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Abstract: The Integrated Multisatellite Retrievals for Global Precipitation Measurement (GPM) 
(IMERG) Level 3 estimates rainfall from passive microwave sensors onboard satellites that are 
associated with several uncertainty sources such as sensor calibration, retrieval errors, and 
orographic effects. This study aims to provide a comprehensive investigation of multiple machine 
learning (ML) techniques (Random Forest, and Neural Networks), to stochastically generate an 
error-corrected improved IMERG precipitation product at a daily time scale and 0.1°-degree spatial 
resolution over the Brahmaputra river basin. In this study, we used the operational IMERG-Late 
Run version 06 product along with several meteorological and land surface parameters (elevation, 
soil type, land type, soil moisture, and daily maximum and minimum temperature) to produce an 
improved precipitation product in the Brahmaputra basin. We trained, tested, and optimized ML 
algorithms using 4 years (from 2015 through 2019) of reference rainfall data derived from the rain 
gauge. The ML generated precipitation product exhibited improved systematic and random error 
statistics for the study area, which is a strong indication for using the proposed algorithms in 
retrieving precipitation across the globe. We conclude that the proposed ML-based ensemble 
framework has the potential to quantify and correct the error sources for improving and promoting 
the use of satellite-based precipitation estimates for water resources applications. 
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1. Introduction 

The accurate estimation of precipitation incorporates a significant impact on the hydrology, 
vegetation, natural life, and ecology of any water resource system [1,2]. Despite the fact that 
precipitation is one of the most imperative parameters for water resource management, documenting 
precise precipitation information on a global scale is a challenge for climate experts and the scientific 
community [3–5]. While in situ rain gauge station and weather radar data are the most common 
sources to obtain precipitation information, satellite-based precipitation products have been 
recognized as a subordinate source of precipitation data to overcome the restrictions due to 
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inadequate spatial coverage or uneven conveyance from ground-based observations [1,6–9]. 
However, complex terrain regions with high-altitude satellite precipitation estimates are associated 
with substantial error due to variability and uncertainty introduced by orographic effects [10–16]. 

Different satellite-based precipitation products are accessible to supply precipitation at fine 
spatio-temporal resolutions for a broad range of applications [15,16]. Among these precipitation 
products, the Integrated Multi-satellite Retrievals for GPM (IMERG) is a combination of features of 
three multi-satellite precipitation products including (1) Tropical Rainfall Measurement Mission 
(TRMM) Multi-satellite Precipitation Analysis (TMPA), (2) Climate Prediction Center Morphing 
(CMORPH) and (3) Precipitation Estimation from Remotely Sensed Information using Artificial 
Neural Networks (PERSIANN) deemed to have advantages over available satellite-based 
precipitation products [1,3,17,18]. While IMERG and ground-based observations agree reasonably 
well for the variations of mean daily precipitation, IMERG tends to overestimate higher monthly 
precipitation amounts and underestimate dry season precipitation amounts, specifically in multiple 
regions of Asia [3,19,20]. 

Moreover, previous studies have assessed the performance of IMERG over varied topographic 
and geographic features considering seasonal characteristics [19,21–29]. The validation of the IMERG 
dataset using ground-based observations (i.e., gauges and radar) in conterminous US and Canada 
suggests an overall improvement in surface precipitation measurement from previous similar 
products [22,26]. Relative to Tropical Rainfall Measurement Mission (TRMM), IMERG displays 
improvement associated with the misrepresentation of the rainfall pattern with significant bias 
reduction in the US conterminous [22] and provides a better correlation in daily and monthly scale 
in mainland China [27,29,30]. In addition, IMERG showed poor performance even with its improved 
ability to sense frozen precipitation and deemed to be unreliable over Northern China [31]. Similarly, 
Murali et al. [24] showed region-specific biases and underestimation for the IMERG products 
compared to the observed precipitation over the Indian subcontinent. Islam et al. [32] concluded that 
the performance of IMERG is relatively unsatisfactory for the winter season in Bangladesh and 
deemed it to be inefficient to estimate the amount of rainfall in general. Such inconsistencies in 
IMERG products might be associated with various sources of errors causing a detrimental impact on 
the hydrologic investigation [15,16,33,34], and the need to eliminate these errors for certain regions 
like Ganges Brahmaputra Meghna (GBM) basin is paramount. 

