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Abstract: The present study employs daily data made available by the STR SHARE Center covering
the period from 1 January 2010 to 31 January 2020 for six Viennese hotel classes and their total.
The forecast variable of interest is hotel room demand. As forecast models, (1) Seasonal Naïve,
(2) Error Trend Seasonal (ETS), (3) Seasonal Autoregressive Integrated Moving Average (SARIMA),
(4) Trigonometric Seasonality, Box–Cox Transformation, ARMA Errors, Trend and Seasonal Com-
ponents (TBATS), (5) Seasonal Neural Network Autoregression (Seasonal NNAR), and (6) Seasonal
NNAR with an external regressor (seasonal naïve forecast of the inflation-adjusted ADR) are em-
ployed. Forecast evaluation is carried out for forecast horizons h = 1, 7, 30, and 90 days ahead
based on rolling windows. After conducting forecast encompassing tests, (a) mean, (b) median,
(c) regression-based weights, (d) Bates–Granger weights, and (e) Bates–Granger ranks are used
as forecast combination techniques. In the relative majority of cases (i.e., in 13 of 28), combined
forecasts based on Bates–Granger weights and on Bates–Granger ranks provide the highest level
of forecast accuracy in terms of typical measures. Finally, the employed methodology represents a
fully replicable toolkit for practitioners in terms of both forecast models and forecast combination
techniques.

Keywords: forecast combination; forecast encompassing tests; hotel room demand forecasting; hotel
classes; neural network autoregression; multiple seasonal patterns

1. Introduction
1.1. Motivation

With an average annual growth rate of +4.9% from 2018 to 2019, bednights in European
cities grew more than twice as fast as bednights at the national level of the EU-28 countries
over the same period [1]. The Austrian capital, Vienna, ranked eighth in terms of bednights
out of 119 European cities with 18.6 mn bednights in 2019, which corresponded to a growth
of +7.0% from 2018 to 2019 [1]. The current COVID-19 pandemic notwithstanding, these
figures make the Austrian capital one of the most popular city destinations of Europe, for
leisure and business travelers alike. Despite the increase in Airbnb and similar types of
non-traditional accommodation in the city [2], the vast majority of tourists to Vienna stay
in one of its 422 hotels with their 34,250 rooms (data as of 2019; [3]).

Accurate hotel room demand forecasts (particularly daily forecasts) are crucial for
successful hotel revenue management (e.g., for revenue-maximizing pricing) in a fast-
paced and competitive industry [4–8]. Besides their hotel’s absolute performance, (revenue)
managers are typically also interested in the relative performance of their hotel with respect
to the relevant peer group (also known as the competitive set; [9]) within or beyond the
same destination: other hotels from the same hotel class, those that cater to the same type
of travelers [10], or those belonging to the same hotel chain [11,12]. Therefore, daily hotel
room demand data that are aggregated per hotel class constitute a particularly worthwhile
data source for hotel room demand forecasting. Another advantage of aggregated data
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per hotel class is that these do not suffer from the lack of representativity that individual
hotel-level data would.

The data for this study were generously made available by the STR SHARE Center
(https://str.com/training/academic-resources/share-center (accessed on 26 November
2021)) in March 2020 and consist of the daily raw data from seven Trend Reports for Vienna
for the period from 1 January 2010 to 31 January 2020 (T = 3683) for the hotel classes
‘luxury’ (17 properties as of 31 January 2020), ‘upper upscale’ (31 properties), ‘upscale’
(54 properties), ‘upper midscale’ (76 properties), ‘midscale’ (58 properties), and ‘economy’
(142 properties). STR undertakes this classification primarily according to the hotels’ ADR
(https://str.com/data-insights/resources/faq (accessed on 26 November 2021)). The Trend
Reports also contain the hotel class ‘all’ (378 properties), i.e., the total of the aforementioned
hotel classes. This corresponds to a coverage of approximately 90% of the 422 hotels
operating in Vienna in 2019 [3].

Apart from conforming with the characteristics of the data (i.e., weekly and annual
seasonal as well as other patterns in the daily data), all candidate forecast models have
been selected based on the principles of parsimony and feasibility, so that practitioners (e.g.,
a revenue manager working in a particular hotel; [5]) can easily and in a timely manner
produce and use them by employing mostly automated routines. Sorokina et al. [13] arrive
at a similar conclusion. Sensibly, the creation and evaluation of one-day-ahead forecasts
should be achievable in the course of one day; thereby, ruling out forecast models such as
the Seasonal Autoregressive Integrated Moving Average model with an external regressor
(SARIMAX; [14]) that are associated with an excessive computational burden. These
principles also rule out complex recurrent neural network models such as the Long Short-
Term Memory (LSTM) model [15] or the deep learning method proposed by Law et al. [16],
which, in turn, has shown better predictive performance than neural network models or
Support Vector Machines (SVM) for the case of Macau. Similar results have been found for
the Kernel Extreme Learning Machine (KELM) proposed by Sun et al. [17] that has been
successfully applied to data for Beijing.

Consequently, the Seasonal Naïve, the Error Trend Seasonal (ETS) model [18,19], the
Seasonal Autoregressive Integrated Moving Average (SARIMA) model [14], the Trigono-
metric Seasonality, Box–Cox Transformation, ARMA Errors, Trend and Seasonal Compo-
nents (TBATS) model [20], the Seasonal Neural Network Autoregression (Seasonal NNAR)
model [21], and a variant of the latter model, the Seasonal NNAR model with an external
regressor [21] were selected. As an external regressor, the seasonal naïve (i.e., 365-days-
ahead) forecast of the inflation-adjusted Average Daily Rate (ADR), an important realized
price measure in hotel revenue management [22,23], has been employed. In more general
terms, own price has long been identified as one of the most important economic drivers of
tourism demand [24].

As long as different forecast models contain different and useful information, combin-
ing them with different forecast combination techniques has been shown to yield even more
accurate predictions [25]. To avoid any detrimental impact of underperforming forecast
models, the two-step forecast combination procedure suggested by Costantini et al. [26]
is employed. Step 1 of this procedure consists of a forecasting encompassing test [27,28].
Only those models surviving these forecast encompassing tests are considered for forecast
combination in step 2 of the procedure in terms of the subsequent forecast combination
techniques. These techniques also follow the aforementioned principles of parsimony and
feasibility. Thus, they represent five “classical” techniques that have proven to be effective
in a variety of empirically relevant forecasting situations [29–32]. These are the mean and
the median forecast [28,33], regression-based weights [34], Bates–Granger weights [35],
and Bates–Granger ranks [36].

1.2. Related Literature

Accurate demand forecasts are the basis of most business decisions in the tourism
industry [24]. Tourism products and services are described as highly perishable because
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(leisure) tourism demand is highly sensitive to external shocks such as natural or human-
made disasters [37]. For instance, the lost revenue from an unsold hotel room cannot be
regenerated. Moreover, accurate hotel room demand forecasts are important for planning
(e.g., staff scheduling, renovation periods) or balancing overbookings with “no shows”
given limited capacities [38]. Therefore, improving the accuracy of tourism demand
forecasts is consistently near the top of the agenda for both academics and industry practi-
tioners. This continuous interest has also resulted in two tourism forecast competitions
to date [39,40], the latest one specifically focuses on forecasting tourism demand amid
the COVID-19 pandemic: three teams have taken part in this competition, producing and
evaluating forecasts for three different world regions, notably Africa [41], Asia and the
Pacific [42], and Europe [43]. Specifically, during the COVID-19 pandemic, hybrid scenario
forecasting (i.e., different quantitative forecasting scenarios coupled with expert judgment)
has proven worthwhile [44].

Concerning tourism demand forecasting in general, Athanasopoulos et al. [45] evalu-
ate the predictive accuracy of five hierarchical forecast approaches applied to domestic
Australian tourism data. Using data from Hawaii, Bonham et al. [46] employ a vector
error correction model to forecast tourism demand. Kim et al. [47] evaluate a number of
univariate statistical models in producing interval forecasts for Australia and Hong Kong.
In addition to using data from Hong Kong, Song et al. [48] develop and evaluate a time-
varying parameter structural time series model. Andrawis et al. [49] explore the benefits
of forecast combinations for tourism demand for Egypt. Gunter and Önder [50] assess
various uni- and multivariate statistical models to forecast monthly tourist arrivals to Paris
from various source markets. Athanasopoulos et al. [51] employ bagging (i.e., bootstrap ag-
gregation) to improve the forecasting of tourism demand for Australia. Li et al. [52] use the
Baidu index as a web-based leading indicator to forecast tourist volume within principal
component analysis and neural network approaches. Finally, Panagiotelis et al. [53] employ
Australian tourism flow data to empirically demonstrate their theoretical conclusion that
bias correction before forecast reconciliation leads to higher predictive accuracy compared
to using only one of these two approaches.

Pertaining to hotel room demand forecasting in particular, Rajopadhye et al. [6] employ the
classical Holt–Winters exponential smoothing model. Haensel and Koole [4] forecast both
single bookings as well the aggregate booking curve based on daily data. Google search
engine data are used as web-based leading indicators by Pan et al. [54] to predict hotel
room demand. Teixeira and Fernandes [55] explore the predictive ability of different neural
network models in comparison to univariate statistical models. Song et al. [56] show that
hybrid approaches (i.e., a combination of statistical models and expert judgment) improve
the forecast accuracy of hotel room demand forecasts for Hong Kong. Yang et al. [57]
analyze the predictive ability of the traffic volume of the website of a destination man-
agement organization, another web-based leading indicator, for estimating hotel room
demand. Guizzardi and Stacchini [58] investigate the usefulness of information on tourism
supply in forecasting hotel arrivals. Pereira [5] investigates the ability of the TBATS model
to accommodate multiple seasonal patterns simultaneously. Different Poisson mixture
models are used by Lee [59] to improve short-term forecast accuracy. In addition, Guiz-
zardi et al. [60] use ask price data from online travel agencies as a leading indicator for
daily hotel room demand forecasting. Finally, only a few further tourism and hotel room
demand forecasting studies based on daily data have been published to date, with the
publications by Ampountolas [61], Bi et al. [62], Chen et al. [63], Schwartz et al. [64] and
Zhang et al. [65,66] representing some noteworthy exceptions.

