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Abstract: The increasing shortage of electricity in Pakistan disturbs almost all sectors of its economy.
As, for accurate policy formulation, precise and efficient forecasts of electricity consumption are
vital, this paper implements a forecasting procedure based on components estimation technique
to forecast medium-term electricity consumption. To this end, the electricity consumption series
is divided into two major components: deterministic and stochastic. For the estimation of
deterministic component, we use parametric and nonparametric models. The stochastic component is
modeled by using four different univariate time series models including parametric AutoRegressive
(AR), nonparametric AutoRegressive (NPAR), Smooth Transition AutoRegressive (STAR), and
Autoregressive Moving Average (ARMA) models. The proposed methodology was applied to
Pakistan electricity consumption data ranging from January 1990 to December 2015. To assess
one month ahead post-sample forecasting accuracy, three standard error measures, namely Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error
(RMSE), were calculated. The results show that the proposed component-based estimation procedure
is very effective at predicting electricity consumption. Moreover, ARMA models outperform the
other models, while NPAR model is competitive. Finally, our forecasting results are comparatively
batter then those cited in other works.

Keywords: Pakistan electricity consumption; components estimation; forecasting; parametric and
nonparametric models; MAPE and MAE

1. Introduction

Electricity is a key component for the growth and development of any country’s economy. It is
a highly flexible form of energy that practically fuels the performance of each sector of an economy.
It is a basic requirement of modern human life, bringing benefits and development in different sectors
including healthcare, transportation, industries, mining, broadcasting, etc. [1]. Generally, electricity
demand is an indication of the performance of a country’s economy as electricity demand is integrated
with all phases of development. Therefore, electricity demand forecast is essential for power system
management, scheduling, operations, and capability evaluation of networks. In practice, however,
electricity demand forecasting remains challenging for researchers as many factors directly or indirectly
influence electricity consumption over the time [2–4].

Generally, electricity load or price forecasting is divided into three categories with respect to time
scale: short term generally refers to forecasts from a few hours to a few days ahead; medium term
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is used for forecasting of few weeks to few months ahead; and long-term forecasts generally cover
forecasts from a few months to years ahead [5]. Short-term electricity load forecasting is essential for
the control and programming of electric power systems and also required by transmission companies
when a self-dispatching market is in operation [6]. Medium- and long-term forecasts are also important
for energy systems. For example, the medium-term electricity demand forecast is required for electric
power system operation and scheduling [7–9], whereas the long-term electricity demand forecasting is
crucial for capacity scheduling and maintenance planning [10].

It is well known that electricity demand time series exhibit specific features. The monthly
electricity demand time series may have a more or less cyclic behavior and a long-term trend. Electricity
consumption is extremely effected by weather and social factors that generally reflect in the demand
time series [9,11]. Economic indicators commonly influence the consumption series trend, while climate
changes introduce a periodic behavior in the series. The medium-term electricity demand forecasting
generally deals with monthly data points, which often include a long-run (trend) component, as well
as yearly and seasonal periodicities. For example, Figure 1 depicts Pakistan’s electricity consumption
time series for the period January 1990 to December 2016. In the figure, one can see an increasing
trend component (Figure 1a), an annual periodicity (Figure 1b), variation of electricity consumption in
different months of the year (Figure 1c), and different seasonal effects (Figure 1d).
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Figure 1. Pakistan electricity consumption (kWh): (a) Electricity consumption time series for the period
January 1990 to December 2016; (b) yearly periodicity for the period January 2000 to December 2003;
(c) box plot for monthly observation for the period January 1990 to December 2015; and (d) seasonal
plot for the period January 1990 to December 2015.
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Previously, many researchers have worked on medium-term electricity demand forecasting
that generally ranges from one month to a few months ahead using different methods, including
time series, regression, artificial intelligent, genetic algorithm, fuzzy logic, and support vector
machine [12–31]. Times series models are easy to implement and have been commonly used for
electricity load forecasting in the past. For example, Yasmeen and Sharif [32] used different linear
and non-linear time series models, namely AutoRegressive Integrated Moving Average (ARIMA),
Seasonal-ARIMA, AutoRegressive conditional heteroscedasticity model (ARCH), and its generalized
form, GARCH, to forecast medium-term electricity demand. Electricity demand series often contain
non-linearity and, hence, non-linear models can produce better forecasts. For example, Al-Saba
and El-Amin [33] forecasted one year ahead electricity consumption for Pakistan using classical
time series models, namely Autoregressive (AR) and ARMA models, as well as Artificial Neural
Network (ANN). Some authors compared the classical time series and regression models. For example,
Abdel-Aal and Al-Garni [34] used multiple regression model and compared it with seasonal and
non-seasonal ARIMA models. Economic and weather variables strongly influence electricity demand.
To account for these effects, Nawaz et al. [21] studied Pakistan’s annual electricity consumption with
the help of economic variables. They forecasted electricity demand up to 10 years ahead using Smooth
Transition Auto-Regressive (STAR) model. Many researchers compared time series, regression, and
computational intelligence models [16,18]. Electricity load can be effected by temperature. To see
this, Ali et al. [35] studied the effect of monthly temperature on electricity demand in Pakistan.
The results indicate that there was moderate linear correlation (r = 0.412) between mean temperature
and electricity demand. On the other hand, several authors combined the features of two or more
than two models and proposed a new model which is often referred as hybrid model [27,30,36,37].
For example, Alamaniotis et al. [13] proposed a hybrid model by combining the features of machine
learning tools (kernels) with vector regression model. For medium-term demand forecasting, Ghiassi
et al. [38] proposed a hybrid model that combines the neural networks model with expert systems.
Several other techniques have been also used to forecast electricity demand [39–41]

