, etc. Standard methods to perform volatility forecasting are typically
built upon applying GARCH-type models to predict squared financial log-returns. With
the model-free prediction principle, first proposed by Politis [1], a model-free volatility pre-
diction method—NoVaS—has been proposed recently for efficient forecasting without the
assumption of normality. Some previous studies have shown that the NoVaS method pos-
sesses better predictive performance than GARCH-type models when forecasting squared
log-returns, e.g., Gulay and Emec [2] showed that the NoVaS method could overcome
GARCH-type models (GARCH, EGARCH and GJR-GARCH) with generalized error dis-
tributions by comparing the pseudo-out-of-sample (POOS) forecasting performance on
S&P500 and BIST 100 return series (here the pseudo-out-of-sample forecasting analysis
means using data up to and including the current time to predict future values). Chen
and Politis [3] showed that the “time-varying” NoVaS method is robust against possible
non-stationarities in the data. Furthermore, Chen and Politis [4] extended this NoVaS
approach to perform multi-step-ahead predictions of squared log-returns.

However, to the best of our knowledge, such methods have not been evaluated for
time-aggregated prediction. Time-aggregated prediction here stands for the prediction of
Yn+1 + · · ·+ Yn+h after observing {Yt}n

t=1. Such predictions remain crucial for strategic
decisions implemented by commodity or service providers, ([5,6]), trust funds, pension
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management, insurance companies, portfolio management of specific derivatives ([7]) and
assets ([8]). Time-aggregated forecasting is also able to provide some degree of confidence
in understanding the general trend in the near future, potentially for the entire following
week or months ahead, which is definitely more meaningful than merely understanding
what might happen for any single step ahead (predicting Yn+h for one value of h) in the time
horizon. In fact, the quality of forecasts for econometric data has been evaluated through
such time-aggregated metrics in [9,10]. In this article, we continue utilizing these time-
aggregated metrics to challenge the ability of the NoVaS method for short- and long-term
time-aggregated predictions on squared log-returns series. For exploring such capabilities
of the existing NoVaS method, we set up comprehensive data analyses to substantiate the
efficiency of the NoVaS method and also address the lack of data experiments in NoVaS
studies. Apart from this, we also attempt to improve the existing one further by proposing
a more parsimonious model. Based on extensive data analysis, our new method shows
more stable performance than the state-of-the-art NoVaS method regardless of whether
simulation or real-world data are used. We also find that the state-of-the-art NoVaS method
is even surpassed by the standard GARCH(1,1) model sometimes. On the other hand, our
new method returns consistently excellent forecasting. Notably, our method achieves a
remarkable improvement when the dataset at hand is short and volatile.

The rest of this article is organized as follows. In Section 2, we firstly introduce the
theoretical background and structure of the existing NoVaS method. Then, our new method
is proposed and a simple comparison is made to show the stability of our new method.
In Section 3, we substantiate our proposal by extensive simulations and data analysis.
Moreover, we utilize the CW test to support our parsimonious model. Finally, a summary
and discussion are given in Sections 4 and 5, respectively.

2. Method
2.1. The Existing NoVaS Method

The NoVaS method is a model-free prediction principle. The main idea lies in applying
an invertible transformation H, which can map the non-i.i.d. vector {Yi}t

i=1 to a vector
{εi}t

i=1 that has i.i.d. components. This leads to the prediction of Yt+1 by inversely trans-
forming the prediction of εt+1 [11]. The starting point to build the transformation of the
existing NoVaS method is the ARCH model [12]. Then, Politis [1] made some adjustments
to determine the final form of H as:

Wt =
Yt√

αs2
t−1 + ã0Y2

t + ∑
p
i=1 aiY2

t−i

for t = p + 1, · · ·, n. (1)

In Equation (1), {Yt}n
t=1 is the log-returns vector in this article; {Wt}n

t=p+1 is the
transformed vector, which we hope to transform to i.i.d.; α is a fixed-scale invariant constant;
s2

t−1 is calculated by (t− 1)−1 ∑t−1
i=1(Yi − µ)2, with µ being the mean of {Yi}t−1

i=1 ; ã0 is the
coefficient corresponding with the currently observed value Y2

t . For reaching a qualified
transformation function, Equation (2) is required to stabilize the variance.

α ∈ (0, 1), ã0 ≥ 0, ai ≥ 0 for all i ≥ 1, α + ã0 +
p

∑
i=1

ai = 1 (2)

Then, α and ã0, a1, · · ·, ap are finally determined by minimizing |Kurtosis(Wt)− 3|. In
practice, the transformed {Wt} is usually uncorrelated; see [11] for additional processes
for correlated {Wt}. This method is model-free in the sense that we do not assume any
particular distribution for the innovation {Wt} except for matching its kurtosis to 3. Once
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H is found, H−1 can be obtained immediately. For example, H−1 corresponding with
Equation (1) is:

Yt =

√√√√ W2
t

1− ã0W2
t
(αs2

t−1 +
p

∑
i=1

aiY2
t−i) for t = p + 1, · · ·, n. (3)

To obtain the prediction of Y2
n+1, Politis [11] defined two types of optimal predictors

under L1 (Mean Absolute Deviation) and L2 (Mean Squared Error) criteria after observing
historical information set Fn = {Yt, 1 ≤ t ≤ n}:

L1-optimal predictor of Y2
n+1 :