This short review of exemplary studies does not claim to be complete. However, it can
be concluded that numerous quantitative forecast models (i.e., uni- and multivariate statis-
tical models, machine learning models and, more recently, hybrids of these two), as well
as forecast combination and aggregation techniques, have been applied to generate point,
interval, and density forecasts in the ample tourism demand forecasting literature. Their
precision has been evaluated using different forecast accuracy measures and statistical tests
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of superior predictive accuracy for a variety of destinations, source markets, sample peri-
ods, data frequencies, forecast horizons, and tourism demand measures. Jiao and Chen [67]
or Song et al. [68] can be consulted for recent comprehensive reviews of this literature, as
a more detailed review of the tourism forecasting literature lies beyond the scope of this
study. However, these recent comprehensive reviews confirm the conventional wisdom
yielded by earlier studies that there is no single best tourism demand forecast model able
to produce tourism demand forecasts characterized by superior forecast accuracy on all
occasions [69,70].

Besides past realizations of the tourism demand measure to allow for habit persistence,
economic drivers of tourism demand such as own and competitor’s prices, tourist incomes,
marketing expenditures, etc., and dummy variables capturing one-off events have been
employed as predictors of tourism demand in multivariate forecast models [24]. For
Vienna, with the exception of Smeral [71], almost all published tourism demand forecasting
studies to date have been dedicated to web-based leading indicators as predictors, while
employing monthly tourist arrivals aggregated at the city level as their tourism demand
measure [72–75].

Therefore, the first contribution of this study lies in the first-time use of more dis-
aggregated hotel class data with a daily frequency and an economic predictor—seasonal
naïve forecast of the inflation-adjusted ADR—as an external regressor in one of the forecast
models for this important European city destination. This also allows for the evaluation of
one-day-ahead and one-week-ahead hotel room demand forecasts, which are crucial for
hotel revenue management [5].

The second contribution is the thorough assessment of the accuracy of six forecast
models and five forecast combination techniques in terms of four different forecast accuracy
measures for seven hotel classes and four forecast horizons: daily, weekly, monthly, and
quarterly, which correspond to different planning horizons in hotel revenue management,
ranging from the aforementioned very short-term (one-day-ahead and one-week-ahead; [5])
to medium-term planning horizons. The relatively long sample period allows the evalu-
ation of pseudo-ex-ante out-of-sample point forecasts based on rolling windows and at
least 185 counterfactual observations (for h = 90), thereby being more robust to potential
structural breaks compared to expanding windows [76]. This makes the methodology and
the results of this study relevant for the post-COVID-19 period: once the impact of this
severe structural break has vanished and the tourism industry has recovered, tourism and
hotel room demand forecasting for normal times will become feasible again.

The third contribution is based on the provision of a fully replicable forecasting toolkit
for practitioners in terms of both forecast models and forecast combination techniques that
are based on mostly automated routines and, therefore, respect the principles of parsimony
and feasibility. This toolkit also enables revenue managers working in smaller (boutique)
hotels that do not belong to an international hotel chain (i.e., without access to a professional
revenue management system; [13,38]) to employ the proposed methodology on their own
hotel-level dataset to easily create and use reliable hotel room demand forecasts and, in the
following, benchmark their own hotel against the performance of other hotels from the
relevant peer group.

The fourth contribution of this study lies in its use of the seasonal naïve forecast of the
inflation-adjusted ADR as an external regressor, which makes (a) the forecast evaluation
completely ex-ante and, thereby, attends to a recent call in the tourism demand forecasting
literature for more ex-ante forecasting [77] and (b) avoids any impact of unrelated general
price level changes. Moreover, this variable is employed within the Seasonal NNAR model
with an external regressor [21], which has not been used regularly in tourism demand
forecasting to date.

Finally, the fifth contribution of this research is the first-time application of the two-
step forecast combination procedure suggested by Costantini et al. [26] in a hotel room
demand forecasting setting. While having become more popular in general tourism de-
mand forecasting research—beginning with the pioneering contribution by Fritz et al. [78],
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Song et al. [68] count 17 studies on tourism demand forecast combination in their recent
review study covering 211 key papers published between 1968 and 2018—very few studies
have employed any type of forecast combination in a hotel room demand forecasting
context; the research by Song et al. [56], Fiori and Foroni [79], as well as Schwartz et al. [80]
being notable exceptions.

The remainder of this study is structured as follows. Section 2 describes the data.
Section 3 presents the employed forecast models and forecast combination techniques.
Section 4 lays out the forecasting procedure and presents and discusses the forecast evalua-
tion results. Section 5 draws some overall conclusions including managerial implications
and limitations. Supporting tables are provided in Appendix A.

2. Data

The forecast variable of interest in the data made available by the STR SHARE Center
is hotel room demand (i.e., the number of rooms sold per day by hotel class), while the
seasonal naïve (i.e., 365-days-ahead) forecast of the ADR (in euros) is employed as the
external regressor in one of the forecast models (see Section 3), thereby ensuring that
the forecasts produced by this model are ex-ante. Given a time span of more than ten
years, and to avoid any impact of unrelated general price level changes, the ADR has been
inflation-adjusted using Austria’s monthly Harmonized Index of Consumer Prices (HICP)
obtained from Statistics Austria with 2015 as its base year. The temporal disaggregation
of the HICP, which was necessary for inflation adjustment, was undertaken using the
‘tempdisagg’ package for R [81]. All further calculations were also performed in R [82] and
RStudio [83], thereby drawing primarily on the functions implemented in the ‘forecast’
package [84,85].

Due to the daily frequency of the data, the presence of seasonal patterns is likely.
Figure 1 (hotel room demand) and 2 (inflation-adjusted ADR) show the original time series
as well as its trend, weekly (m = 7) and annual seasonal patterns (M = 365.25), and re-
mainder components across all hotel classes as obtained by Seasonal-Trend decomposition
using Locally estimated scatterplot smoothing (STL decomposition; [86]), while employing
the ‘mstl()’ function of the ‘forecast’ package. Given the weekly and annual seasonality
across variables and hotel classes, with distinct troughs in hotel room demand for most of
January and February and on Sundays, the applicability of forecast models allowing for
seasonal patterns is evident (see Figure 1). As can also be seen from Figure 1, both patterns
are comparably less pronounced for the ‘luxury’ hotel class. Since the annual seasonal
pattern has a much higher amplitude than the weekly seasonal pattern across hotel classes,
the focus of this study is on the former. Moreover, the weekly seasonal pattern also appears
to be less regular.

In line with Pereira [5], quarterly or monthly seasonal patterns are not visible and
would not be reasonable either, as, for instance, the first days of January still belong to
the Christmas/New Year high season, while the remainder of the month belongs to the
aforementioned low season. Similarly, January and February observations belong to the
same quarter as March observations, yet March cannot be characterized as part of the
annual trough. It should further be noted that STL decomposition has only been applied to
showcase the different trends and seasonal components in the data. How to deal with any
of these components in the forecast models, e.g., whether to treat trends as stochastic or
deterministic if present, is determined during the model selection stage (see Section 3).

Since the sample period runs from 1 January 2010 to 31 January 2020 (i.e., after the
Financial Crisis/Great Recession period from 2008 to 2009 and before the COVID-19 pan-
demic starting in March 2020), no structural breaks are visible for either of the variables
across hotel classes. Vienna is a popular destination for Meetings, Incentives, Conventions
and Exhibitions (MICE) tourism, which mostly follows a regular schedule and can, there-
fore, be considered part of the seasonal component. The only major one-eff event during
the sample period, the Eurovision Song Contest taking place in Vienna in May 2015, did
not seem to have a noticeable impact on hotel room demand across hotel classes (other
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major one-off events taking place in Vienna but outside the sample period can be found
with the 2008 UEFA European Football Championship or the terrorist attacks of November
2020). Concerning trending patterns, a continuing upward trend for hotel room demand is
visible across hotel classes, with the exception of the ‘upper upscale’ hotel class toward the
end of the sample period (see Figure 1).

Figure 1. Cont.
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Figure 1. Evolution and STL decomposition of hotel room demand in Vienna. Hotel classes from top to bottom: (a) ‘luxury’,
(b) ‘upper upscale’, (c) ‘upscale’, (d) ‘upper midscale’, (e) ‘midscale’, (f) ‘economy’, and (g) ‘all’. Source: STR SHARE Center,
own illustration using R.

Similar to hotel room demand, inflation-adjusted ADR peaks during the Christ-
mas/New Year high season, but also features two smaller peaks: one in the first half
of the year and the other in the second half (see Figure 2). The latter pattern is present in all
hotel classes, yet comparably less pronounced for the ‘luxury’ and ‘midscale’ hotel classes.
As can also be seen from Figure 2, the amplitude of annual seasonality is comparably high
for the ‘luxury’ hotel class. All hotel classes, except for ‘luxury’ and ‘economy’, show a
moderate upward trend in terms of the inflation-adjusted ADR over the whole sample pe-
riod. Similar to hotel room demand, the weekly seasonal pattern is much less pronounced
than the annual seasonal pattern across hotel classes and less regular. However, in contrast
to hotel room demand, the trend in the inflation-adjusted ADR also shows cyclical behavior,
with the years from 2013 to 2014 and 2016 to 2017 representing the cycle’s troughs.

Figure 2. Cont.
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Figure 2. Evolution and STL decomposition of inflation-adjusted ADR in Vienna. Hotel classes from top to bottom:
(a) ‘luxury’, (b) ‘upper upscale’, (c) ‘upscale’, (d) ‘upper midscale’, (e) ‘midscale’, (f) ‘economy’, and (g) ‘all’. Source: STR
SHARE Center, own illustration using R.

3. Methodology

This study employs six different forecast models suitable for seasonal data, as well as
five different forecast combination techniques. Section 3.1 gives a brief overview of the six
applied forecast models, whereas Section 3.2 reviews the five applied forecast combination
techniques. All forecasts from the single models are obtained using the ‘forecast’ package
while combining those forecasts and the forecast evaluation (see Section 4) are carried
out in EViews Version 11. In the following, both hotel room demand and the inflation-
adjusted ADR are employed in natural logarithms to ensure variance stabilization. Detailed
estimation results and in-sample goodness-of-fit measures across forecast models and hotel
classes are available from the author upon request.
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3.1. Forecast Models
3.1.1. Seasonal Naïve

The first and simplest model forecasting hotel room demand, HRD, applied in this
study is the Seasonal Naïve forecast, which also serves as a benchmark, which should,
ideally, be outperformed by more sophisticated forecast models. In the Seasonal Naïve
model, the forecast ˆHRDT+h|T of HRD in period T + h, with T denoting the forecast origin
and h the forecast horizon, corresponds to the realization of HRD on the same day one
year previously. Thus:

ˆHRDT+h|T = HRDT+h−M, (1)

where M = 365.25 in Equation (1) denotes the length of the annual seasonal pattern.