Historically, a significant divergence of opinion on the development of the Brahmaputra river 
basin has existed among the three demographic giants (namely China, India, and Bangladesh) in this 
region [35–37]. All these bordering countries are under ever-increasing pressure due to global change, 
severe water scarcity, and rising demands from population growth [35,38]. Owing to the geopolitical 
relationships among the countries, Ray et al. [39] identify the absence of an authoritative, dependable, 
and comprehensive network of basin-wide information on climate as a critical compounding factor 
in the Brahmaputra basin. A better representative, error-corrected satellite precipitation dataset is 
essential to fill in the current knowledge gaps in this region. 

Therefore, error modeling is vital for improving the use of satellite-based precipitation product 
(GPM IMERG Precipitation estimates) in precipitation-sensitive applications such as hydrological 
modeling [40]. The first step to error modeling is to recognize the physical error factors and then 
evaluate the related error magnitudes. Research on error analysis of the satellite precipitation product 
has been reported in several past studies, which considered the dependence on precipitation rates 
and types, as well as surface conditions like soil moisture and land cover [40,41]. A multidimensional 
satellite rainfall error model (SREM2D) developed by Hossain and Anagnostou [42] has been used in 
several error modeling studies of satellite rainfall products [43–45]. Bhuiyan et al. [33] recently 
applied machine learning-based error modeling to evaluate the errors of passive microwave 
precipitation retrievals based on high-resolution ground radar-rainfall estimates. In that study, they 
combined meteorological and land surface data from multiple sources to study the impact of land 
surface conditions (e.g., vegetation cover and soil moisture) on the passive microwave retrieval error. 

Recently, nonparametric models have become increasingly popular in weather forecasting, 
climate change prediction, and the modeling of hydrological processes [14–16,46–50]. Moreover, 
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Non-parametric machine learning techniques such as Quantile Regression Forests (QRF) [51], 
Random Forests (RF) [52], Classification and Regression Trees (CART) [53], Bayesian Additive 
Regression Trees (BART) [54], and Neural Networks (NN) [55–57] have become especially popular 
in hydro-meteorological application [14,33,58–62]. Specifically, NN and RF have been used in several 
studies to predict precipitation and showed promising results in quantifying precipitation 
uncertainties for global hydrologic applications [63–67]. 

The objective of this study is to investigate the use of two machine learning-based error models: 
Neural Network (NN) and Random forest (RF) in representing the realizations of error-adjusted 
IMERG rainfall products. The prediction consistency and dependence of NN and RF models in terms 
of point estimation of GPM IMERG retrieval error are explored carefully to show how the two models 
perform under different evaluation criteria. The paper is structured as follows: in Section 2, we 
describe the study area and dataset. Section 3 describes the prediction model, validation 
methodology, and the performance evaluation error metrics. Evaluation results and discussions are 
explored in Section 4. Conclusions and recommendations are discussed in Section 5. 

2. Study Area and Datasets 

2.1. Study Area  

The GBM basin consists of the Ganges, Brahmaputra, and Meghna rivers originating from the 
Himalayas and Vindhya ranges flowing through China, Bhutan, Nepal, India, and Bangladesh and 
ultimately connecting with the inlet at the Bay of Bengal [68]. In terms of hydrologic vulnerability 
assessment, GBM deserves special attention for some reasons. For instance, the GBM basin dominates 
annual flooding cycles, the region of inundation, and the withdrawal of floodwaters based on the 
hydrologic settings of the adjacent countries surrounded by it [46,69]. 

Moreover, under changing climate scenarios, dry season rainfall pattern is projected to further 
decrease for elevated temperature while monsoon rainfall is expected to be more intense resulting 
from the glacier or early snowmelt. Therefore, a basin level assessment with a more comprehensive 
evaluation of climate change impacts is mandatory for flood regions such as Nepal, India and 
Bangladesh [70–72]. Improved IMERG data with limited error might have the utility for the large-
scale water resources modeling in GBM to assess climate impact [21,29,39]. 