Median
{

Y2
n+1,m : m = 1, · · ·, M

∣∣Fn

}
= Median

{
W2

n+1,m

1− ã0W2
n+1,m

(αs2
n +

p

∑
i=1

aiY2
n+1−i) : m = 1, · · ·, M

∣∣∣∣Fn

}

= (αs2
n +

p

∑
i=1

aiY2
n+1−i)Median

{
W2

n+1,m

1− ã0W2
n+1,m

: m = 1, · · ·, M

}
L2-optimal predictor of Y2

n+1 :

Mean
{

Y2
n+1,m : m = 1, · · ·, M

∣∣Fn

}
= Mean

{
W2

n+1,m

1− ã0W2
n+1,m

(αs2
n +

p

∑
i=1

aiY2
n+1−i) : m = 1, · · ·, M

∣∣∣∣Fn

}

= (αs2
n +

p

∑
i=1

aiY2
n+1−i)Mean

{
W2

n+1,m

1− ã0W2
n+1,m

: m = 1, · · ·, M

}

(4)

where {Wn+1,m}M
m=1 are generated M times from its empirical distribution or a normal dis-

tribution. Here, the normal distribution is an asymptotic limit of the empirical distribution
of {Wn+1}. More details about this procedure and multi-step prediction are presented in
Section 2.2. {Y2

n+1,m}M
m=1 are given by plugging {Wn+1,m}M

m=1 into Equation (3) and setting
t as n + 1. During the optimization process, different forms of unknown parameters in
Equation (2) are applied so that various NoVaS methods are established. Chen [13] pointed
out that the Generalized Exponential NoVaS (GE-NoVaS) method with exponentially de-
cayed unknown parameters presented in Equation (5) is superior to other NoVaS-type
methods.

α 6= 0, ã0 = c′, ai = c′e−ci for all 1 ≤ i ≤ p, c′ =
1− α

∑
p
i=0 e−ci

(5)

2.2. A New Method with Less Parameters

However, during our investigation, we found that the GE-NoVaS method returns
extremely large predictions under the L2 criterion sometimes. The reason for this phe-
nomenon is that the denominator of Equation (3) will be quite small when the generated
{W∗} (from empirical or normal distribution) is very close to 1/ã0. In this situation, the
prediction error will be amplified. Moreover, when the long-term ahead prediction is
desired, this amplification will be accumulated and the final prediction will be dampened.
Therefore, a removing-ã0 idea is proposed to avoid such issues in this article. H and H−1

of the GE-NoVaS-without-ã0 method can be rewritten as below:

Wt =
Yt√

αs2
t−1 + ∑

p
i=1 aiY2

t−i

; Yt =

√√√√W2
t (αs2

t−1 +
p

∑
i=1

aiY2
t−i) ; for t = p + 1, · · ·, n. (6)
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We should notice that even without the ã0 term, the causal prediction rule is still
satisfied. It is easy to obtain the analytical form of the first-step-ahead Yn+1, which can be
expressed as below:

Yn+1 =

√√√√W2
n+1(αs2

n +
p

∑
i=1

aiY2
n+1−i) (7)

More specifically, when the first-step GE-NoVaS-without-ã0 prediction is performed,
{W∗n+1} are generated M (i.e., 5000 in this article) times from a standard normal distribution
by the Monte Carlo method or bootstrapped from its empirical distribution F̂w which
is calculated from Equation (1). Then, plugging these {W∗n+1,m}M

m=1 into Equation (7),
M pseudo-predictions {Ŷ∗n+1,m}M

m=1 are obtained. According to the strategy implied by
Equation (4), we choose L1 and L2 risk optimal predictors Ŷ2

n+1 as the sample median and
mean of {Ŷ∗n+1,1, · · · , Ŷ∗n+1,M}, respectively. We can even predict the general form of Yn+h,
such as g(Yn+h), by adopting the sample mean or median of {g(Ŷ∗n+1,1), · · · , g(Ŷ∗n+1,M)}.
Similarly, the two-steps-ahead Yn+2 can be expressed as:

Yn+2 =

√√√√W2
n+2(αs2

n+1 + a1Y2
n+1 +

p

∑
i=2

aiY2
n+2−i) (8)

When the prediction of Yn+2 is required, M pairs of {W∗n+1, W∗n+2} are still generated
by bootstrapping or Monte Carlo method from empirically or standard normal distribu-
tions, respectively. Y2

n+1 is replaced by the predicted value Ŷ2
n+1 which is derived from

running the first-step GE-NoVaS-without-ã0 prediction with simulated {W∗n+1,m}M
m=1 under

the L1 or L2 criterion. Subsequently, we choose L1 and L2 risk optimal predictors of Yn+2
as the sample median and mean of {Ŷ∗n+2,1, · · · , Ŷ∗n+2,M}.

Finally, iterating the process described above, we can accomplish multi-step-ahead
NoVaS predictions. Yn+h, h ≥ 3 can be expressed as:

Yn+h =

√√√√W2
n+h(αs2

n+h−1 +
p

∑
i=1

aiY2
n+h−i) (9)

To obtain the prediction of Yn+h, we generate M number of {W∗n+1, · · · , W∗n+h} and
plug {Yn+k}h−1

k=1 with NoVaS predicted values {Ŷn+k}h−1
k=1 , which are computed iteratively.