The purpose of this study was to develop and evaluate model(s) for forecasting medium-term
electricity consumption time series. The model(s) are intended to support operational planning and
trading decisions. Following the authors of [42,43], in the proposed forecasting methodology, the
electricity consumption series is divided into two parts: deterministic and stochastic. Each component
is estimated by parametric and nonparametric regression and time series methods. At the end, the
forecasts from both components are combined to obtain the final forecast. Thus, the main contribution
of this paper is the thorough investigation of the parametric and nonparametric approaches used
for medium-term electricity consumption out-of-sample forecasting. Within the framework of the
components estimation method, we compare models in terms of forecasting ability considering
univariate, parametric, and non-parametric models. Moreover, for the considered models, the
significance analysis of the difference in predication accuracy is also conducted.

The rest of the article is organized as follows. Section 2 contains an overview of Pakistan’s
electricity sector. Section 3 describes the proposed forecasting framework and information on the
models used for forecasting. An application of the proposed forecasting framework is provided in
Section 4. Section 5 concludes the study.

2. An Overview of Pakistan Electricity Sector

Pakistan has been facing electricity shortage crisis since its inception. In 1947, Pakistan had
the capacity to produce only 60 megawatts (MW) of electricity for its thirty-two million inhabitants.
To address the electricity shortage through recognized interventions, the Water and Power Development
Authority (WAPDA) was established in 1958. WAPDA built two dams, each with the capacity of about
4478 MW in the late 1970s to overcome the electricity crisis. Pakistan continued facing electricity
shortages even in the 1980s even though some haphazard efforts were taken towards improving
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the situation [44]. With each passing year, the demand for electricity continued rising because of
developmental activities, i.e. urbanization, rural electrification, and industrialization [45]. In 1990s, the
private sector was given licenses to build new thermal energy plants. It was a strategy shift in terms of
the electricity generation mix from hydro to thermal, which increased the cost of electricity generation
significantly [46]. Until 2005, the total supply of electricity was surplus to the required demand by
approximately 450 MW. During 2007, Pakistan was hit by the worst power crisis in its history. Production
fell by 6000 MW, resulting from huge shutdowns all over the country. In 2008, the required electricity
demand fell short by 15%, and power outages became more frequent. Furthermore, the existing power
stations and electricity distribution networks were also damaged during the 2005 earthquake and 2010
flood [47]. At the same time, the demand for electricity was increasing continuously. For example,
from 2001 to 2008, the electricity demand rose by almost 6% per year. In June 2013, the electricity
shortage reached 4250 MW per day with demand standing at 16,400 MW per day and generation at
12,150 MW per day [48]. These crisis strongly affected the economic growth and service, despite regular
interventions being made to increase electricity production.

Pakistan is a developing country situated in South Asia with a population of over 200 million people.
The demand for electricity is increasing exponentially due to an increased demand in both the household
and manufacturing sectors. The failure of Pakistan’s power policy over the last few decades has left the
country with an acute electricity crisis that increased economic deficit to the country. There are some
country specific issues that turn its electricity shortfall into a crisis. These include theft, misuse, and overuse
of electricity in the household and industrial sectors; unjustifiably huge line losses; and low institutional
capacity, corruption, mismanagement, and political controversies over mega power projects [49].