Inside the GBM basin, the Brahmaputra River (alternatively known as Yarlung Tsangpo river in 
China) Basin in Southeast Asia is the fourth largest fluvial system in the world [73]. This basin has a 
drainage area of about 570,000 km2 with rugged terrain, accommodating a population of 130 million 
which is spread over China, India, Bhutan, and Bangladesh [74]. Hydrological modeling for this 
region is crucial and complex due to its intense seasonal rainfall, unevenly distributed and poorly 
maintained real-time rain gauge data, and convoluted transboundary issues [75,76]. 

The study area has a varied topographic gradient from around 8500 m MSL at the origin to about 
2 m MSL at the outlet where it meets the Ganges. The upper Brahmaputra river basin lies in the 
temperate climate zone with mostly unpopulated area whereas the lower Brahmaputra river basin is 
in a tropical climate that is densely populated and vulnerable to monsoon flooding [77,78]. Hence, 
this region has a higher number of in situ stations. The study area and the corresponding in situ gauge 
networks consisting of 120 stations are shown in Figure 1. 
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Figure 1. Study Area (Brahmaputra River Basin) with the Shuttle Radar Topographic Mission, SRTM 
(1 arc second spatial resolution) elevation variation. Solid circles represent gauge locations. The red 
marked area in the inset map for location reference. 

2.2. Datasets 

The datasets used in this study span from March 2015 to March 2019. The daily accumulated 
precipitation datasets from these stations were collected from the Central Water Commission, India; 
Bangladesh Meteorological Department, Bangladesh, and the Department of Hydrometeorology, 
Nepal. The gauge measurement were averaged at 0.1 × 0.1 degree grid resolution. For this study, we 
used the operational IMERG-Late Run version 06 product [79] which was the latest available late run 
product (https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDL_06/summary). IMERG precipitation 
has three different versions, (a) early run; (b) late run and (c) final run. In this study we used late run 
product which uses a climatological adjustment that incorporates gauge data. The IMERG late run 
product has both backward and forward morphing and retrieved from different passive microwave 
(PMW) and infrared (IR) sensors. We used the latest available product (V06) late run version of 
IMERG because the objective of this study was to focus on the operational use of this precipitation in 
short-term decision making, cropping, drought management, and water resources planning for the 
resource-limited stakeholder organizations. Moreover, the latest version of IMERG (V6) has a number 
of advantages over previous versions such as upgraded GPROF-TMI V05 incorporation into the 
dataset 
(https://gpm.nasa.gov/sites/default/files/document_files/IMERG_V06_release_notes_190503.pdf). 
IMERG (V6) is a high-resolution product available with 0.1 × 0.1 degree spatial and 30 min temporal 
resolution [6,79]. The dataset’s spatial coverage is from 90° N–90° S and temporal coverage is from 
April 2014 to the present (https://gpm.nasa.gov/data-access/downloads/gpm). 

For model forcing, elevation data were extracted from a 30 × 30 DEM (Shuttle Radar Topography 
Mission) 1 Arc-Second Global (Digital Object Identifier (DOI) number:/10.5066/F7PR7TFT). Soil 
Moisture Active Passive (SMAP) Level-4 soil moisture data were collected from the National Snow 
and Ice Data Center for spatial coverage: N: 85.044, S: −85.044, E: 180, W: −180. This dataset has a 9 
km Equal-Area Scalable Earth (EASE)-Grid spatial and 3-hourly temporal resolution [80]. The SMAP 
soil moisture data from March 2015 to March 2019 was used in this study. Daily maximum and 
minimum land surface temperature was collected from NASA Land Processes Distributed Active 
Archive Center (LP DAAC). The MOD11C1 version 06 products provide land surface temperature 
value in a 0.05° by 0.05° Climate Modeling Grid on a daily temporal scale with a latency of 
approximately 1 day [81]. For land type, USGS Global Land Cover Characterization (GLCC) product 
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with 1 km spatial resolution was used [82]. Soil type was extracted from the FAO Harmonized World 
Soil Database [83]. Table 1 summarizes land surface and meteorological datasets. 