L1 and L2 risk optimal predictors of Yn+h are computed by the sample median and mean
of {Ŷ∗n+h,1, · · · , Ŷ∗n+h,M}. In short, we can summarize that Yn+h is determined by:

Yn+h = fGE-NoVaS-without−ã0(Wn+1, · · · , Wn+h, Fn) (10)

Since Fn is the observed information set, we can simplify the expression of Yn+h as:

Yn+h = fGE-NoVaS-without−ã0(Wn+1, · · · , Wn+h) (11)

For applying the GE-NoVaS method, we can still build the relationship between Yn+h
and {Wn+1, · · · , Wn+h} as:

Yn+h = fGE-NoVaS(Wn+1, · · · , Wn+h) (12)

We should notice that simulated {W∗n+1,m, · · · , W∗n+h,m}
M
m=1 for obtaining GE-NoVaS

method prediction of Yn+h should be generated by the bootstrapping or Monte Carlo
method from an empirically or trimmed standard normal distribution. The reason for
using the trimmed distribution is |Wt| ≤ 1/

√
ã0 from Equation (1). Here, we summarize

Algorithm 1 to perform h-step-ahead time-aggregated prediction using the GE-NoVaS-
without-ã0 method. The algorithm of GE-NoVaS can be written out similarly.
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Remark (The advantage of removing the ã0 term): First, after removing the ã0 term, the
prediction of the NoVaS method under the L2 criterion is more stable. More details will
be shown in Section 2.3. Second, the suggestion of removing ã0 can also lead to less time
complexity of our new method. The reason for this phenomenon is simple. If we consider
the limiting distribution of {Wt} series, 1/

√
ã0 is required to be larger than or equal to

3 to ensure that {Wt} has a sufficiently large range, i.e., ã0 is required to be less than or
equal to 0.111 (recall that the mass of standard normal data is within [−3, 3]). However, the
optimal combination of NoVaS coefficients may not render a suitable ã0. For this situation,
we need to increase the NoVaS transformation order p and repeat the normalizing and
variance-stabilizing process till ã0 in the optimal combination of coefficients is suitable.
This repeating process definitely increases the computation workload.

Algorithm 1: The h-step ahead prediction for the GE-NoVaS-without-ã0 method.

Step 1 Define a grid of possible α values, {αk; k = 1, · · · , K}. Fix α = αk, then
calculate the optimal combination of αk, a1, · · · , ap of the GE-NoVaS-
without-ã0 method, which minimizes |Kurtosis(Wt)− 3|.

Step 2 Derive the analytic form of Equation (11) using αk, a1, · · · , apfrom the
first step.

Step 3 Generate {W∗n+1, · · · , W∗n+h} M times from a standard normal dis-
tribution or the empirical distribution F̂w. Plug {W∗n+1, · · · , W∗n+h}
into the analytic form of Equation (11) to obtain M pseudo-values
{Ŷ∗n+h,1, · · · , Ŷ∗n+h,M}.

Step 4 Calculate the optimal predictor of g(Yn+h) by taking the sample mean
(under L2 risk criterion) or sample median (under L1 risk criterion) of
the set {g(Ŷ∗n+h,1), · · · , g(Ŷ∗n+h,M)}.

Step 5 Repeat above steps with different α values from {αk; k = 1, · · · , K} to
get K prediction results.

2.3. The Potential Instability of the GE-NoVaS Method

Next, we provide an illustration to compare the GE-NoVaS and GE-NoVaS-without-ã0
methods in predicting the volatility of the Microsoft Corporation (MSFT) daily closing
price from 8 January 1998 to 31 December 1999 and show an interesting finding that the
long-term time-aggregated predictions of the GE-NoVaS method are unstable under the L2
criterion. Based on the finding of Awartani and Corradi [14], squared log-returns can be
used as a proxy for volatility to render a correct ranking of different GARCH models in
terms of a quadratic loss function. Log-return series {Yt} can be computed by the equation
shown below:

Yt = 100× log(Xt+1/Xt) (13)

where {Xt} is the corresponding MSFT daily closing price series. For achieving a compre-
hensive comparison, we use 250 financial log-returns as a sliding window to perform POOS
1-step, 5-step and 30-step (long-term) ahead time-aggregated predictions under the L2
criterion. Then, we roll this window through the whole dataset, i.e., we use {Y1, · · · , Y250}
to predict Y2

251, {Y2
251, · · · , Y2

255} and {Y2
251, · · · , Y2

280}; then, we use {Y2, · · · , Y251} to pre-
dict Y2

252, {Y2
252, · · · , Y2

256} and {Y2
252, · · · , Y2

281}, for 1-step, 5-step and 30-step aggregated
predictions, respectively, and so on. We can define all 1-step, 5-step and 30-step-ahead
time-aggregated predictions as {Ŷ2

k,1}, {Ŷ
2
i,5} and {Ŷ2

j,30}, which are presented as below:
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Assume that there are a total of N log-return data points:

Ŷ2
k,1 = Ŷ2

k+1, k = 250, 251, · · · , N − 1

Ŷ2
i,5 =

5

∑
m=1

Ŷ2
i+m, i = 250, 251, · · · , N − 5

Ŷ2
j,30 =

30

∑
m=1

Ŷ2
j+m, j = 250, 251, · · · , N − 30

(14)

In Equation (14), Ŷ2
k+1, Ŷ2

i+m, Ŷ2
j+m are single-step predictions of squared log-returns by

the two NoVaS-type methods. To obtain the “Prediction Errors” for the two methods, we
can calculate the “loss” by comparing the aggregated prediction results with the realized
aggregated values based on Equation (15):

Lp,h = ∑
p
(Ŷ2

p,h −
h

∑
m=1

(Y2
p+m))

2, p ∈ {k, i, j}; h ∈ {1, 5, 30} (15)

where {Y2
p+m} are realized squared log-returns. To show the potential instability of the

GE-NoVaS method under the L2 criterion, we take α to be 0.5 to build a toy example. In the
algorithm when performing the GE-NoVaS method, α could take an optimal value from a
discrete set {0.1, · · · , 0.8} based on the prediction performance.