Pakistan fulfills its electricity requirements by different sources including coil, natural gas, oil,
wind, solar, and nuclear [50]. The electricity sector in Pakistan comprises of WAPDA, National Electric
Power Regulatory Authority (NEPRA), and a few independent power producers (IPPs). WAPDA and
NEPRA are responsible for electric power maintenance, scheduling transmission, and distribution
throughout in Pakistan, with the exclusion of Karachi city, which is provided by Karachi Electric Supply
Company (KESC). The four main electricity producers in Pakistan includes WAPDA, KESC, IPPs,
and Pakistan Atomic Energy Commission (PAEC) . The total power generation volume of Pakistan as
of 30 June 2015 was 24,823,000 kW, of which thermal was 16,814,000 kW (67.74%), hydro-electric was
71,160,000 kW (28.67%), nuclear was 7,870,000 kW (3.17%), and wind was 106,000 kW (0.43%) [51].
Table 1 describe the installed electricity generating volumes of Pakistan during 2011–2015.

Table 1. Pakistan Electricity: Installed Generation Capacity by different resource (MW) [50].

SOURCE PRODUCER 2011 2012 2013 2014 2015

WAPDA Hydel 6516 6516 6733 6902 6902
HYDEL IPPs Hydel 129 214 214 214 214

Sub-Total 6645 6730 6947 7116 7116
% Share Generation 28.47 28.65 29.28 29.99 28.67

GENCOs with PEPCO 4785 4785 4785 4590 5762
KESC Own 1821 2381 2359 1951 1874

IPPs 4288.5 4282 4297 4489 201.5
THERMAL RPPs 201.5 0 0 0 0

CPPs/SPPs (KESC) 324 239 203 200 200
Sub-Total 15,910 15,969 15,941 15,719 16,814

% Share Generation %68.16 67.99 67.19 66.25 67.74

CHASNUPP I-II (NTDC) 650 650 650 650 650
NUCLEAR KANUPP (NTDC) 137 137 137 137 137

Sub-Total 787 787 787 787 787
% Share Generation 3.37 3.35 3.32 3.32 3.17

Wind P-P (PEPCO) 0 1 50 106 106
WIND Sub-Total 0 1 50 106 106

% Share Genration 0 0 0.21 0.45 0.43

Total Installed Cap 23,342 23,487 23,725 23,728 24,823
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3. Proposed Forecasting Model

The main objective of this study was to forecast one month ahead electricity consumption for
Pakistan. Let Cm be electricity consumption for mth month. To account the dynamics of electricity
consumption time series, we propose Cm can be modeled as:

Cm = Dm + Sm (1)

i.e., the electricity consumption series Cm is divided into two major components: Dm, a deterministic
component, and Sm, a stochastic component. The deterministic component includes trend (log-run)
and yearly periodicity. Mathematically, Dm is defined as

Dm = Tm + Ym (2)

where Tm represents the trend (long-term) and Ym represents the yearly periodicity component. On the
other hand, Sm is a stochastic component (residuals), which defines the short-run dynamics. For the
estimation of deterministic component Dm, both parametric and nonparametric approaches are used.
Parametric approaches include polynomial regression, whereas nonparametric ones include regression
splines technique. For stochastic component estimation, this work considers four different univariate
time series models: AutoRegressive (AR) model, Nonparametric AutoRegressive (NPAR) model,
Smooth Transition AutoRegressive (STAR), and AutoRegressive Moving Average (ARMA) model.
Hence, combining deterministic and stochastic models leads to eight different possible combinations
for comparison purposes (2Dm × 4Sm = 8).

3.1. Modeling the Deterministic Component

3.1.1. Parametric Case

This section describe the estimation of deterministic component using parametric regression
method. The response variable Cm is modeled parametrically by estimating the trend (long-run)
component Tm using cubic polynomial regression for time m and yearly periodicity is described by
dummies as

Ym =
12

∑
i=1

φi Ii,m

with Ii,m = 1 if m refers to the ith month of the year and 0 otherwise. All regression coefficients related
to these components are estimated by using Ordinary Least Square (OLS) method. Once all regression
coefficients are obtained, the estimated equation is given by

D̂m = φ̂0Tm + φ̂1T2
m + φ̂2T3

m +
14

∑
i=3

φ̂i Ii,m (3)

In the past, many researchers used this method for trend and yearly cycle components
estimation [52–55].

3.1.2. Nonparametric Case

In the literature, many authors captured trend and yearly cycle in a time series using
nonparametric regression methods. For example, some authors used smoothing spline [43,56,57],
kernel regression [58–61], and regression spline [43,62]. In our case, the deterministic component can
be modeled nonparametrically as follows.