All the meteorological datasets were resampled to 0.1° by 0.1° using the cubic spline method. 
The original soil moisture dataset was of 9 km EASE grid with 3 hourly temporal resolution. These 
datasets were averaged into the daily scale and resampled to 0.1° by 0.1° using the cubic spline 
method. Daily maximum and minimum temperature data were 0.05° by 0.05°. These data were 
resampled to the same resolution of the principal forcing data (precipitation) using the cubic spline 
method. Regarding land surface variables, Shuttle Radar Topographic Mission (SRTM) based Digital 
Elevation Model (DEM) elevation was extracted for each of the grid locations of the precipitation. 
Similarly, USGS land cover type and FAO soil type were extracted in each of the grid locations of 
precipitation. The in-situ precipitation was station-based (in discrete locations). For each day of the 
study period, all the available in-situ rainfall data were converted into gridded rainfall using Inverse 
Distance Weightage (IDW) method as mentioned in [84]. Finally, all daily data were mapped to the 
0.1° grid chosen to be the final spatial grid for the error model to generate the error-corrected IMERG 
product. For the error models, the response variable is the rainfall estimate from rain gauge. 

Table 1. Datasets used in this study area. 

Data Type Product Spatial 
Resolution 

Temporal 
Resolution Coverage Reference/Source 

M
et

eo
ro

lo
gi

ca
l D

at
a 

Satellite-based 
Precipitation 

0.1° by 0.1° 30 min 
Global: 90° N–

90° S 

https://gpm.nasa.go
v/data-

access/downloads/g
pm 

Soil Moisture 

9 km EASE-
Grid; 

Resampled 
to 0.1° by 

0.1° 

3 h 
Global: 85.044° 

N–85.044° S 

https://nsidc.org/da
ta/SPL4SMGP/versi

ons/4 

Daily Maximum 
and Minimum 
Temperature 

0.05° by 
0.05° 

Climate 
Modelling 

Grid; 
Resampled 
to 0.1° by 

0.1° 

Daily 
Global: 90° N–

90° S 

https://lpdaac.usgs.
gov/products/mod1

1c1v006/ 

In-situ 
Precipitation 

Various; 
Resampled 
to 0.1° by 

0.1° 

Daily 
Brahmaputra 
Basin Region 

http://cwc.gov.in/ 
http://live3.bmd.go

v.bd/ 
http://www.dhm.go

v.np / 

La
nd

 S
ur

fa
ce

 D
at

a 

SRTM DEM 
1 arc 

second 
 Global 

https://earthexplore
r.usgs.gov/ 

USGS Land 
Cover data 

1 km grid  Global 
https://earthexplore

r.usgs.gov/ 

FAO 
Harmonized 
World Soil 
Database 

30 arc 
second 

 Global 

http://www.fao.org/
soils-portal/soil-

survey/soil-maps-
and-

databases/harmoniz
ed-world-soil-

database-v12/en/  
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3. Methodology 

3.1. Precipitation Error Modeling 

To develop the error models for the study area we used two machine learning techniques: 
Random Forests (RF) and Neural Network (NN), to improve GPM IMERG precipitation product. A 
schematic diagram of the error modeling process is shown in Figure 2. This study devised a 
randomized and out-of-sample validation experiment to quantify the uncertainty of IMERG 
precipitation product. Specifically, the two error models, (Neural Network and Random Forest) were 
developed on the training dataset and were used to predict the holdout dataset, which was applied 
for testing. 

We used “sample” function in R programming to shuffle the row indices of all the dataset to 
reorder the rows of the dataset randomly. Then, we split 80% of the dataset into the training set and 
remaining 20% of them into the testing set. Specifically, randomly divided 121,046 rows of data were 
treated as training and 30,259 rows of the data as testing. To avoid overfitting, we used these 
independent test data to check the method’s accuracy on training data after training which adjusted 
network structure as well as optimization algorithm parameters of network weight. By using these 
data and according to the magnitude of mean squared residuals, the network parameters were 
adjusted. The performance of the error models was evaluated by comparing the error metrics 
described in Section 3.2. 

 

Figure 2. Schematic representation of the prediction process for this study. 
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3.1.1. Random Forests (RF) 

To develop the precipitation error model, we used non-parametric Random Forest (RF) 
algorithm which uses ensembles (“forests”) of classification or regression trees [52]. Each tree 
depends on the values of a random vector sampled independently and with the same distribution for 
all trees in the forest. The generalization error for forests converges as the number of trees in the forest 
becomes large [85,86]. We used R package of “randomForest” and number of trees 1000 for the RF 
model, and the error for the model was converged before number of trees 1000 as shown in Figure 3. 

 

Figure 3. Mean square residual plotted against the number of trees in the random forest. 