From Figure 1, we can clearly see that the GE-NoVaS-without-ã0 method can better
capture different steps’ true time-aggregated features. On the other hand, the GE-NoVaS
method returns unstable results for 30-step-ahead time-aggregated predictions. Besides, we
can see that the 1-step-ahead POOS prediction returned by the GE-NoVaS method is almost
a flat curve, which is actually meaningless. Similarly, for the 5-step-ahead time-aggregated
prediction case, the POOS prediction of the GE-NoVaS method fails to match the true
time-aggregated values.
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Figure 1. Curves of the true and predicted time-aggregated squared log-returns from GE-NoVaS and GE-NoVaS-without-ã0

methods.
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3. Data Analysis and Results

To perform extensive data analysis in a bid to validate our method, we deploy POOS
predictions using two NoVaS and standard GARCH(1,1) methods with simulated and
real-world data. All results are collated in Table 1. The optimal results for each data cases
are highlighted in bold. For controlling the dependence of the prediction performance on
the length of the dataset, we build datasets with two fixed lengths—250 or 500—to mimic
1-year or 2-year data, respectively. At the same time, we choose the window size for our
rollover forecasting analysis to be 100 or 250 for the 1-year or 2-year datasets.

3.1. Simulation Study

We use the same simulation Models 1–4 from [4], shown below, to mimic four 1-year
datasets. Recall that one NoVaS method can generate the L1 or L2 predictor and {W∗} can
be chosen from a normal distribution or empirical distribution; thus, there are four variants
of one specific NoVaS method. We take the best-performing result among four variants
of a specific NoVaS method to be its final prediction. Finally, we continue applying the
formula in Equation (15) to measure the performance of the different methods, as described
in Section 2.3.

Model 1: Time-varying GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = 0.00001 + β1,tσ
2
t−1 + α1,tX2

t−1, {εt} ∼ i.i.d. N(0, 1)
α1,t = 0.1− 0.05t/n; β1,t = 0.73 + 0.2t/n, n = 250
Model 2: Standard GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = 0.00001 + 0.73σ2
t−1 + 0.1X2

t−1, {εt} ∼ i.i.d. N(0, 1)
Model 3: (Another) Standard GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = 0.00001 + 0.8895σ2
t−1 + 0.1X2

t−1, {εt} ∼ i.i.d. N(0, 1)
Model 4: Standard GARCH(1,1) with Student-t errors
Xt = σtεt, σ2

t = 0.00001 + 0.73σ2
t−1 + 0.1X2

t−1,
{εt} ∼ i.i.d. t distribution with five degrees of freedom

Result analysis: From the first block of Table 1, we can read that both NoVaS methods are
superior to the GARCH(1,1) model. Although these simulated datasets are generated from
GARCH(1,1)-type models, the GE-NoVaS-without-ã0 method can bring around 66% and
48% improvements compared to the GARCH(1,1) model for 5-step-ahead time-aggregated
predictions of Model-4 and Model-1 data, respectively. Notably, GARCH(1,1) brings poor
results for the 30-step-ahead time-aggregated predictions of Model-4 simulated data, which
implies that such a classical method is impaired by error accumulation problems when
long-term predictions are required. On the other hand, the model-free NoVaS method can
avoid this issue. Taking a closer look at these results, we can observe that almost all optimal
results come from applying the GE-NoVaS-without-ã0 method. Moreover, the GE-NoVaS
method is surpassed by GARCH(1,1) when forecasting 30-step-ahead time-aggregated
Model-2 data. On the other hand, the GE-NoVaS-without-ã0 method provides consistently
stable results. These results imply that the GE-NoVaS-without-ã0 method dominates the
GE-NoVaS method when predicting long-term or short-term time-aggregated predictions.
Besides, using the same generated models from the previous study of the NoVaS method [4]
ensures fairness. Additionally, with simulation implementations, the ability against model
misspecification of NoVaS methods is verified in Appendix A.

3.2. A Few Real Datasets

We also present a variety of real-world datasets of different size and intrinsic behavior:

• 2-year period data: 2018∼2019 stock price data.
• 1-year period data: 2019 stock price and index data.
• 1-year period volatile data due to pandemic: 11.2019∼10.2020 stock price, currency

and index data.
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Taking into account three types of real-world data is necessary to challenge our new
method and explore the existing method in different regimes. We also tactically pay
more attention to short and volatile data since this is a more challenging task to handle.
Equation (13) is continually used to obtain the log-return series of different datasets.

Before comparing in depth the forecasting performance of the NoVaS-type and
GARCH methods, we first investigate the properties of the used datasets. From Figure 2,
we can see that there were huge variations in the four datasets during 11.2019∼10.2020,
which implies the extreme fluctuations in global economics due to the COVID-19 pandemic.
We wished to apply such datasets to test whether the NoVaS-type methods can achieve
good forecasting performance for such volatile data.