Dm = h1(Tm) + h2(Ym). (4)
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Here, each hi is a smoothing function of Tm and Ym. For yearly cycles, the smooth function is estimated
from the series 1, 2, 3, . . . , 12, 1, 2, 3, . . . , 12, . . ., whereas the long-term (trend) Tm is estimated as a
function of time m. For the smoothing functions, cubic regression splines are used to estimate the
deterministic component. In regression spline approach, the most important selection is the number of
knots and their location as they define the smoothness of the approximation. For this issue, we use
cross validation (CV) technique. Regression coefficients are estimated by using OLS method and the
estimated equation is given by:

D̂m = ĥ1(Tm) + ĥ2(Ym) (5)

Once the deterministic component is estimated, the residual (stochastic) component can be obtained as:

Sm = (Cm)− T̂m − Ŷm (6)

To see the performance graphically of the above-described methods used for estimation
of deterministic components Dm (both parametric and nonparametric), the observed electricity
consumption and the estimated deterministic component are depicted in Figure 2, with parametric
estimation of Dm (Figure 2a) and nonparametric estimation of Dm (Figure 2b). In the figure, it is
evident that both models used for the estimation of Dm capture adequately both dynamics, i.e. long
trend and yearly seasonality, of electricity consumption series, as the increasing (upward) trend and
yearly cycles can be seen clearly in the figure. Using Equation (6), the stochastic (residual) component
obtained from both methods are also plotted in Figure 2.
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Figure 2. Pakistan electricity consumption series with superimposed fitted deterministic component
(Dm) for parametric (a) and nonparametric (b) methods, and stochastic component (Sm) from parametric
case (c) and from nonparametric case (d).
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Here, it is worth mentioning that, in general, the stationarity of a time series are inspected
using the Augmented Dickey–Fuller (ADF) and Philips–Perron (PP) tests [63,64]. However, several
researchers showed that the ADF and PP tests may produce biased and misleading results owing to
the possibility of structural breaks in the time series data [65]. Additionally, for the electricity market
variables, i.e., prices or demand time series, the unit-root test results are weaker due the presence of
periodicities and exceptionally heavy tailed data, which affect the size and power of standard unit-root
tests [66,67]. In our case, we did not apply these tests because, once the consumption series is filtered
for deterministic component, the stochastic component is always almost stationary.

3.2. Modeling the Stochastic Component

After the estimation of deterministic component using parametric and nonparametric techniques,
the remaining part (residuals), considered as stochastic component, is obtained through Equation (6).
The residual series obtained from both models are plotted in Figure 3. To model and forecast the
stochastic component, this work consider four different univariate time series models: parametric
AutoRegressive (AR), nonparametric AutoRegressive (NPAR), Smooth Transition AutoRegressive
(STAR), and Autoregressive Moving Average (ARMA) models. Details about these models are given
in the following.

3.2.1. AutoRegressive Model

An Autoregressive (AR) model is a widely used model in the time series literature. The AR
models describes the response variable linearly dependent on its own past (lag) values and on a
stochastic term. The general form of an AR(n) model is given by

Sm = µ + α1Sm−1 + α2Sm−2 + .... + αnSm−n + εm (7)

where µ indicates the intercept, αi (i = 1, 2, . . . , n) are parameters of AR(n) model, and εm is a white
noise process with mean zero and variance σ2

ε . After plotting the ACF and PACF of the series, we
concluded that lags 1, 2, and 12 are significant and, hence, are included in the model. In this work, the
parameters are estimated using the Maximum Likelihood Estimation (MLE) method.

3.2.2. Nonparametric AutoRegressive Model

The linear AutoRegressive model can be generalized by removing the linearity property.
We denote the model by Nonparametric AutoRegressive (NPAR) model. In this case, the relation
between the present and past values does not have a particular parametric form and thus accounts for
any potential type of nonlinearity in the data. Mathematically, NPAR is given by

Sm = h(Sm−1) + h(Sm−2) + . . . + h(Sm−n) + εm (8)

where hi are smoothing functions describing the relation between each past values and Sm. In this
work, functions hi refers to cubic regression spline functions. As done in the parametric case, we used
lags 1, 2, and 12 to estimate NPAR. To overcome the curse of dimensionality, which is attributed
to the exponential decline of data points within a smoothing window by increasing the dimension
of regressors, generally, an additive form is considered that assumes no interactions among the
explanatory variables [68].
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Figure 3. Components estimation: Trend (long-run) component T̂t estimated parametrically (a) and
nonparametrically (b) and yearly periodicity component Ŷm estimated nonparametrically (c) and
parametrically (d).