Initially, to optimize the model, datasets were randomly divided into a training dataset, 
validation dataset, and test dataset based on the 8:1:1 split rule and the parameters were adjusted for 
this algorithm. One of the challenges in a data-driven machine learning algorithm is overfitting. In 
the RF algorithm, each tree chooses and permutes random subsets of input variables at each splitting 
node, which reduces overfitting and improves the strength of predictions [52]. Therefore, RF utilizes 
the optimal number “mtry” (size of the random subset of input variables) for split point selection at 
each node, which introduces randomness in the forests to reduce the correlation between trees [14]. 
After finalizing the model, we split 80% of the dataset into the training set and remaining 20% of 
them into the testing set. A schematic diagram is presented in Figure 4. The model testing results are 
described in Section 4.2. 
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Figure 4. A schematic representation of the random forests (RF). 

3.1.2. Neural Network (NN) 

The neural network replicates the function of clusters of biological neurons that constitute an 
animal brain. The fundamental building blocks are called nodes and are used as information 
processing elements [55–57]. Through a training process, neural networks learn algorithms that can 
be fitted to the information for detailed data analysis. A schematic representation of Neural Network 
(NN) is shown in Figure 5. Such learning algorithms are defined by the utilization of a given output 
that is comparable to the predicted output and by adjusting the parameters as per the comparison. 

 
Figure 5. A schematic representation of the neural network (NN). 
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These predicted outputs are usually transformed through the hidden layers of the neural 
network from the input data by weights in the parameter [87,88]. When an input enters the node, it 
gets multiplied by a weight value and the resulting value is either observer or passed to the next layer 
of the network, which can be helpful to understand the mechanism of such a concept. Suppose a 
neural network calculates an output y = f(x), for a given input x and weight, w. However, the training 
process is not completed yet. As such, the predicted output y will be different from the observed 
output x. To identify such discrepancies, error function E, like the sum of squared errors, SSE = ∑ (𝑦௜ − 𝑥௜)ଶ௡௜ୀଵ  can be used; where 𝑦௜ is the ith value of the variable to be predicted. All weights keep 
getting adapted based on the rule of the learning algorithm. 

The process stops when all the partial derivative, 𝑑𝐸 𝑑𝑤ൗ  of the error function with respect to 
the weights are smaller than the defined threshold. Such a methodology was implemented in order 
to reduce errors for satellite weather data propagation [89]. In this study, NN used backpropagation, 
namely the resilient backpropagation (RPROP) algorithm [90] which allowed for flexible settings 
through custom-choice of error and activation function. Finally, to optimize the error model, the 
calculation of generalized weights [91] was implemented and generated error corrected IMERG 
prediction. Table 2 summarizes the tuned hyperparameters for the algorithms used in this study. 

Table 2. The tuned hyperparameters for RF and NN models. 

Random Forest Neural Network 
R Package “randomForest” R Package “neuralnet” 

mtry = 5 Hidden nodes = 5 
ntree = 1000 learning rate = 0.01 

 stepmax = 108 
 linear.output = TRUE 

3.2. Performance Evaluation Error Metrics 

We tasked various error metrics to assess the error model performances. We evaluated the 
random error component based on the normalized centered root mean square error (NCRMSE), and 
defined as: 

𝑁𝐶𝑅𝑀𝑆𝐸 = ට1𝑛 ∑ ቂ𝑦௜ − 𝑦௜ − 1𝑛 ∑ (𝑦௜ − 𝑦௜)௡௜ୀଵ ቃଶ௡௜ୀଵ 1𝑛 ∑ 𝑦௜௡௜ୀଵ  (1) 

 
Here, 𝑦௜ is the reference rainfall, 𝑦௜ is model predicted rainfall, and n is the quantity of samples 

used in the calculation. NCRMSE ranges from 0 (an optimal value) to positive infinity. 
To measure the systematic error, we used mean relative error (MRE) which is the mean of the 

relative percentage error, calculated by the normalized average: 

𝑀𝑅𝐸 = 1𝑛 ෍ ൬𝑦௜ − 𝑦௜𝑦௜ ൰௡
௜ୀଵ  (2) 

MRE represents the magnitude and direction of error with positive value referring to 
overestimation while negative value referring to underestimation. 