Figure 2. Price series of selected 9 datasets.

Besides, it is natural to question whether these datasets are stationary. In a comprehen-
sive manner, we choose three statistical tests—Augmented Dickey–Fuller (ADF) Test [15],
Phillips–Perron (PP) Unit Root Test [16] and Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
Test [17]—to check the stationarity of the squared log-returns series of each selected dataset.
One aspect that should be noticed is that the number of lags is crucial for the ADF test. If
the included lag is too small, then the remaining serial correlation in the errors will bias
the test. If this number is larger, the power of the test will suffer. Here, we consider taking
the longest lag that is statistically significant. More specifically, we determine this longest
lag by observing the last lag that crosses through the confidence interval lines of the auto-
correlation plot. Besides, we apply a long version of the truncation lag parameter on both
the PP and KPSS tests. The results of the three tests are tabulated in Table A4. Combining
these results, we can argue that most of the squared log-return series in the normal time
period are stationary. However, during the volatile time period, the squared log-returns of
IBM, SP500 and Dow Jones are thought to be non-stationary by the ADF test. The KPSS test
also returns small p-values for these three datasets. These results are consistent with our
conjecture that data tend to show non-stationarity during volatile periods. Again, it will be
interesting to see if the NoVaS-type methods can offer good forecasting performance for
non-stationary data. Recall that Chen and Politis [3] found that the NoVaS methodology
generally outperforms the GARCH benchmark on the one-step-ahead point prediction of
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non-stationary data (involving local stationarity and/or structural breaks). However, they
only considered two real-world time series. Here, we extend such empirical study to short-
and long-term time-aggregated predictions with sufficient data examples.

Remark (One ARCH-type model for non-stationary data): Since our stationarity tests
suggest that some series may not be stationary, we can consider applying ARCH-without-
intercept, which is a variant of the ARCH model. This variant is non-stationary but stable
in the sense that the observed process has non-degenerated distribution. Moreover, it ap-
pears to be an alternative to common stationary but highly persistent GARCH models [18].
Inspired by this ARCH-type model, the NoVaS method may be further improved by re-
moving the corresponding intercept term αs2

t−1 in Equations (1) and (6). More empirical
experiments could be conducted along this direction.

Result analysis: From the last three blocks of Table 1, there is no optimal result that comes
from the GARCH(1,1) method. When the target data are short and volatile, GARCH(1,1)
gives poor results for 30-step-ahead time-aggregated predictions, such as the volatile
Djones, CADJPY and IBM cases. Among the two NoVaS methods, the GE-NoVaS-without-
ã0 method outperforms the GE-NoVaS method for the three types of real-world data. More
specifically, around 70% and 30% improvements are created by our new method compared
to the existing GE-NoVaS method when forecasting 30-step-ahead time-aggregated volatile
Djones and CADJPY data, respectively. We should also notice that the GE-NoVaS method
is again surpassed by the GARCH(1,1) model on 30-step-ahead aggregated predictions of
2018∼2019 BAC data. On the other hand, the GE-NoVaS-without-ã0 method performs sta-
bly. These comprehensive prediction comparisons cover the shortage of empirical analyses
of NoVaS methods, and imply that NoVaS-type methods are indeed valid and efficient for
real-world short- or long-term predictions of three main types of econometric data. See
Appendix A for more results.

3.3. Statistical Significance

However, one may suggest that the victory of our new methods is only specific to
these samples. Therefore, we challenge this superiority by testing the statistical significance.
Noting that the GE-NoVaS-without-ã0 method is a nested method (taking ã0 = 0 in the
larger model) compared with the GE-NoVaS method, we deploy the CW test [19] to ensure
that the removing-ã0 idea is also statistically reasonable; see the p-value column in Table 1
for the tests’ results. The reason for not performing CW tests on the simulation cases is that
the prediction performance of each simulation is the average value of 5 replications. These
CW test results imply that the null hypothesis should not be rejected for almost all cases
under a 5% level of significance, which confirms the equivalence of the new method to the
existing one.
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Table 1. Comparisons of different methods’ forecasting performance.

GE-NoVaS GE-NoVaS-without-ã0 GARCH(1,1) p-Value(CW Test)

Si
m

ul
at

ed
-1

-y
ea

r-
da

ta

Model-1-1step 0.91369 0.88781 1.00000
Model-1-5steps 0.61001 0.52872 1.00000
Model-1-30steps 0.77250 0.73604 1.00000
Model-2-1step 0.97796 0.94635 1.00000
Model-2-5steps 0.98127 0.96361 1.00000
Model-2-30steps 1.38353 0.98872 1.00000
Model-3-1step 0.99183 0.92829 1.00000
Model-3-5steps 0.77088 0.67482 1.00000
Model-3-30steps 0.79672 0.71003 1.00000
Model-4-1step 0.83631 0.78087 1.00000
Model-4-5steps 0.38296 0.34396 1.00000
Model-4-30steps 0.00199 0.00201 1.00000

2-
ye

ar
s-

da
ta

2018∼2019-MCD-1step 0.99631 0.99614 1.00000 0.00053
2018∼2019-MCD-5steps 0.95403 0.92120 1.00000 0.03386
2018∼2019-MCD-30steps 0.75730 0.62618 1.00000 0.19691
2018∼2019-BAC-1step 0.98393 0.97966 1.00000 0.09568
2018∼2019-BAC-5steps 0.98885 0.95124 1.00000 0.07437
2018∼2019-BAC-30steps 1.14111 0.87414 1.00000 0.03643