3.1.2. Error Trend Seasonal (ETS)

The second forecast model employed is the ETS model developed by Hyndman
et al. [18,19]. This is a state-space framework comprising various traditional exponential
smoothing methods and consists of one signal equation in the forecast variable HRD and
various state equations for the different components of the data. In general, the following
ETS (·, ·, ·) specifications are possible:

E(Error) ∈ {A, M}, T(Trend) ∈ {N, A, Ad, M, Md}, S(Seasonal) ∈ {N, A, M}, (2)

where A in Equation (2) denotes additive, M multiplicative, N none, Ad additive damped,
and Md denotes multiplicatively damped [21]. The optimal model specification of this
and the remaining three forecast models is selected by the minimum Akaike Information
Criterion (AIC; [87]) for all hotel classes and their total. As the ‘ets()’ function of the
‘forecast’ package cannot deal with seasonal patterns within daily data, the ‘stlm()’ function
is employed. This function first deseasonalizes the data with STL decomposition and then
parses the deseasonalized data to the ‘ets()’ function, where the search for optimal model
specifications is carried out only for non-seasonal ETS models. Finally, the forecast values
are reseasonalized by applying the last year of the seasonal component obtained from STL
decomposition [84,85].

3.1.3. Seasonal Autoregressive Integrated Moving Average (SARIMA)

The third forecast model used in the present study is the SARIMA model [14]. A
SARIMA (p, d, q)× (P, D, Q)M model reads as follows:

Φ(L)φ(L)∇D
M∇d HRDt = a + Θ(L)θ(L)et, (3)

where Φ(L), φ(L), Θ(L), θ(L) in Equation (3) denote lag polynomials of orders P, p, Q, q,
respectively. ∇D

M represents the degree of seasonal integration of the forecast variable,
HRD, while ∇d represents the degree of non-seasonal integration. Finally, a denotes a
potentially non-zero mean and e the error term.

As mentioned before, the optimal model specification (i.e., the optimal lag orders
P∗, p∗, Q∗, q∗) is selected by minimizing the AIC. The maximum lag order of the non-
seasonal AR and MA components is set to pmax = qmax = 7 (to indirectly allow for the
weekly seasonal pattern), while the maximum lag order of the seasonal AR and MA
components is set to Pmax = Qmax = 2. The maximum degree of non-seasonal integration
is set to dmax = 2, whereas the maximum degree of seasonal integration is set to Dmax = 1.
The degree of seasonal integration is determined by conducting the Augmented Dickey–
Fuller (ADF) unit root test. Given the daily frequency of the data, a measure of seasonal
strength computed from an STL decomposition is employed to select the number of
seasonal differences. In this study, the ‘auto.arima()’ function of the ‘forecast’ package is
used to implement the SARIMA model while enabling parallel computing.
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3.1.4. Trigonometric Seasonality, Box–Cox Transformation, ARMA Errors, Trend and
Seasonal Components (TBATS)

The fourth forecast model under scrutiny is one that can deal with multiple seasonal
patterns at a time (in the present case: m = 7 and M = 365.25): the TBATS model [20]. A
TBATS (ω, ϕ, p, q, {m1, k1}, . . . , {mT , kT}) model for the forecast variable HRD reads as
follows [20]:

HRDω
t = ln HRDt(ω = 0), (4)

HRDω
t = lt−1 + ϕbt−1 + ∑T

i=1 si
t−1 + dt, (5)

lt = lt−1 + ϕbt−1 + αdt, (6)

bt = (1− ϕ)b + ϕbt−1 + βdt, (7)

φ(L)dt = θ(L)et, (8)

si
t = ∑ki

j=1 si
j,t, (9)

si
j,t = si

j,t−1 cos λi
j + s∗ij,t−1 sin λi

j + γi
1dt, (10)

s∗ij,t = −sj,t−1 sin λi
j + s∗ij,t−1 cos λi

j + γi
2dt. (11)

Equation (4) represents the Box–Cox transformation, where ω = 0 as HRD is em-
ployed in natural logarithm throughout. Equation (5) is the measurement equation in HRD.
Equation (6) is the equation for the local level lt in period t. Equation (7) is the equation for
the short-run trend bt in period t with b denoting the long-term trend. Equation (8) gives
the ARMA (p, q) process dt with et assumed to be distributed ∼ N

(
0, σ2

e
)

and φ(L), θ(L)
denoting lag polynomials of orders p, q, respectively. ϕ indicates the damping parameter
of the trend, whereas α, β are smoothing parameters.

Equations (9)–(11) correspond to the trigonometric representation of the i-th seasonal
component si

t. Equation (10) is the equation for the stochastic level of the i-th seasonal
component si

j,t. Equation (11) is the equation for the stochastic growth in the level of the

i-th seasonal component s∗ij,t. λi
j is defined as λi

j = 2π j/mi. ki represents the number of

Fourier terms needed for the i-th seasonal component. Finally, γi
1, γi

1 denote smoothing
parameters [20]. The optimal model specification is again selected by minimizing the AIC
(pmax = qmax = 7). The ‘tbats()’ function of the ‘forecast‘ package is used to implement the
TBATS model in this study while enabling parallel computing.

3.1.5. Seasonal Neural Network Autoregression (Seasonal NNAR)

The fifth employed forecast model is the Seasonal NNAR model [21]. A Seasonal
NNAR (p, P, κ)M model for the forecast variable HRD is a multilayer feed-forward neural
network comprising (1) one input layer, (2) one hidden layer with several hidden neurons,
and (3) one output layer [21]. Each layer consists of several nodes and receives inputs
from the previous layer such that the sequence (1)→ (2)→ (3) holds. Consequently, the
outputs of one layer correspond to the inputs of the subsequent layer. The inputs for
a single hidden neuron κ (κ = 1, . . . , K) from the hidden layer zκ(HRDt−τ) are a linear
combination consisting of a weighted average of the outputs of the input layer HRDt−τ ,
which are transformed by a nonlinear sigmoid function to become the inputs for the output
layer oκ(zκ):

zκ(HRDt−τ) = bκ + ∑p∗ ,MP
τ=1 wκτ HRDt−τ , (12)

oκ(zκ) = 1/
(

1 + e−zκ(HRDt−τ)
)

, (13)

while the parameters bκ and wκτ in Equation (12) are learned from the data [21]; starting
from random starting weights for bκ and wκτ and setting the decay parameter equal to 0.1,
the neural network is trained 100 times, while the lag order of the seasonal AR component
is set to P = 1. The optimal lag order of the non-seasonal AR component p∗ is again
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selected by minimizing the AIC. The number of hidden neurons κ, in turn, is determined
according to the rule κ = (p∗ + P + 1)/2 and rounded to the nearest integer [21]. In this
study, the ‘nnetar()’ function of the ‘forecast’ package is used to implement the Seasonal
NNAR model while enabling parallel computing.

3.1.6. Seasonal NNAR with an External Regressor

The sixth and final forecast model is the Seasonal NNAR model with an external
regressor [21], a variant of the forecast model presented in Section 3.1.5. In this variant,
the seasonal naïve forecast of inflation-adjusted ADR is employed across hotel classes as
a candidate predictor (see Section 2). Also here, the ‘nnetar()’ function of the ‘forecast’
package is used to implement the Seasonal NNAR model with an external regressor while
enabling parallel computing.

As can be seen from Figure 3, hotel room demand and inflation-adjusted ADR fea-
ture a positive correlation for hotel class ‘all’, which ostensibly appears to violate the
law of demand. However, it should be noted that the ADR is not the price offered to cus-
tomers before booking a hotel, but the price realized as a result of successful hotel revenue
management [22,23]. Thus, Giffen or Veblen effects can be safely ruled out. Calculating
correlation coefficients between the remaining components of the two variables after STL
decomposition (in order to preclude any potentially confounding influence of the trend
or seasonal components) reveals only positive values for all hotel classes: ‘luxury’ (0.25),
‘upper upscale’ (0.44), ‘upscale’ (0.45), ‘upper midscale’ (0.39), ‘midscale’ (0.38), ‘economy’
(0.27), and ‘all’ (0.48). Graphs for the remaining hotel classes are available from the author
upon request.

Figure 3. Scatterplot of hotel room demand and inflation-adjusted ADR in Vienna for hotel class ‘all’. Source: STR SHARE
Center, own illustration using R.

Apart from these non-negligible positive correlations, the null hypothesis of bivariate
Granger causality tests [88]—of inflation-adjusted ADR not Granger-causing hotel room
demand (both in natural logarithms)—is rejected at the 0.1% significance level across hotel
classes when using the ‘grangertest()’ function. Consequently, it is ex-ante and very likely
that the information contained in the inflation-adjusted ADR is relevant to the forecaster at
the forecast origin in terms of improving forecast accuracy (yet, these results do not claim
or imply any exogeneity of the inflation-adjusted ADR). Detailed test results are available
from the author upon request.

3.2. Forecast Combination Techniques

In the following, a combined forecast, c f h
t , for different forecast horizons, h (h =

1, . . . H), is to be understood as a combination of n (n = 1, . . . , N), not perfectly collinear
single forecasts, f h

t,n, observed at the same time point, t (t = 1, . . . , T).
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3.2.1. Mean Forecast

The first and simplest forecast combination technique applied in this study is the
mean forecast, which also serves as a benchmark, which should, ideally, be outperformed
by more sophisticated forecast combination techniques [28,33]. It reads as follows:

c f h
t = ∑N

n=1
1
N

f h
t,n. (14)

3.2.2. Median Forecast

A time-varying alternative to the mean forecast that is more robust to outliers is the
median forecast, whereby the median forecast at each point in time receives a weight of 1
and all other forecasts a weight of 0 [28,33]:

c f h
t = med

(
f h
t,1, . . . , f h

t,N

)
. (15)

3.2.3. Regression-Based Weights

The combined forecast with regression-based weights wh,OLS
n as obtained from ordi-

nary least squares (OLS) regression [34], where the intercept α is included to correct for
forecast bias, reads as follows:

c f h
t = α + ∑N

n=1 wh,OLS
n f h

t,n. (16)

3.2.4. Bates–Granger Weights

Bates and Granger [35] recommend assigning higher weights to those single forecasts
characterized by a lower mean square error (MSE), thus, rewarding those forecast models
with a better historical track record:

c f h
t = ∑N

n=1
1/MSEh

n

∑N
n=1

(
1/MSEh

n
) f h

t,n. (17)

3.2.5. Bates–Granger Ranks

Finally, Aiolfi and Timmermann [36] suggest using the rank of the MSE of the single
forecasts to make Bates–Granger-type weights independent of correlations between forecast
errors:

c f h
t = ∑N

n=1
1/MSE− Rankh

n

∑N
n=1(1/MSE− Rankh

n)
f h
t,n. (18)

4. Forecasting Procedure and Forecast Evaluation Results
4.1. Forecasting Procedure

Given the relatively long sample period, pseudo-ex-ante out-of-sample point forecasts
from the forecast models for the forecast horizons h = 1, 7, 30, and 90 days ahead are
produced based on rolling windows moving one day ahead at a time. Due to the absence
of structural breaks (see Section 2) and the associated computational burden, all optimal
model specifications per hotel class are only selected once. For the same reasons, all forecast
models are only estimated once per hotel class for the first rolling window, which ranges
from 1 January 2010 to 31 January 2019. The evaluation window for h = 1, thus, ranges
from 1 February 2019 to 30 January 2020, resulting in 364 counterfactual observations. For
h = 7, it ranges from 7 February 2019 to 30 January 2020, resulting in 358 observations.
For h = 30, it ranges from 2 March 2019 to 30 January 2020, resulting in 335 observations.
Finally, for h = 90, the evaluation window ranges from 1 May 2019 to 30 January 2010,
resulting in 275 counterfactual observations.