We applied Theil’s ‘coefficient of inequality’ for the model performances. Theil’s inequality 
coefficient U1 and U2 are expressed as below [92]: 

𝑈ଵ =  ට1𝑛 ∑ (𝑦௧ − 𝑓௧)ଶ௡௧ୀଵට1𝑛 ∑ 𝑦௧ଶ௡௧ୀଵ + ට1𝑛 ∑ 𝑓௧ଶ௡௧ୀଵ  (3) 
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𝑈ଶ =  ඨ∑ ൬𝑓௧ାଵ − 𝑦௧ାଵ𝑦௧ ൰ଶ௡ିଵ௧ୀଵට∑ ቀ𝑦௧ାଵ − 𝑦௧𝑦௧ ቁଶ௡ିଵ௧ୀଵ  (4) 

Here, the variable of interested is denoted by 𝑦௧  and the forecast is denoted by 𝑓௧ . The 
magnitude of 𝑈ଵ ranges from 0 and 1 with 𝑈ଵ = 0 suggesting perfect forecast (𝑦௧ = 𝑓௧). Similarly, 𝑈ଶ, 
a value of zero indicates perfect forecast (yt+1 = ft+1). 𝑈ଶ  value of 1 indicates how the model 
performance compares with naïve forecast (ft+1 = yt) (Details in [62]). 

To assess the relative error metric difference (∆௘௥௥௢௥) (in %) between model corrected IMERG 
and original IMERG products we devised the following equation: ∆௘௥௥௢௥= ∆௠ − ∆௜∆௜  (5) 

where ∆௠ indicates the error metric for model corrected IMERG, and ∆௜ represents the error metric 
for original IMERG product. To calculate the relative reduction of random error, NCRMSE error 
metric is used in Equation (5). Similarly, we used MRE in Equation (5) to calculate the relative 
reduction of systematic error (Details in [15]). 

4. Results  

4.1. Variable Importance  

To construct the error model, the selection of features was based on past research, which 
demonstrated that several meteorological and land surface features such as satellite-based 
precipitation, elevation, soil type, land type, soil moisture, and temperature are crucial input features 
that contribute to the uncertainty of the ML-based error model [14–16]. After choosing these input 
features, p-value experiment and the variable importance methodology [52] were applied to quantify 
the impact of change from one feature to another.  

To assess the impact of the sample size and variability of each variable, p-value experiments 
were examined for this study area. A variable’s low p-value (<0.05) indicates the rejection of the null 
hypothesis which means there is a trend in the time series. In this study, p-values were determined 
for all the variables, i.e., IMERG, temperature, soil moisture, elevation, land cover, and soil type. The 
p-values were found close to 0 which are less than the significance level α (alpha) = 0.05 for all the 
input variables. The result is considered statistically significant by rejecting the null hypothesis. 
Therefore, the predictor variables are significant in machine learning-based error modeling for this 
study area. 

A variable importance experiment was conducted by calculating the magnitude of the 
percentage increase in mean square error (%IncMSE) of the model [52,93]. Higher magnitudes of 
%IncMSE show higher importance of the input features for the error model. The result from the 
variable importance experiment is displayed in Figure 6. The results showed that all features are 
comparatively important by producing promising %IncMSE values (0.3–0.8). The level of significance 
varies marginally for soil moisture, IMERG and temperature (%IncMSE values: 0.65–0.8) among the 
different variables. This sensitivity analysis also demonstrated that other variables are vital by 
producing decent %IncMSE values (0.3–0.4) for the error modeling. 
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Figure 6. Variable importance plot, where %IncMSE is the percentage increase in mean square error. 

4.2. Evaluation of Error Model Corrected Rainfall Rates 

In this section, we used Quantile-vs.-Quantile (Q-Q) plot and the error metrics described in 
Section 3.2 (NCRMSE, MRE, U1, and U2) to compare machine learning-based error model 
performances. To compare the error-corrected IMERG(V6) precipitation estimates using the two 
different error models (NN and RF), the Q-Q plots of the original IMERG(V6), error-corrected 
IMERG(V6), and reference rain rates were produced for the test datasets, as shown in Figure 7. The 
figure displayed that the NN model corrections exhibited a slight improvement compared to the RF 
model. 