1-
ye

ar
-d

at
a

2019-AAPL-1step 0.84533 0.80948 1.00000 0.25096
2019-AAPL-5steps 0.85401 0.68191 1.00000 0.06387
2019-AAPL-30steps 0.99043 0.73823 1.00000 0.17726
2019-Djones-1step 0.96752 0.96365 1.00000 0.34514
2019-Djones-5steps 0.98725 0.89542 1.00000 0.24529
2019-Djones-30steps 0.86333 0.80304 1.00000 0.23766
2019-SP500-1step 0.96978 0.92183 1.00000 0.45693
2019-SP500-5steps 0.96704 0.75579 1.00000 0.24402
2019-SP500-30steps 0.34389 0.29796 1.00000 0.08148

Vo
la

ti
le

-1
-y

ea
r-

da
ta

11.2019∼10.2020-IBM-1step 0.80222 0.80744 1.00000 0.16568
11.2019∼10.2020-IBM-5steps 0.38933 0.40743 1.00000 0.03664
11.2019∼10.2020-IBM-30steps 0.01143 0.00918 1.00000 0.15364
11.2019∼10.2020-CADJPY-1step 0.46940 0.48712 1.00000 0.16230
11.2019∼10.2020-CADJPY-5steps 0.11678 0.13549 1.00000 0.06828
11.2019∼10.2020-CADJPY-30steps 0.00584 0.00394 1.00000 0.15174
11.2019∼10.2020-SP500-1step 0.97294 0.92349 1.00000 0.05536
11.2019∼10.2020-SP500-5steps 0.96590 0.75183 1.00000 0.17380
11.2019∼10.2020-SP500-30steps 0.34357 0.29793 1.00000 0.16022
11.2019∼10.2020-Djones-1step 0.56357 0.57550 1.00000 0.11099
11.2019∼10.2020-Djones-5steps 0.09810 0.11554 1.00000 0.45057
11.2019∼10.2020-Djones-30steps 4.32 × 10−5 1.24 × 10−5 1.00000 0.68487

Note: The values presented in the GE-NoVaS and GE-NoVaS-without-ã0 columns reflect the relative performance compared with the
‘standard’ GARCH(1,1) method. The null hypothesis of the CW test is that parsimonious and larger models have equal mean squared
prediction error (MSPE). The alternative is that the larger model has a smaller MSPE.

4. Summary

In previous studies of NoVaS methods, only a few real-word data analyses were
performed [2–4]. Here, we provide extensive data analyses to address the lack of real-
world data experiments. Our results are consistent with previous findings and substantiate
the effectiveness of the NoVaS method again, i.e., the NoVaS method is more efficient and
stable than the classical GARCH method for short-term predictions. Further, we reveal the
ability of NoVaS-type methods to perform long-term time-aggregated forecasting. Beyond
this, we propose a new NoVaS method that outperforms the state-of-the-art GE-NoVaS
method. Our findings in this article are summarized as follows:

• Existing GE-NoVaS and new GE-NoVaS-without-ã0 methods provide substantial
improvements for time-aggregated prediction, which hints towards the stability of
NoVaS-type methods for providing long-horizon inferences.

• Our new method has superior performance to the GE-NoVaS method, especially for
shorter sample sizes or more volatile data. This is significant given that GARCH-type
models are difficult to estimate in shorter samples.

• We provide a statistical hypothesis test that shows that our model provides a more
parsimonious fit, especially for long-term time-aggregated predictions.
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5. Discussion

In this article, we explored the GE-NoVaS method toward short and long time-
aggregated predictions and proposed a new variant that is based on a parsimonious
model, has better empirical performance and yet is statistically reasonable. Although our
new method is in a parsimonious form, it still obeys the autoregressive prediction rule
and it is more stable for performing predictions under L2 risk criterion than current the
GE-NoVaS method. We should note that the unknown coefficients of both the GE-NoVaS
(ã0, a1, · · · , ap) and GE-NoVaS-without-ã0 (a1, · · · , ap) methods are in exponential form,
which implies that the correlations within series data are decreasing in exponential speed
with the increasing time order. However, this specific form is not suitable for use for
predicting all datasets. In other words, we anticipate performing NoVaS prediction without
fixing the unknown coefficients in an invariant form to satisfy the variety of real-world
econometric datasets. Therefore, building a NoVaS method with a more arbitrary coeffi-
cient form can be a future research direction. In addition, we should also note that there is
a high demand to perform efficient forecasting for integer time series data. For example, a
relevant topic regarding such integer-value prediction is forecasting COVID-19 cases. It
will be beneficial to develop a variant of NoVaS for integer-value data. Moreover, in the
financial market, the stock data move together. Thus, it would be exciting to see if one can
perform model-free predictions in a multiple time series scenario. We hope that this article
will open up avenues where one can explore other specific transformation structures to
improve the existing forecasting frameworks and aid in specific tasks.

From a statistical inference point of view, one can also construct prediction intervals
for these predictions using bootstrap. Such prediction intervals are well sought after in
the econometrics literature and some results on the asymptotic validity of these can be
provided. Additionally, we can also explore dividing the dataset into test and training in
some optimal way and see if this can improve the performance of these methods.