Forecast accuracy is measured in terms of the root mean square error (RMSE), the
mean absolute error (MAE), the mean absolute percentage error (MAPE), the mean absolute
scaled error (MASE), as well as the sum of ranks over these four measures. One forecast
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combination technique (i.e., regression-based weights) and one forecast accuracy measure
(i.e., MASE), require the splitting of the evaluation samples into training and test sets [34,89].
In doing so, the first 90 observations per forecast horizon, forecast model, and hotel class
are withheld for the training set. Thus, the different forecast accuracy measures can be
calculated based on test sets comprising 274 (h = 1), 268 (h = 7), 245 (h = 30), and
185 (h = 90) forecast values, respectively. However, a forecast encompassing test with
the null hypothesis that a specific forecast model contains all information enclosed in
the remaining forecast models [27,28] is carried out as step 1 of the two-step forecast
combination procedure suggested by Costantini et al. [26] to investigate if combining the
forecasts obtained from (some of) the forecast models is a viable option in the first place.
Only those models surviving these forecast encompassing tests are considered for forecast
combination in step 2 of the procedure in terms of the different forecast combination
techniques.

4.2. Forecast Evaluation Results

Figure 4 shows an exemplary visual comparison of all forecast models for hotel class
‘all’ and h = 1 for the period from 1 October 2019 to 31 January 2020 (for better visibility).
Prior to consulting the forecast accuracy measures, a mere visual inspection of this graph
shows that none of the employed forecast models are widely off track and that they are
able to pick up the seasonal drop in hotel room demand after New Year. Graphs for the
remaining hotel classes and forecast horizons are available from the author upon request
(in Figure 4 as well as in Tables 1 and A1, Tables A2–A6, the Seasonal NNAR model (with
an external regressor) is abbreviated as ‘NNAR(X)’.).

Figure 4. Historical data (solid line) and forecast comparison graph of all forecast models for hotel
class ‘all’ and h = 1 for the period from 1 October 2019 to 31 January 2020. Source: STR SHARE
Center, own illustration using EViews Version 11.
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Table 1. Forecast evaluation results for the hotel class ‘all’. Source: STR SHARE Center, own calculations using R and EViews.

h = 1 Forecast
encompassing tests h = 7 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_ALL_SNAIVE 14.25286 0.0000 FC_ALL_SNAIVE 5.974651 0.0000
FC_ALL_ETS_1 18.87846 0.0000 FC_ALL_ETS_7 17.68664 0.0000

FC_ALL_SARIMA_1 10.52937 0.0000 FC_ALL_SARIMA_7 9.682864 0.0000
FC_ALL_TBATS_1 24.45411 0.0000 FC_ALL_TBATS_7 12.42974 0.0000
FC_ALL_NNAR_1 30.80203 0.0000 FC_ALL_NNAR_7 44.34023 0.0000

FC_ALL_NNARX_1 22.58761 0.0000 FC_ALL_NNARX_7 50.42701 0.0000

Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_ALL_SNAIVE 0.146487 0.105342 1.032703 0.679529 40 FC_ALL_SNAIVE 0.145821 0.103941 1.019405
FC_ALL_ETS_1 0.123992 0.090336 0.884891 0.58273 36 FC_ALL_ETS_7 0.125901 0.0911 0.892613 0.591363 24

FC_ALL_SARIMA_1 0.112078 0.081361 0.797155 0.524835 28 FC_ALL_SARIMA_7 0.114661 0.083522 0.818122 0.542171 11
FC_ALL_TBATS_1 0.164269 0.12752 1.248491 0.822593 44 FC_ALL_TBATS_7 0.177067 0.135932 1.330711 0.882383 40
FC_ALL_NNAR_1 0.098745 0.065549 0.641903 0.422837 14 FC_ALL_NNAR_7 0.137623 0.099317 0.972022 0.644702 28

FC_ALL_NNARX_1 0.119957 0.082927 0.818325 0.534937 32 FC_ALL_NNARX_7 0.159384 0.122729 1.195656 0.796678 36
Mean forecast 0.094129 0.069624 0.683052 0.449123 18 Mean forecast 0.110752 0.085315 0.83513 0.55381 14

Median forecast 0.096246 0.067842 0.666685 0.437628 16 Median forecast 0.107691 0.081208 0.796267 0.52715 4
Regression-based

weights 0.105409 0.072597 0.712363 0.468301 24 Regression-based
weights NA NA NA NA NA

Bates–Granger
weights 0.091046 0.063548 0.624425 0.409929 5 Bates–Granger weights 0.111568 0.085415 0.835928 0.554459 18

Bates–Granger ranks 0.089713 0.064701 0.6353 0.417367 7 Bates–Granger ranks 0.111669 0.085069 0.832228 0.552213 13

h = 30 Forecast
encompassing tests h = 90 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_ALL_SNAIVE 4.70036 0.0004 FC_ALL_SNAIVE 5.759609 0.0001
FC_ALL_ETS_30 22.47783 0.0000 FC_ALL_ETS_90 15.75179 0.0000

FC_ALL_SARIMA_30 8.658692 0.0000 FC_ALL_SARIMA_90 10.83232 0.0000
FC_ALL_TBATS_30 10.52756 0.0000 FC_ALL_TBATS_90 6.634232 0.0000
FC_ALL_NNAR_30 53.26993 0.0000 FC_ALL_NNAR_90 15.66648 0.0000

FC_ALL_NNARX_30 42.31334 0.0000 FC_ALL_NNARX_90 11.3257 0.0000

Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_ALL_SNAIVE 0.142607 0.100674 0.988135 0.688402 29 FC_ALL_SNAIVE 0.151693 0.106548 1.048301 1.012717 31
FC_ALL_ETS_30 0.133547 0.096637 0.94704 0.660797 24 FC_ALL_ETS_90 0.154056 0.111514 1.094633 1.059918 35
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Table 1. Cont.

FC_ALL_SARIMA_30 0.112318 0.080998 0.794006 0.553859 6 FC_ALL_SARIMA_90 0.134052 0.094104 0.926258 0.89444 23
FC_ALL_TBATS_30 0.180336 0.13818 1.352622 0.944866 44 FC_ALL_TBATS_90 0.192798 0.145528 1.426656 1.383215 44
FC_ALL_NNAR_30 0.142021 0.103142 1.009649 0.705278 31 FC_ALL_NNAR_90 0.131494 0.09408 0.92644 0.894212 21

FC_ALL_NNARX_30 0.152278 0.115943 1.131326 0.792811 36 FC_ALL_NNARX_90 0.155056 0.129769 1.26728 1.233428 39
Mean forecast 0.112132 0.085827 0.840426 0.586879 11 Mean forecast 0.123793 0.092402 0.907239 0.878263 16

Median forecast 0.112006 0.083631 0.820768 0.571863 7 Median forecast 0.120317 0.088897 0.874222 0.844948 12
Regression-based

weights 0.154694 0.118239 1.154535 0.80851 40 Regression-based
weights 0.159707 0.100148 0.991589 0.951887 31

Bates–Granger
weights 0.114843 0.087296 0.854541 0.596924 16 Bates–Granger weights 0.119477 0.087807 0.862761 0.834588 8

Bates–Granger ranks 0.117663 0.089036 0.871403 0.608822 20 Bates–Granger ranks 0.117543 0.085939 0.844424 0.816833 4



Forecasting 2021, 3 903

Tables 1 and A1, Tables A2–A6 in Appendix A summarize the forecast evaluation
results for all forecast models, forecast combination techniques, forecast horizons, and hotel
classes: Table 1 for ‘all’, Table A1 for the hotel class ‘luxury’, Table A2 for ‘upper upscale’,
Table A3 for ‘upscale’, Table A4 for ‘upper midscale’, Table A5 for ‘midscale’, and Table A6
for ‘economy’. The smallest RMSE, MAE, MAPE, MASE, and sum of rank values for
each hotel class and forecast horizons are indicated in boldface. According to the various
forecast accuracy measures, the best forecast model or forecast combination technique,
respectively, per hotel class and forecast horizon is typically indicated consistently, with
only six exceptions for the RMSE (‘upscale’ for h = 1, 7, ‘upper midscale’ for h = 30,
‘economy’ for h = 30, ‘all for h = 1, 30), which is not too surprising as this is the only
employed forecast accuracy measure based on squared forecast errors.

Given that six forecast models and five forecast combination techniques are competing,
the lowest possible sum of ranks across the four forecast accuracy measures is equal to 4,
whereas the highest possible sum of ranks equals 44. Given the six hotel classes and four
forecast horizons, a total of 28 cases in terms of the sum of ranks can be distinguished, which
are analyzed in more detail in the following. Except for regression-based weights (most
prominently: ‘economy’ for h = 30), none of the forecast models or forecast combination
techniques result in extremely high forecast errors and should, therefore, not be discarded
from the beginning. In four cases (‘upper midscale’ for h = 7, 30, ‘economy’ for h = 90,
‘all’ for h = 7), regression-based weights cannot even be calculated, as the XTX matrix
of the OLS regression is singular and, therefore, cannot be inverted. As already noted by
Nowotarski et al. [90], the high correlation of the predictions stemming from the forecast
models can make unconstrained regression-based weights unstable. Therefore, the use
of this particular forecast combination technique is not recommended for hotel revenue
managers, nor beyond this group.