 
Figure 7. Quantile-vs.-Quantile (Q-Q) diagram of original and model corrected IMERG(V6) rainfall 
vs. reference rainfall. 

The performances of the models were also evaluated in terms of the mean relative error (MRE), 
as shown in Figure 8. MRE is calculated for five reference precipitation ranges: rainfall values in the 
range of <25th, 25th–75th, 75th–90th, 90th–95th, and >95th percentile. The results indicated that NN 
and RF were able to significantly reduce the systematic error for the >25th percentile. We found low 
systematic error values for both models corrected IMERG(V6) compared to original IMERG(V6) 
estimates, which indicated acceptable characterization of estimation uncertainty. The error-corrected 
IMERG(V6) product exhibited a slightly higher improvement in the NN technique by reducing 
systematic error compared to the RF model for all five reference precipitation ranges. For the >75th 
percentile, all individual rainfall datasets (original IMERG(V6), RF-corrected IMERG(V6), NN-
corrected IMERG(V6)) showed underestimation. For the low rainfall (<25th), the systematic error 
(3.2–3.3) slightly reduced for both models, compared to the systematic error (3.7) of the original 
IMERG(V6). Moreover, the error metric difference (∆௘௥௥௢௥) considering MRE was estimated for the 
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different reference precipitation ranges to show the performances of RF-corrected IMERG(V6), and 
NN-corrected IMERG(V6), (Table 3). The relative reduction of the systematic error for both model 
corrected IMERG(V6) is substantial (9–42%) with respect to original IMERG(V6). 

 

Figure 8. (a) Mean relative error of original IMERG(V6) and model corrected IMERG(V6) rain rate; 
(b) Normalized centered root mean square error of original IMERG(V6) and model corrected 
IMERG(V6) rain rate. 

The normalized centered root mean square error (NCRMSE) metric was examined precisely for 
the quantification of the performances of the estimates of IMERG. The results are summarized in 
Figure 8. The results showed that the random error reduced consistently in all products (original 
IMERG(V6), RF-corrected IMERG(V6), NN-corrected IMERG (V6) as the rainfall rate increased. Both 
models corrected IMERG(V6) and exhibited lower random error in comparison to the original 
IMERG(V6) for all precipitation ranges. The NN-corrected IMERG(V6) results exhibited a 
substantially higher improvement by producing lower random error compared to the RF model. 
Specifically, for the high rain rates (>95th percentile), the NN error model reported considerably 
reduced NCRMSE values (~0.05) compared to the RF error model. Similarly, for reference rainfall 
values in the moderate rainfall ranges (>25th percentile to <95th percentile), the results show that the 
NN-based corrections (NCRMSE: 0.15–0.20) bring IMERG estimates closer to the reference 
precipitation. Furthermore, the error metric difference (∆௘௥௥௢௥) considering NCRMSE for the different 
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models are presented in Table 3. The NN-corrected IMERG(V6) showed substantial relative reduction 
of random error (37–65%) with respect to the original IMERG(V6) precipitation datasets over the 
study area. Similarly, RF-corrected IMERG(V6) produced a reasonable relative reduction of random 
error (~<21%) which also demonstrated the satisfactory performance of RF-corrected IMERG (V6) in 
comparison to original IMERG (V6). Overall, this study revealed a machine learning-based error 
model that leads to an advanced error characterization of IMERG precipitation estimation by the 
significant improvement of random and systematic error. 

Table 3. Relative reduction of systematic error and random error with respect to original IMERG(V6) 
rain rate. Results are presented for different precipitation ranges. 

Rainfall 
Percentile 

Relative Reduction of Systematic 
Error  

Relative Reduction of Random 
Error  

NN RF NN RF 
<25th 12% 9% 60% 0% 

25–75th 37% 36% 57% 12% 
75–90th 24% 42% 52% 23% 
90–95th 23% 23% 37% 16% 

>95th 32% 32% 65% 21% 

In addition, Theil’s inequality co-efficient (U1 and U2) values for the different models are shown 
in Figure 9. Theil’s inequality co-efficient, U1 marginally varied 0.15 to 0.17 for the two models, values 
which are less than the original IMERG(V6) produced U1 (0.21), as a function of magnitude which 
showed prominent performances in both models. The magnitude of U2 greater (lower) than 1 
indicates less (more) accurate performance compared to the naïve approach. Moreover, both models 
also showed similar performances by producing U2 values close to ~1. Theil’s inequality co-efficient, 
U2 (1.15) for original IMERG(V6) is greater than both models. These results indicated that the model-
corrected IMERG(V6) exhibited a slightly further improvement compared to the original IMERG(V6). 
Overall, the Theil’s inequality co-efficient results showed small relative improvements for the model-
corrected IMERG(V6) compared to the original IMERG(V6). 