In addition, there are some model-free methods based on machine learning to perform
prediction tasks. These modern techniques enjoy high accuracy, but are time-consuming
and lack of statistical inference. On the other hand, our new method and existing NoVaS
methods are time-efficient and outperform classical GARCH-type methods significantly.
More importantly, NoVaS-type methods can provide concrete statistical inference. Thus, it
will be interesting to challenge NoVaS-type methods’ forecasting accuracy with machine-
learning-based methods.
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Appendix A. Additional Simulation Study and Data Analysis Results

Appendix A.1. Additional Simulation Study: Model Misspecification

In the real world, it is difficult to convincingly state whether the data obey one par-
ticular type of GARCH model, so we wish to provide four more GARCH-type models to
simulate one-year datasets to see if our methods are satisfactory regardless of the underly-
ing distribution and GARCH-type model. The simulation study results are presented in

www.investing.com


Forecasting 2021, 3 931

Table A1, which implies that the NoVaS-type methods are more robust against model
misspecification and GE-NoVaS-without-ã0 is the best method.

Model 5: Another time-varying GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = ω0,t + β1,tσ
2
t−1 + α1,tX2

t−1, {εt} ∼ i.i.d. N(0, 1)
gt = t/n; ω0,t = −4sin(0.5πgt) + 5; α1,t = −1(gt − 0.3)2 + 0.5; β1,t = 0.2sin(0.5πgt) +
0.2, n = 250
Model 6: Exponential GARCH(1,1) with Gaussian errors
Xt = σtεt, log(σ2

t ) = 0.00001 + 0.8895 log(σ2
t−1) + 0.1εt−1 + 0.3(|εt−1| − E|εt−1|),

{εt} ∼ i.i.d. N(0, 1)
Model 7: GJR-GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = 0.00001 + 0.5σ2
t−1 + 0.5X2

t−1 − 0.5It−1X2
t−1, {εt} ∼ i.i.d. N(0, 1)

It = 1 if Xt ≤ 0; It = 0 otherwise
Model 8: Another GJR-GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = 0.00001 + 0.73σ2
t−1 + 0.1X2

t−1 + 0.3It−1X2
t−1, {εt} ∼ i.i.d. N(0, 1)

It = 1 if Xt ≤ 0; It = 0 otherwise

Table A1. Comparisons of different methods’ forecasting performance on simulated 1-year data.

GE-NoVaS GE-NoVaS-without-ã0 GARCH(1,1)

M5-1step 0.91538 0.83168 1.00000
M5-5steps 0.49169 0.43772 1.00000
M5-30steps 0.25009 0.22659 1.00000
M6-1step 0.95939 0.94661 1.00000
M6-5steps 0.93594 0.84719 1.00000
M6-30steps 0.84401 0.70301 1.00000
M7-1step 0.84813 0.73553 1.00000
M7-5steps 0.50849 0.46618 1.00000
M7-30steps 0.06832 0.06479 1.00000
M8-1step 0.79561 0.76586 1.00000
M8-5steps 0.48028 0.38107 1.00000
M8-30steps 0.00977 0.00918 1.00000

Appendix A.2. Additional Data Analysis: 1-Year Datasets

To make our data analysis more comprehensive, we present more results of predictions
on 1-year real-world datasets in Table A2. One interesting finding is that the GE-NoVaS
method is significantly overcome by using the GARCH(1,1) model for some cases, such as
the BAC, TSLA and Smallcap datasets. The GE-NoVaS-without-ã0 method still maintains
great forecasting performance.

Table A2. Comparisons of different methods’ forecasting performance on real-world 1-year data.

GE-NoVaS GE-NoVaS-without-ã0 GARCH(1,1)

2019-MCD-1step 0.95959 0.93141 1.00000
2019-MCD-5steps 1.00723 0.90061 1.00000
2019-MCD-30steps 1.05239 0.80805 1.00000
2019-BAC-1step 1.04272 0.97757 1.00000
2019-BAC-5steps 1.22761 0.89571 1.00000
2019-BAC-30steps 1.45020 1.01175 1.00000
2019-MSFT-1step 1.03308 0.98469 1.00000
2019-MSFT-5steps 1.22340 1.02387 1.00000
2019-MSFT-30steps 1.23020 0.97585 1.00000
2019-TSLA-1step 1.00428 0.98646 1.00000
2019-TSLA-5steps 1.06610 0.97523 1.00000
2019-TSLA-30steps 2.00623 0.87158 1.00000
2019-Bitcoin-1step 0.89929 0.86795 1.00000
2019-Bitcoin-5steps 0.62312 0.55620 1.00000
2019-Bitcoin-30steps 0.00733 0.00624 1.00000
2019-Nasdaq-1step 0.99960 0.93558 1.00000
2019-Nasdaq-5steps 1.15282 0.84459 1.00000
2019-Nasdaq-30steps 0.68994 0.58924 1.00000
2019-NYSE-1step 0.92486 0.90407 1.00000
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Table A2. Cont.