With respect to the single models, the ETS model is able to achieve the lowest sum
of ranks in four cases (‘luxury’ for h = 1, 7, 30, ‘economy’ for h = 7), the Seasonal
NNAR model in three cases (‘luxury’ for h = 90, ‘upscale’ for h = 90, ‘midscale’ for
h = 90), and the SARIMA model in two cases (‘upper upscale’ for h = 1, ‘all’ for h = 30).
The Seasonal Naïve model, the TBATS model, and the Seasonal NNAR model with an
external regressor never achieve the lowest sum of ranks. The fact the that simple Seasonal
Naïve benchmark is outperformed by at least one competing forecast model or forecast
combination technique on each occasion proves the general viability of using more complex
forecasting approaches. One reason why the TBATS model does not perform so well could
be the fact that one of two seasonal patterns in the data, the weekly seasonal pattern, is
not particularly pronounced (see Section 2). Including the seasonal naïve forecast of the
inflation-adjusted ADR as an external regressor in the Seasonal NNAR model does not
seem to have a positive effect on forecast accuracy either, at least not directly. However,
the information included in these forecast models should not be discarded. As all F-test
statistics of the forecast encompassing tests are statistically significantly different from
zero—at least at the 10% level and in many cases even at the stricter 0.1% level—all forecast
models seem to possess some unique information and, therefore, survive step 1 of the
two-step forecast combination procedure suggested by Costantini et al. [26]. Thus, all
forecast models should be considered for forecast combination.

Apart from the aforementioned regression-based weights, the relevance of forecast
combination materializes in terms of superior forecast accuracy of the remaining forecast
combination techniques in 19 of 28 cases. The mean forecast is characterized by the lowest
sum of ranks in one case (‘upper upscale’ for h = 30). The time-varying and comparably
more robust median forecast achieves the lowest sum of ranks in five cases (‘upper upscale’
for h = 7, ‘upscale’ for h = 1, 7, 30, ‘all’ for h = 7), as does the Bates–Granger weights
approach (‘upper midscale’ for h = 30, 90, ‘midscale’ for h = 1, 30, ‘all’ for h = 1). Finally,
Bates–Granger ranks, which make Bates–Granger-type weights independent of correlations
between forecast errors and can, therefore, be interpreted as a refinement of traditional
Bates–Granger weights, achieve the lowest sum of ranks in eight cases (‘upper upscale’ for
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h = 90, ‘upper midscale’ for h = 1, 7, ‘midscale’ for h = 7, ‘economy’ for h = 1, 30, 90,
‘all’ for h = 90). Together, combined forecasts based on Bates–Granger weights and Bates–
Granger ranks provide the highest level of forecast accuracy in the relative majority of
cases (i.e., in 13 of 28).

5. Conclusions

The present study employed daily data made available by the STR SHARE Center
over the period from 1 January 2010 to 31 January 2020 for six Viennese hotel classes and
their total. The forecast variable of interest was hotel room demand. As forecast models,
(1) Seasonal Naïve, (2) ETS, (3) SARIMA, (4) TBATS, (5) Seasonal NNAR, and (6) Seasonal
NNAR with an external regressor (seasonal naïve forecast of the inflation-adjusted ADR)
were employed. Forecast evaluation was carried out for forecast horizons h = 1, 7, 30, and
90 days ahead based on rolling windows. As forecast combination techniques, (a) mean,
(b) median, (c) regression-based weights, (d) Bates–Granger weights, and (e) Bates–Granger
ranks were calculated.

In the relative majority of cases (i.e., in 13 of 28), combined forecasts based on Bates–
Granger weights and Bates–Granger ranks provided the highest level of forecast accuracy
in terms of typical forecast accuracy measures (RMSE, MAE, MAPE, and MASE) and their
lowest sum of ranks. The mean and the median forecast performed best in another six cases,
thus, making forecast combination a worthwhile endeavor in 19 of 28 cases. However, due
to its instability, forecast combination with regression-based weights is not recommended.
Concerning single models, the ETS model was able to achieve the lowest sum of ranks
in four cases, the Seasonal NNAR model in three cases, and the SARIMA model in two
cases. Although the Seasonal Naïve model, the TBATS model, and the Seasonal NNAR
model with an external regressor never achieved the lowest sum of ranks, considering
the information contained in these models proved worthwhile for forecast combination
according to forecast encompassing test results.

One limitation of this study is its temporal and geographical focus. Another limitation
is that the data used therein are not freely available and need to be purchased. Furthermore,
data at the individual hotel level were not available to the author, which, however, would
have suffered from a lack of representativity. Nonetheless, the suggested forecast models
and two-step forecast combination procedure can be applied to other time periods, (city)
destinations, and datasets, thus, making this research fully replicable. Especially practi-
tioners (e.g., revenue managers working in smaller (boutique) hotels without access to a
professional revenue management system; [13,38]) benefit from the results of this study
as it provides a toolkit in terms of employing the proposed methodology on their own
hotel-level dataset to easily generate reliable hotel room demand forecasts. If a single hotel
did not possess a long enough sample of time-series data, also expanding windows instead
of rolling windows could be easily implemented.

Once the author gets access to data beyond 31 January 2020, an investigation of
predictive performance for the forecast models and forecast combination techniques during
the COVID-19 pandemic within adequately designed forecasting scenarios along the lines
of Zhang et al. [44] would be of particular interest, as would observing which of the
employed forecast models would be the fastest to pick up any directional changes. As
this would constitute a forecasting exercise not for normal but rather for turbulent times
(i.e., during and with a severe structural break), such an exercise would call for a separate
investigation. Another idea for future research could be the inclusion of seasonal naïve
forecasts of web-based leading indicators as predictors in addition to the seasonal naïve
forecast of the inflation-adjusted ADR, for which, of course, daily data would need to
be available. Not only would this approach satisfy the need for this type of predictor to
be ex-ante [77] but would also take up a recent recommendation by Hu and Song [91] to
combine these two types of tourism (and hotel room) demand predictors. Finally, other
multi-step forecast combination procedures based on the Model Confidence Set (MCS; [92])
as suggested by Amendola et al. [93] or Aras [94] could be considered.
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Appendix A

Table A1. Forecast evaluation results for the hotel class ‘luxury’. Source: STR SHARE Center, own calculations using R and EViews.

h = 1 Forecast encompassing
tests h = 7 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_LUXURY_SNAIVE 16.32009 0.0000 FC_LUXURY_SNAIVE 12.52591 0.0000
FC_LUXURY_ETS_1 2.85836 0.0156 FC_LUXURY_ETS_7 10.00088 0.0000

FC_LUXURY_SARIMA_1 10.92253 0.0000 FC_LUXURY_SARIMA_7 16.40607 0.0000
FC_LUXURY_TBATS_1 18.63967 0.0000 FC_LUXURY_TBATS_7 8.035354 0.0000
FC_LUXURY_NNAR_1 19.29124 0.0000 FC_LUXURY_NNAR_7 20.33636 0.0000
FC_LUXURY_NNARX_1 9.485913 0.0000 FC_LUXURY_NNARX_7 20.49514 0.0000

Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_LUXURY_SNAIVE 0.209518 0.161318 2.15446 0.79043 44 FC_LUXURY_SNAIVE 0.209037 0.160055 2.138264 0.829619 33
FC_LUXURY_ETS_1 0.087544 0.064085 0.857725 0.314005 4 FC_LUXURY_ETS_7 0.170569 0.123925 1.661811 0.642345 4

FC_LUXURY_SARIMA_1 0.095704 0.071188 0.952914 0.348809 20 FC_LUXURY_SARIMA_7 0.207878 0.157969 2.113442 0.818806 29
FC_LUXURY_TBATS_1 0.191881 0.158181 2.124453 0.775059 40 FC_LUXURY_TBATS_7 0.207064 0.16589 2.225319 0.859863 34
FC_LUXURY_NNAR_1 0.109821 0.079734 1.062345 0.390682 33 FC_LUXURY_NNAR_7 0.191916 0.146502 1.947688 0.759369 24
FC_LUXURY_NNARX_1 0.108945 0.087597 1.17971 0.42921 35 FC_LUXURY_NNARX_7 0.229023 0.172272 2.29216 0.892943 43

Mean forecast 0.098279 0.077238 1.031541 0.378453 24 Mean forecast 0.173872 0.131478 1.752108 0.681494 8
Median forecast 0.089816 0.06866 0.917676 0.336422 10 Median forecast 0.179482 0.13769 1.833744 0.713693 19

Regression-based
weights 0.107467 0.079449 1.060927 0.389286 28 Regression-based

weights 0.234508 0.171612 2.284869 0.889522 41

Bates–Granger weights 0.089893 0.069103 0.922908 0.338592 16 Bates–Granger weights 0.176806 0.133044 1.772162 0.689612 12
Bates–Granger ranks 0.089622 0.068704 0.917177 0.336637 10 Bates–Granger ranks 0.181203 0.135121 1.798803 0.700377 17

h = 30 Forecast encompassing
tests h = 90 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_LUXURY_SNAIVE 8.055472 0.0000 FC_LUXURY_SNAIVE 17.73284 0.0000
FC_LUXURY_ETS_30 17.69353 0.0000 FC_LUXURY_ETS_90 7.065177 0.0000

FC_LUXURY_SARIMA_30 55.00696 0.0000 FC_LUXURY_SARIMA_90 43.44456 0.0000
FC_LUXURY_TBATS_30 2.085499 0.0679 FC_LUXURY_TBATS_90 25.83146 0.0000
FC_LUXURY_NNAR_30 23.52884 0.0000 FC_LUXURY_NNAR_90 8.878909 0.0000
FC_LUXURY_NNARX_30 16.90916 0.0000 FC_LUXURY_NNARX_90 25.27719 0.0000
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Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_LUXURY_SNAIVE 0.213606 0.163953 2.18938 0.95581 28 FC_LUXURY_SNAIVE 0.231818 0.180371 2.409105 1.450767 32
FC_LUXURY_ETS_30 0.185534 0.141494 1.895716 0.824879 4 FC_LUXURY_ETS_90 0.204164 0.155037 2.067238 1.247 21