 
Figure 9. Theil’s inequality co-efficient of original IMERG(V6) and model corrected IMERG(V6) rain 
rate. 

4.3. Discussion 

Two error models, the random forest (RF) and the neural network (NN), were evaluated based 
on quantitative error statistics (i.e., NCRMSE and MRE), and Theil’s “coefficient of inequality” 
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statistics (U1 and U2). The systematic error for the models varied from overestimation to 
underestimation as the rain rate increased which is coherent to the findings of [3,14,19,20]. Moreover, 
the NN model showed promising performance for the moderate and high precipitation rate by 
displaying a high relative reduction of systematic error (23–37%). 

Additionally, the NCRMSE metric was also assessed to quantify the effect of precipitation error 
modeling in reducing the random error component. The study showed that machine learning-based 
error models significantly reduced random error, and this reduction exhibited rainfall magnitude 
dependence. Specifically, NCRMSE for NN reduced (65%) considerably for the high rain rates (>95th 
percentile), showing a very high degree of agreement with reference precipitation which was 
consistent with findings by previous studies [14,15,33]. In addition, the RF and NN techniques 
considered elevation as a significant feature, which demonstrated the ability of the models to reduce 
the systematic and random error considerably in the study area. Overall, the performance of the 
machine learning-based precipitation estimates was consistent with findings by previous studies 
[14,15,33]. 

We would like to note that the results shown in Section 4.2 are based on the test dataset and 
showed improved results by significantly reducing random and systematic errors, which indicates 
that our model is successfully calibrated and could potentially be useful to predict the independent 
hydrometeorological dataset. The machine learning-based error models can manipulate the training 
data in such a way that the actual results expected from the untrained dataset can be quite different 
from the evaluated results using the training dataset [51,52,94]. Therefore, we considered the 
representation of extreme (>95th and <25th) precipitation values in the training and testing dataset to 
make sure that it covered the entire range of the dataset. Applying such a validation approach, the 
model has good skill on the independent test data in this analysis, which prevents overfitting by 
producing reliable results. 

5. Conclusions 

In this study, we investigated machine learning-based precipitation error modeling algorithms 
to improve the GPM IMERG precipitation product utilizing meteorological and land surface features 
(elevation, soil type, land type, soil moisture, and daily maximum and minimum temperature) with 
high-resolution in-situ precipitation rainfall data over the Brahmaputra river basin. 

The comparison of NN and RF corrected rainfall values and the reference rainfall values were 
performed using Q-Q plots and showing satisfactory alignment along the 45-degree line. The error 
corrected IMERG(V6) results exhibited a slightly higher improvement by NN compared to the RF 
model. To investigate the accuracy of the error models, validation experiments based on the out-of-
sample data approach were used. In terms of systematic and random error metrics, no significant 
differences were exhibited between two models (RF and NN). Generally, the machine learning-based 
model is expected not to capture very low and extremely high values successfully [14,93]. This is 
because the model accuracy is sensitive to sample size and the data representativeness in the training 
dataset [95,96]. Therefore, very large sample sizes are required for low and extremely high values to 
quantify the rate of convergence to the underlying cumulative distribution function. Results from 
quantitative error statistics are consistent in terms of the reduction of the random and systematic 
error for all the precipitation percentile ranges. This is an indication of how we successfully trained 
our model instead of overfitting. 

The accurate estimation of rainfall in ungauged areas is an essential component to understand 
water resource systems efficiently. Therefore, extending this machine learning-based error modeling 
algorithm to the global scale and for other PMW precipitation estimates can be potentially useful. 
The improvements demonstrated by the error models with independent cross-validation approach 
indicate the transferability of the error model among complex terrains. Another possible extension of 
this study is to investigate uses of the PMW ensemble-based error predictions in integrated 
precipitation algorithms such as NOAA’s CMORPH techniques. 
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