GE-NoVaS GE-NoVaS-without-ã0 GARCH(1,1)

2019-NYSE-5steps 0.86249 0.69822 1.00000
2019-NYSE-30steps 0.22122 0.18173 1.00000
2019-Smallcap-1step 1.02041 0.98731 1.00000
2019-Smallcap-5steps 1.15868 0.87700 1.00000
2019-Samllcap-30steps 1.30467 0.88825 1.00000
2019-BSE-1step 0.70667 0.67694 1.00000
2019-BSE-5steps 0.25675 0.23665 1.00000
2019-BSE-30steps 0.03764 0.02890 1.00000
2019-BIST-1step 0.96807 0.95467 1.00000
2019-BIST-5steps 0.98944 0.82898 1.00000
2019-BIST-30steps 2.21996 0.88511 1.00000

Appendix A.3. Additional Data Analysis: Volatile 1-Year Datasets

Similarly, we consider more volatile 1-year datasets. All prediction results are tabu-
lated in Table A3. It is clear that both NoVaS-type methods still outperform the GARCH(1,1)
model for short- and long-term time-aggregated forecasting. Although the GE-NoVaS
method yields optimal performance in some cases, we should note that the GE-NoVaS-
without-ã0 method still gives almost the same but slightly worse results. Interestingly, the
GE-NoVaS-without-ã0 method can introduce a significant improvement compared with the
GE-NoVaS method for 30-step-ahead predictions. This again hints towards the superior
robustness of our new method specifically for long-term aggregated predictions.

Table A3. Comparisons of different methods’ forecasting performance on volatile 1-year data.

GE-NoVaS GE-NoVaS-without-ã0 GARCH(1,1)

11.2019∼10.2020-MCD-1step 0.51755 0.58018 1.00000
11.2019∼10.2020-MCD-5steps 0.10725 0.17887 1.00000
11.2019∼10.2020-MCD-30steps 3.32 × 10−5 7.48 × 10−6 1.00000
11.2019∼10.2020-AMZN-1step 0.97099 0.90200 1.00000
11.2019∼10.2020-AMZN-5steps 0.88705 0.71789 1.00000
11.2019∼10.2020-AMZN-30steps 0.58124 0.53460 1.00000
11.2019∼10.2020-SBUX-1step 0.68206 0.69943 1.00000
11.2019∼10.2020-SBUX-5steps 0.24255 0.30528 1.00000
11.2019∼10.2020-SBUX-30steps 0.00499 0.00289 1.00000
11.2019∼10.2020-MSFT-1step 0.80133 0.84502 1.00000
11.2019∼10.2020-MSFT-5steps 0.35567 0.37528 1.00000
11.2019∼10.2020-MSFT-30steps 0.01342 0.00732 1.00000
11.2019∼10.2020-EURJPY-1step 0.95093 0.94206 1.00000
11.2019∼10.2020-EURJPY-5steps 0.76182 0.76727 1.00000
11.2019∼10.2020-EURJPY-30steps 0.16202 0.15350 1.00000
11.2019∼10.2020-CNYJPY-1step 0.77812 0.79877 1.00000
11.2019∼10.2020-CNYJPY-5steps 0.38875 0.40569 1.00000
11.2019∼10.2020-CNYJPY-30steps 0.08398 0.06270 1.00000
11.2019∼10.2020-Smallcap-1step 0.58170 0.60931 1.00000
11.2019∼10.2020-Smallcap-5steps 0.10270 0.10337 1.00000
11.2019∼10.2020-Smallcap-30steps 7.00 × 10−5 5.96 × 10−5 1.00000
11.2019∼10.2020-BSE-1step 0.39493 0.39745 1.00000
11.2019∼10.2020-BSE-5steps 0.03320 0.04109 1.00000
11.2019∼10.2020-BSE-30steps 2.45 × 10−5 1.82 × 10−5 1.00000
11.2019∼10.2020-NYSE-1step 0.55741 0.57174 1.00000
11.2019∼10.2020-NYSE-5steps 0.08994 0.10182 1.00000
11.2019∼10.2020-NYSE-30steps 1.36 × 10−5 6.64 × 10−6 1.00000
11.2019∼10.2020-USDXfuture-1step 1.14621 0.99640 1.00000
11.2019∼10.2020-USDXfuture-5steps 0.61075 0.54834 1.00000
11.2019∼10.2020-USDXfuture-30steps 0.10723 0.10278 1.00000
11.2019∼10.2020-Nasdaq-1step 0.71380 0.75350 1.00000
11.2019∼10.2020-Nasdaq-5steps 0.29332 0.33519 1.00000
11.2019∼10.2020-Nasdaq-30steps 0.01223 0.00599 1.00000
11.2019∼10.2020-Bovespa-1step 0.60031 0.57558 1.00000
11.2019∼10.2020-Bovespa-5steps 0.08603 0.07447 1.00000
11.2019∼10.2020-Bovespa-30steps 6.87 × 10−6 2.04 × 10−6 1.00000



Forecasting 2021, 3 933

Appendix B. Stationarity Test Results of Some Real-World Datasets

Table A4. p-values of three stationarity tests.

ADF KPSS PP

2018∼2019 MCD 0.01 0.10 0.01
2018∼2019 BAC 0.01 0.10 0.01
2019 AAPL 0.01 0.10 0.01
2019 Djones 0.10 0.10 0.01
2019 SP500 0.18 0.10 0.01
11.2019∼10.2020 IBM 0.31 0.05 0.01
11.2019∼10.2020 CADJPY 0.01 0.10 0.01
11.2019∼10.2020 SP500 0.23 0.08 0.01
11.2019∼10.2020 Djones 0.22 0.08 0.01

Note: The null hypothesis of the ADF and PP tests is that the tested series is non-stationary. Therefore, if the ADF
and PP tests are rejected, it means that this tested series is stationary. On the other hand, the null hypothesis of
KPSS is that the series is stationary.
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