FC_LUXURY_SARIMA_30 0.335021 0.302819 4.019495 1.765369 44 FC_LUXURY_SARIMA_90 0.468366 0.438595 5.809883 3.527725 44
FC_LUXURY_TBATS_30 0.215911 0.171995 2.302796 1.002693 32 FC_LUXURY_TBATS_90 0.236342 0.191731 2.562032 1.542139 36
FC_LUXURY_NNAR_30 0.201226 0.153374 2.036935 0.894137 12 FC_LUXURY_NNAR_90 0.17141 0.131833 1.764189 1.060365 4
FC_LUXURY_NNARX_30 0.232117 0.188084 2.492954 1.096489 40 FC_LUXURY_NNARX_90 0.203281 0.166045 2.214327 1.33554 23

Mean forecast 0.196003 0.160388 2.130115 0.935027 22 Mean forecast 0.213697 0.178811 2.371894 1.43822 28
Median forecast 0.194566 0.157631 2.095555 0.918954 18 Median forecast 0.190474 0.154669 2.058517 1.24404 16

Regression-based
weights 0.229081 0.183769 2.437347 1.071333 36 Regression-based

weights 0.399399 0.374997 5.017681 3.016191 40

Bates–Granger weights 0.196449 0.157564 2.092582 0.918564 17 Bates–Granger weights 0.180765 0.143159 1.904875 1.151462 8
Bates–Granger ranks 0.192562 0.153455 2.03924 0.894609 11 Bates–Granger ranks 0.186505 0.149609 1.988532 1.203341 12

Table A2. Forecast evaluation results for the hotel class ‘upper upscale’. Source: STR SHARE Center, own calculations using R and EViews.

h = 1 Forecast encompassing
tests h = 7 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_UPPER_UPSCALE_
SNAIVE 12.59821 0.0000 FC_UPPER_UPSCALE_

SNAIVE 3.392179 0.0055

FC_UPPER_UPSCALE_
ETS_1 31.43229 0.0000 FC_UPPER_UPSCALE_

ETS_7 12.89008 0.0000

FC_UPPER_UPSCALE_
SARIMA_1 14.70312 0.0000 FC_UPPER_UPSCALE_

SARIMA_7 36.16254 0.0000

FC_UPPER_UPSCALE_
TBATS_1 32.66598 0.0000 FC_UPPER_UPSCALE_

TBATS_7 11.18837 0.0000

FC_UPPER_UPSCALE_
NNAR_1 42.66397 0.0000 FC_UPPER_UPSCALE_

NNAR_7 23.78411 0.0000

FC_UPPER_UPSCALE_
NNARX_1 32.5047 0.0000 FC_UPPER_UPSCALE_

NNARX_7 21.28089 0.0000
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Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_UPPER_UPSCALE_
SNAIVE 0.150782 0.110127 1.355925 0.700727 40 FC_UPPER_UPSCALE_

SNAIVE 0.151458 0.110214 1.357374 0.72622 35

FC_UPPER_UPSCALE_
ETS_1 0.127043 0.090924 1.118678 0.57854 32 FC_UPPER_UPSCALE_

ETS_7 0.129237 0.092119 1.133693 0.606988 20

FC_UPPER_UPSCALE_
SARIMA_1 0.082216 0.061995 0.761406 0.394468 4 FC_UPPER_UPSCALE_

SARIMA_7 0.147454 0.10595 1.305618 0.698123 28

FC_UPPER_UPSCALE_
TBATS_1 0.169696 0.130443 1.604181 0.829996 44 FC_UPPER_UPSCALE_

TBATS_7 0.176288 0.133954 1.647736 0.882647 41

FC_UPPER_UPSCALE_
NNAR_1 0.09789 0.064829 0.798285 0.412501 13 FC_UPPER_UPSCALE_

NNAR_7 0.136968 0.094979 1.170773 0.625834 24

FC_UPPER_UPSCALE_
NNARX_1 0.141889 0.100997 1.251798 0.642634 36 FC_UPPER_UPSCALE_

NNARX_7 0.167772 0.140907 1.714852 0.928461 43

Mean forecast 0.100858 0.069609 0.859669 0.442915 23 Mean forecast 0.117539 0.08629 1.062078 0.56858 10
Median forecast 0.103047 0.068461 0.84682 0.435611 22 Median forecast 0.115785 0.083706 1.031675 0.551554 4

Regression-based
weights 0.103007 0.069989 0.864106 0.445333 27 Regression-based

weights 0.15941 0.109911 1.354395 0.724223 33

Bates–Granger weights 0.094567 0.064543 0.797838 0.410681 8 Bates–Granger weights 0.11867 0.086254 1.062423 0.568343 10
Bates–Granger ranks 0.09646 0.06613 0.817481 0.420779 15 Bates–Granger ranks 0.119586 0.08653 1.066684 0.570162 16

h = 30 Forecast encompassing
tests h = 90 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_UPPER_UPSCALE_
SNAIVE 3.355434 0.0060 FC_UPPER_UPSCALE_

SNAIVE 8.339223 0.0000

FC_UPPER_UPSCALE_
ETS_30 13.10286 0.0000 FC_UPPER_UPSCALE_

ETS_90 12.23476 0.0000

FC_UPPER_UPSCALE_
SARIMA_30 48.48259 0.0000 FC_UPPER_UPSCALE_

SARIMA_90 40.91501 0.0000

FC_UPPER_UPSCALE_
TBATS_30 4.104489 0.0014 FC_UPPER_UPSCALE_

TBATS_90 4.07548 0.0016

FC_UPPER_UPSCALE_
NNAR_30 28.218 0.0000 FC_UPPER_UPSCALE_

NNAR_90 9.439183 0.0000

FC_UPPER_UPSCALE_
NNARX_30 26.92072 0.0000 FC_UPPER_UPSCALE_

NNARX_90 5.191002 0.0002
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Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks Forecast RMSE MAE MAPE (%) MASE Sum of

ranks
FC_UPPER_UPSCALE_

SNAIVE 0.148575 0.107054 1.319481 0.74533 31 FC_UPPER_UPSCALE_
SNAIVE 0.157708 0.11205 1.385445 1.045935 33

FC_UPPER_UPSCALE_
ETS_30 0.136023 0.097876 1.204554 0.681431 20 FC_UPPER_UPSCALE_

ETS_90 0.156272 0.11275 1.391787 1.052469 35

FC_UPPER_UPSCALE_
SARIMA_30 0.175671 0.139149 1.709719 0.968782 43 FC_UPPER_UPSCALE_

SARIMA_90 0.193707 0.166604 2.041383 1.555172 44

FC_UPPER_UPSCALE_
TBATS_30 0.180117 0.138577 1.703138 0.964799 41 FC_UPPER_UPSCALE_

TBATS_90 0.19031 0.143063 1.764517 1.335427 40

FC_UPPER_UPSCALE_
NNAR_30 0.14954 0.102743 1.272274 0.715316 26 FC_UPPER_UPSCALE_

NNAR_90 0.145923 0.097087 1.211011 0.906263 24

FC_UPPER_UPSCALE_
NNARX_30 0.144508 0.103856 1.278423 0.723065 27 FC_UPPER_UPSCALE_

NNARX_90 0.129768 0.09578 1.182614 0.894062 20

Mean forecast 0.121522 0.086009 1.061401 0.598811 4 Mean forecast 0.125623 0.086778 1.074851 0.810033 15
Median forecast 0.123368 0.086304 1.066479 0.600865 8 Median forecast 0.127363 0.085061 1.056062 0.794005 13

Regression-based
weights 0.16142 0.116878 1.434824 0.813727 36 Regression-based

weights 0.148471 0.10298 1.282483 0.961271 28

Bates–Granger weights 0.123404 0.086468 1.067652 0.602007 12 Bates–Granger weights 0.124862 0.082487 1.024688 0.769978 8
Bates–Granger ranks 0.125265 0.087882 1.084757 0.611851 16 Bates–Granger ranks 0.124484 0.081786 1.015742 0.763435 4

Table A3. Forecast evaluation results for the hotel class ‘upscale’. Source: STR SHARE Center, own calculations using R and EViews.

h = 1 Forecast
encompassing tests h = 7 Forecast

encompassing tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_UPSCALE_
SNAIVE 10.68013 0.0000 FC_UPSCALE_

SNAIVE 3.763008 0.0026

FC_UPSCALE_
ETS_1 18.0499 0.0000 FC_UPSCALE_

ETS_7 16.43747 0.0000

FC_UPSCALE_
SARIMA_1 13.25403 0.0000 FC_UPSCALE_

SARIMA_7 23.51177 0.0000

FC_UPSCALE_T
BATS_1 20.36749 0.0000 FC_UPSCALE_

TBATS_7 3.979467 0.0017
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FC_UPSCALE_
NNAR_1 31.86091 0.0000 FC_UPSCALE_

NNAR_7 17.49965 0.0000

FC_UPSCALE_
NNARX_1 19.63853 0.0000 FC_UPSCALE_

NNARX_7 25.43725 0.0000

Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_UPSCALE_
SNAIVE 0.147264 0.105814 1.25046 0.635558 40 FC_UPSCALE_

SNAIVE 0.146775 0.104603 1.236859 0.648801 30

FC_UPSCALE_
ETS_1 0.12122 0.089742 1.059891 0.539023 36 FC_UPSCALE_

ETS_7 0.12351 0.090806 1.072854 0.563225 14

FC_UPSCALE_
SARIMA_1 0.086949 0.065638 0.773686 0.394246 16 FC_UPSCALE_

SARIMA_7 0.140314 0.107549 1.269103 0.667074 31

FC_UPSCALE_
TBATS_1 0.151155 0.117417 1.38433 0.70525 44 FC_UPSCALE_

TBATS_7 0.163656 0.123155 1.452541 0.76387 40

FC_UPSCALE_
NNAR_1 0.09542 0.068672 0.810531 0.412469 28 FC_UPSCALE_

NNAR_7 0.131214 0.098472 1.162606 0.610774 24

FC_UPSCALE_
NNARX_1 0.108023 0.074073 0.881948 0.44491 32 FC_UPSCALE_

NNARX_7 0.173428 0.147058 1.722723 0.912129 44

Mean forecast 0.08931 0.068087 0.80515 0.408955 23 Mean forecast 0.116477 0.09382 1.105795 0.58192 19
Median forecast 0.085773 0.062397 0.739612 0.374779 6 Median forecast 0.112698 0.089774 1.058664 0.556824 4

Regression-based
weights 0.091553 0.066134 0.781449 0.397225 21 Regression-based

weights 0.146156 0.119663 1.407305 0.742211 35

Bates–Granger
weights 0.085494 0.063218 0.747981 0.37971 11 Bates–Granger

weights 0.11554 0.092599 1.092029 0.574346 15

Bates–Granger
ranks 0.084703 0.063118 0.746597 0.37911 7 Bates–Granger ranks 0.113999 0.090585 1.069051 0.561855 8

h = 30 Forecast
encompassing tests h = 90 Forecast

encompassing tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_UPSCALE_
SNAIVE 7.713762 0.0000 FC_UPSCALE_

SNAIVE 8.92849 0.0000

FC_UPSCALE_
ETS_30 11.33217 0.0000 FC_UPSCALE_

ETS_90 10.60228 0.0000

FC_UPSCALE_
SARIMA_30 45.18074 0.0000 FC_UPSCALE_

SARIMA_90 38.6814 0.0000
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FC_UPSCALE_
TBATS_30 4.37342 0.0008 FC_UPSCALE_

TBATS_90 5.635154 0.0001

FC_UPSCALE_
NNAR_30 23.04718 0.0000 FC_UPSCALE_

NNAR_90 7.991132 0.0000

FC_UPSCALE_
NNARX_30 16.66686 0.0000 FC_UPSCALE_

NNARX_90 4.471509 0.0007

Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_UPSCALE_
SNAIVE 0.143986 0.102046 1.207862 0.697688 28 FC_UPSCALE_

SNAIVE 0.152244 0.10743 1.275666 1.019928 26

FC_UPSCALE_
ETS_30 0.130202 0.094587 1.117744 0.646691 18 FC_UPSCALE_

ETS_90 0.14967 0.109134 1.291643 1.036105 28

FC_UPSCALE_
SARIMA_30 0.195951 0.171029 2.005473 1.169325 44 FC_UPSCALE_

SARIMA_90 0.249733 0.226964 2.657518 2.154769 40

FC_UPSCALE_
TBATS_30 0.16709 0.125448 1.479581 0.857688 40 FC_UPSCALE_

TBATS_90 0.179385 0.132474 1.564942 1.257692 36

FC_UPSCALE_
NNAR_30 0.127569 0.095069 1.123633 0.649987 20 FC_UPSCALE_

NNAR_90 0.123605 0.089921 1.070174 0.853699 7

FC_UPSCALE_
NNARX_30 0.148088 0.123284 1.447415 0.842893 35 FC_UPSCALE_

NNARX_90 0.131224 0.111262 1.311484 1.056308 30

Mean forecast 0.118768 0.098832 1.163905 0.675714 22 Mean forecast 0.127693 0.107207 1.264759 1.017811 20
Median forecast 0.113171 0.091585 1.079986 0.626167 4 Median forecast 0.118367 0.094622 1.119729 0.89833 14

Regression-based
weights 0.148492 0.118216 1.390091 0.808243 33 Regression-based

weights 0.343877 0.315221 3.688137 2.992671 44

Bates–Granger
weights 0.115741 0.094581 1.114778 0.64665 12 Bates–Granger

weights 0.118989 0.093121 1.101989 0.88408 9

Bates–Granger
ranks 0.114364 0.091986 1.084922 0.628908 8 Bates–Granger ranks 0.118142 0.09315 1.102108 0.884355 10
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Table A4. Forecast evaluation results for the hotel class ‘upper midscale’. Source: STR SHARE Center, own calculations using R and EViews.

h = 1 Forecast encompassing
tests h = 7 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_UPPER_MIDSCALE_
SNAIVE 11.61764 0.0000 FC_UPPER_MIDSCALE_

SNAIVE 4.157892 0.0012

FC_UPPER_MIDSCALE_
ETS_1 19.69565 0.0000 FC_UPPER_MIDSCALE_

ETS_7 16.79542 0.0000

FC_UPPER_MIDSCALE_
SARIMA_1 10.70191 0.0000 FC_UPPER_MIDSCALE_

SARIMA_7 7.740781 0.0000

FC_UPPER_MIDSCALE_
TBATS_1 23.99187 0.0000 FC_UPPER_MIDSCALE_

TBATS_7 8.468066 0.0000

FC_UPPER_MIDSCALE_
NNAR_1 36.74004 0.0000 FC_UPPER_MIDSCALE_

NNAR_7 49.7005 0.0000

FC_UPPER_MIDSCALE_
NNARX_1 30.11163 0.0000 FC_UPPER_MIDSCALE_

NNARX_7 44.3505 0.0000

Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_UPPER_MIDSCALE_
SNAIVE 0.154413 0.111311 1.270464 0.762263 40 FC_UPPER_MIDSCALE_

SNAIVE 0.153571 0.109713 1.252948 0.732128 32

FC_UPPER_MIDSCALE_
ETS_1 0.130171 0.094177 1.072478 0.644929 32 FC_UPPER_MIDSCALE_

ETS_7 0.132346 0.095101 1.083157 0.63462 24

FC_UPPER_MIDSCALE_
SARIMA_1 0.120813 0.090894 1.034914 0.622447 28 FC_UPPER_MIDSCALE_

SARIMA_7 0.122774 0.093009 1.059256 0.62066 20

FC_UPPER_MIDSCALE_
TBATS_1 0.185388 0.138964 1.582794 0.951632 44 FC_UPPER_MIDSCALE_

TBATS_7 0.197467 0.151017 1.719871 1.007754 37

FC_UPPER_MIDSCALE_
NNAR_1 0.112159 0.073619 0.839085 0.504146 15 FC_UPPER_MIDSCALE_

NNAR_7 0.147702 0.100869 1.151594 0.673111 28

FC_UPPER_MIDSCALE_
NNARX_1 0.143351 0.097083 1.116488 0.664829 36 FC_UPPER_MIDSCALE_

NNARX_7 0.196358 0.163066 1.842401 1.088159 39

Mean forecast 0.105621 0.076692 0.876682 0.525191 21 Mean forecast 0.11977 0.091278 1.03999 0.609109 15
Median forecast 0.107828 0.07443 0.852308 0.5097 16 Median forecast 0.121131 0.090112 1.029058 0.601328 13

Regression-based weights 0.110452 0.074948 0.854265 0.513248 20 Regression-based weights NA NA NA NA NA
Bates–Granger weights 0.104599 0.071789 0.821863 0.491615 8 Bates–Granger weights 0.118249 0.088597 1.010089 0.591218 8

Bates–Granger ranks 0.10049 0.070738 0.809422 0.484417 4 Bates–Granger ranks 0.113537 0.084368 0.962971 0.562998 4
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h = 30 Forecast encompassing
tests h = 90 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_UPPER_MIDSCALE_
SNAIVE 5.059947 0.0002 FC_UPPER_MIDSCALE_

SNAIVE 7.203316 0.0000

FC_UPPER_MIDSCALE_
ETS_30 31.25303 0.0000 FC_UPPER_MIDSCALE_

ETS_90 20.62793 0.0000

FC_UPPER_MIDSCALE_
SARIMA_30 6.553232 0.0000 FC_UPPER_MIDSCALE_

SARIMA_90 13.77828 0.0000

FC_UPPER_MIDSCALE_
TBATS_30 10.31844 0.0000 FC_UPPER_MIDSCALE_

TBATS_90 6.328832 0.0000

FC_UPPER_MIDSCALE_
NNAR_30 45.47215 0.0000 FC_UPPER_MIDSCALE_

NNAR_90 20.43492 0.0000

FC_UPPER_MIDSCALE_
NNARX_30 50.12204 0.0000 FC_UPPER_MIDSCALE_

NNARX_90 9.165978 0.0000

Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_UPPER_MIDSCALE_
SNAIVE 0.150579 0.106045 1.212837 0.72194 33 FC_UPPER_MIDSCALE_

SNAIVE 0.160822 0.11237 1.288928 1.011158 28

FC_UPPER_MIDSCALE_
ETS_30 0.142759 0.102213 1.16413 0.695852 27 FC_UPPER_MIDSCALE_

ETS_90 0.168164 0.121242 1.383578 1.090993 32

FC_UPPER_MIDSCALE_
SARIMA_30 0.120818 0.089784 1.024021 0.611237 19 FC_UPPER_MIDSCALE_

SARIMA_90 0.145529 0.10166 1.165304 0.914784 24

FC_UPPER_MIDSCALE_
TBATS_30 0.201919 0.15406 1.754807 1.048819 40 FC_UPPER_MIDSCALE_

TBATS_90 0.216381 0.163326 1.863756 1.469684 43

FC_UPPER_MIDSCALE_
NNAR_30 0.147478 0.098983 1.131851 0.673863 25 FC_UPPER_MIDSCALE_

NNAR_90 0.140949 0.090053 1.038815 0.810339 14

FC_UPPER_MIDSCALE_
NNARX_30 0.14995 0.108434 1.233429 0.738204 35 FC_UPPER_MIDSCALE_

NNARX_90 0.176822 0.154206 1.748699 1.387618 39

Mean forecast 0.116518 0.086368 0.986083 0.587981 7 Mean forecast 0.1312 0.097158 1.111862 0.874273 18
Median forecast 0.12022 0.086695 0.992224 0.590208 12 Median forecast 0.133106 0.096652 1.108297 0.86972 16

Regression-based weights NA NA NA NA NA Regression-based weights 0.220861 0.122861 1.4209 1.105561 38
Bates–Granger weights 0.118086 0.08563 0.977683 0.582957 5 Bates–Granger weights 0.123792 0.08717 0.999745 0.784397 4

Bates–Granger ranks 0.12197 0.088546 1.010438 0.602809 17 Bates–Granger ranks 0.123879 0.088538 1.014578 0.796707 8
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Table A5. Forecast evaluation results for the hotel class ‘midscale’. Source: STR SHARE Center, own calculations using R and EViews.

h = 1 Forecast encompassing
tests h = 7 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_MIDSCALE_SNAIVE 12.47588 0.0000 FC_MIDSCALE_SNAIVE 6.065493 0.0000
FC_MIDSCALE_ETS_1 12.97135 0.0000 FC_MIDSCALE_ETS_7 16.50515 0.0000

FC_MIDSCALE_SARIMA_1 15.6279 0.0000 FC_MIDSCALE_SARIMA_7 17.11077 0.0000
FC_MIDSCALE_TBATS_1 16.66577 0.0000 FC_MIDSCALE_TBATS_7 10.11534 0.0000
FC_MIDSCALE_NNAR_1 12.59657 0.0000 FC_MIDSCALE_NNAR_7 29.50288 0.0000
FC_MIDSCALE_NNARX_1 27.12821 0.0000 FC_MIDSCALE_NNARX_7 22.57572 0.0000

Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_MIDSCALE_SNAIVE 0.198359 0.149464 1.764835 0.645697 44 FC_MIDSCALE_SNAIVE 0.196909 0.147358 1.740813 0.634191 32
FC_MIDSCALE_ETS_1 0.139426 0.10471 1.237665 0.452356 31 FC_MIDSCALE_ETS_7 0.14303 0.107842 1.274764 0.464124 17

FC_MIDSCALE_SARIMA_1 0.147828 0.109716 1.296446 0.473982 36 FC_MIDSCALE_SARIMA_7 0.147991 0.110906 1.310721 0.477311 28
FC_MIDSCALE_TBATS_1 0.193753 0.146462 1.730178 0.632728 40 FC_MIDSCALE_TBATS_7 0.209606 0.160089 1.889038 0.688982 36
FC_MIDSCALE_NNAR_1 0.111587 0.078623 0.927261 0.339658 14 FC_MIDSCALE_NNAR_7 0.144692 0.109454 1.290204 0.471062 21
FC_MIDSCALE_NNARX_1 0.145639 0.102291 1.22408 0.441906 29 FC_MIDSCALE_NNARX_7 0.25491 0.228384 2.670795 0.982906 43

Mean forecast 0.109145 0.083609 0.989367 0.361198 18 Mean forecast 0.135208 0.110499 1.300815 0.475559 22
Median forecast 0.109676 0.080362 0.952814 0.347171 16 Median forecast 0.132179 0.105 1.238691 0.451893 12

Regression-based weights 0.130433 0.097348 1.147484 0.420552 24 Regression-based weights 0.25954 0.202013 2.386749 0.869412 41
Bates–Granger weights 0.099987 0.074098 0.878583 0.32011 4 Bates–Granger weights 0.128134 0.103116 1.215175 0.443785 8

Bates–Granger ranks 0.10295 0.07736 0.916934 0.334202 8 Bates–Granger ranks 0.127872 0.102305 1.206033 0.440294 4

h = 30 Forecast encompassing
tests h = 90 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_MIDSCALE_SNAIVE 8.051956 0.0000 FC_MIDSCALE_SNAIVE 14.28808 0.0000
FC_MIDSCALE_ETS_30 22.73777 0.0000 FC_MIDSCALE_ETS_90 27.2534 0.0000

FC_MIDSCALE_SARIMA_30 28.42832 0.0000 FC_MIDSCALE_SARIMA_90 40.94966 0.0000
FC_MIDSCALE_TBATS_30 12.20004 0.0000 FC_MIDSCALE_TBATS_90 11.54967 0.0000
FC_MIDSCALE_NNAR_30 31.67838 0.0000 FC_MIDSCALE_NNAR_90 10.81172 0.0000
FC_MIDSCALE_NNARX_30 17.79038 0.0000 FC_MIDSCALE_NNARX_90 19.46184 0.0000

Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks
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FC_MIDSCALE_SNAIVE 0.188546 0.141499 1.674244 0.657053 33 FC_MIDSCALE_SNAIVE 0.18858 0.13858 1.647037 0.792361 33
FC_MIDSCALE_ETS_30 0.157724 0.120631 1.425813 0.560152 28 FC_MIDSCALE_ETS_90 0.183316 0.131655 1.563532 0.752766 29

FC_MIDSCALE_SARIMA_30 0.146072 0.111624 1.320218 0.518328 24 FC_MIDSCALE_SARIMA_90 0.164475 0.125866 1.493872 0.719666 24
FC_MIDSCALE_TBATS_30 0.212878 0.161995 1.911795 0.752227 43 FC_MIDSCALE_TBATS_90 0.227322 0.173027 2.047555 0.989319 40
FC_MIDSCALE_NNAR_30 0.135514 0.099713 1.17782 0.463019 14 FC_MIDSCALE_NNAR_90 0.119451 0.084798 1.009821 0.484851 4
FC_MIDSCALE_NNARX_30 0.173619 0.147572 1.730051 0.685253 35 FC_MIDSCALE_NNARX_30 0.176501 0.158707 1.863329 0.907442 34

Mean forecast 0.125688 0.10148 1.197074 0.471224 18 Mean forecast 0.131658 0.103267 1.22353 0.590451 19
Median forecast 0.127389 0.100462 1.186192 0.466497 16 Median forecast 0.131807 0.10135 1.202228 0.579491 17

Regression-based weights 0.230626 0.155407 1.850398 0.721635 41 Regression-based weights 0.300342 0.244455 2.89074 1.397724 44
Bates–Granger weights 0.12383 0.099175 1.170179 0.460521 4 Bates–Granger weights 0.120008 0.092549 1.097306 0.529169 8

Bates–Granger ranks 0.124534 0.099202 1.170633 0.460646 8 Bates–Granger ranks 0.123028 0.094259 1.118035 0.538946 12

Table A6. Forecast evaluation results for the hotel class ‘economy’. Source: STR SHARE Center, own calculations using R and EViews.

h = 1 Forecast encompassing
tests h = 7 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_ECONOMY_SNAIVE 6.092352 0.0000 FC_ECONOMY_SNAIVE 2.352535 0.0412
FC_ECONOMY_ETS_1 12.2109 0.0000 FC_ECONOMY_ETS_7 12.50384 0.0000

FC_ECONOMY_SARIMA_1 13.72428 0.0000 FC_ECONOMY_SARIMA_7 8.127302 0.0000
FC_ECONOMY_TBATS_1 13.75434 0.0000 FC_ECONOMY_TBATS_7 6.718792 0.0000
FC_ECONOMY_NNAR_1 27.23227 0.0000 FC_ECONOMY_NNAR_7 50.29536 0.0000
FC_ECONOMY_NNARX_1 37.51873 0.0000 FC_ECONOMY_NNARX_7 51.63246 0.0000

Forecast accuracy
measures

Forecast accuracy
measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_ECONOMY_SNAIVE 0.176198 0.137092 1.563729 0.887775 44 FC_ECONOMY_SNAIVE 0.173817 0.135209 1.542639 0.848455 29
FC_ECONOMY_ETS_1 0.119563 0.088066 1.006098 0.570294 32 FC_ECONOMY_ETS_7 0.123077 0.08995 1.027336 0.564449 4

FC_ECONOMY_SARIMA_1 0.12982 0.093676 1.071824 0.606623 36 FC_ECONOMY_SARIMA_7 0.136969 0.099649 1.139359 0.625311 15
FC_ECONOMY_TBATS_1 0.169487 0.127447 1.457169 0.825316 40 FC_ECONOMY_TBATS_7 0.179777 0.138302 1.578964 0.867864 36
FC_ECONOMY_NNAR_1 0.108318 0.078243 0.890772 0.506683 21 FC_ECONOMY_NNAR_7 0.172872 0.136709 1.556156 0.857868 31
FC_ECONOMY_NNARX_1 0.110788 0.082157 0.944479 0.532029 28 FC_ECONOMY_NNARX_7 0.186704 0.15257 1.732784 0.957398 40

Mean forecast 0.098787 0.080377 0.916509 0.520502 22 Mean forecast 0.127547 0.104008 1.183706 0.652665 15
Median forecast 0.093476 0.073889 0.844286 0.478488 8 Median forecast 0.123531 0.099516 1.133467 0.624477 8
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Table A6. Cont.

Regression-based weights 0.105929 0.074291 0.848172 0.481091 14 Regression-based weights 1.367922 0.869485 10.01118 5.45614 44
Bates–Granger weights 0.094157 0.075669 0.862742 0.490014 15 Bates–Granger weights 0.129583 0.105358 1.198625 0.661136 19

Bates–Granger ranks 0.09154 0.073058 0.833371 0.473106 4 Bates–Granger ranks 0.133243 0.107317 1.220427 0.673429 23

h = 30 Forecast encompassing
tests h = 90 Forecast encompassing

tests
Forecast F-stat F-prob Forecast F-stat F-prob

FC_ECONOMY_SNAIVE 2.961128 0.0130 FC_ECONOMY_SNAIVE 13.66408 0.0000
FC_ECONOMY_ETS_30 15.34169 0.0000 FC_ECONOMY_ETS_90 17.83844 0.0000

FC_ECONOMY_SARIMA_30 8.226793 0.0000 FC_ECONOMY_SARIMA_90 20.18907 0.0000
FC_ECONOMY_TBATS_30 12.1509 0.0000 FC_ECONOMY_TBATS_90 16.26509 0.0000
FC_ECONOMY_NNAR_30 44.403 0.0000 FC_ECONOMY_NNAR_90 26.51577 0.0000
FC_ECONOMY_NNARX_30 37.03156 0.0000 FC_ECONOMY_NNARX_90 12.34442 0.0000

Forecast accuracy
measures Forecast accuracy measures

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

Forecast RMSE MAE MAPE (%) MASE Sum of
ranks

FC_ECONOMY_SNAIVE 0.171852 0.133959 1.528859 0.899712 32 FC_ECONOMY_SNAIVE 0.183235 0.143956 1.646537 1.140363 36
FC_ECONOMY_ETS_30 0.134652 0.099565 1.13631 0.668711 15 FC_ECONOMY_ETS_90 0.164148 0.12201 1.39557 0.966515 32

FC_ECONOMY_SARIMA_30 0.136686 0.100909 1.153947 0.677737 22 FC_ECONOMY_SARIMA_90 0.160152 0.120599 1.382939 0.955338 28
FC_ECONOMY_TBATS_30 0.187686 0.144575 1.649421 0.971012 37 FC_ECONOMY_TBATS_90 0.21483 0.161054 1.839831 1.275807 40
FC_ECONOMY_NNAR_30 0.186306 0.152604 1.734526 1.024938 39 FC_ECONOMY_NNAR_90 0.151895 0.119437 1.369897 0.946133 24
FC_ECONOMY_NNARX_30 0.155661 0.124282 1.415337 0.834718 28 FC_ECONOMY_NNARX_90 0.137646 0.114156 1.30852 0.904299 20

Mean forecast 0.124841 0.101298 1.152003 0.68035 21 Mean forecast 0.133291 0.109268 1.247726 0.865578 16
Median forecast 0.122386 0.099084 1.128368 0.66548 7 Median forecast 0.12851 0.103311 1.180509 0.818389 12

Regression-based weights 2204.468 1471.018 16924.29 9879.832 44 Regression-based weights NA NA NA NA NA
Bates–Granger weights 0.123896 0.099705 1.133524 0.669651 13 Bates-Granger weights 0.124915 0.1017 1.161397 0.805628 8

Bates–Granger ranks 0.124062 0.098731 1.122146 0.663109 6 Bates-Granger ranks 0.124306 0.101599 1.160248 0.804827 4
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