3.2.3. Smooth Transition AutoRegressive (STAR) Model

The Smooth Transition AutoRegressive (STAR) model is an extension of AR model that allow
smooth transition in regime switching models. To control the regime switching process, the STAR
model makes use of logistic and exponential functions instead of the indicator function used in
threshold AR models. Mathematically, STAR model is defined as

Sm = Zm + Rm(ωm, η, µ)Zm + εm (9)

where Zm = (1, Sm−2, Sm−1, · · · , Sm−n), Rm(ωm, η, µ) is the transition function bounded between 0
and 1, and ωm is a transition variable. The parameter η represents the speed and smoothness of
transition, while µ can be interpreted as threshold between two regimes. Finally, εm is a white noise
process that is assumed to be normally distributed with mean zero and variance σ2

ε . This model is
defined as a two-regime switching model, in which the transition function R allows the dynamics of
the model to switch between regimes smoothly. A common specification of the generalized version of
smooth transition functions is given by
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Rm(wm, η, a) =

{
1 + exp

[
−η

σk
ωm

∏∏∏
k
(ωm − ak)

k

]}−1

(10)

where σωm is the standard deviation of the transition variable. STAR implements the iterative building
strategy described in [69] to identify and estimate STAR model.

3.2.4. AutoRegressive Moving Average Model

Autoregressive Moving Average (ARMA) model not only includes the past lagged values of the
variable of interest but also considers the past lags of error term. In our case, the response variable Sm

is modeled linearly using its past values as well as past white noise terms, i.e.,

Sm = µ +

(
r

∑
i=1

αiSm−n

)
+

(
s

∑
j=0

φjεm−s

)
(11)

where µ indicates intercept; αi (i = 1, 2, . . . , n) and φj (j = 1, 2, . . . , s) are parameters of AR and MA,
respectively; and εm is a Gaussian white noise series with mean zero and variance σ2

ε . Inspection of
the ACF and PACF suggests that, for AR part, lags 1, 2, and 12 are significant, while the first two lags
for the MA part. Thus, a constrained ARMA(12,2) where α3 =, · · · ,= α11 = 0 is fitted to Sm using the
MLE method.

Once both components, deterministic and stochastic, are estimated, the final one month ahead
forecast is obtained as

Ĉm+1 = (T̂m+1 + Ŷm+1 + Ŝm+1) (12)

4. Out-of-Sample Forecasting

In this study, we used monthly electricity consumption aggregated data of Pakistan. The dataset
was obtained from Pakistan Bureau of Statistics (PBS). The monthly series ranges from January 1990 to
December 2014 and measured in kilowatt hours (kWh). The whole dataset contains 288 data points,
of which data from January 1990 to December 2009 (240 data points) were used for model estimation
and from January 2010 to December 2014 (48 data points) for one month ahead out-of-sample forecasts.
The monthly electricity consumption series was represented by Cm, where (m = 1, 2, . . . , 288). For the
forecasting accuracy, three standard accuracy measures—Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Root Mean Square Error (RMSE)—for each model were calculated
as follows:

MAPE = Mean

(
|Cm − Ĉm|
|Cm|

)
× 100

MAE = Mean
(
|Cm − Ĉm|

)
RMSE =

√
Mean(Cm − Ĉm)2

where Cm denotes observed series and Ĉm represents forecasted consumption series for mth
month. Combining models for the both components, deterministic and stochastic, led us to
compare eight different possible combination, namely P-AR, P-NPAR, P-STAR, P-ARMA, NP-AR,
NP-NPAR, NP-STAR, and NP-ARMA, where the first letter(s) represents the deterministic part with
‘P’ standing for parametric and ‘NP’ for nonparametric estimation, and the second part used for the
stochastic model.

To assess the best combinations of these models, we calculated different accuracy measures and
tabulated the results in Table 2. In the table, it is clear that both the ARMA models outperform all
the competitors as they produce better results. The MAPE values for P-ARMA and NP-ARMA are
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4.84 and 4.83, respectively. The second best model is NP-NPAR for which the MAPE value is 5.18.
The MAPE values for all combinations are also plotted in Figure 4 where the superiority of models
involving ARMA model can be clearly seen.

The season-specific errors are listed in Table 3. In the table, we can observe that the season-specific
MAPEs are comparatively low in autumn and high in the remaining three seasons. Except in spring,
the season-specific MAPE values for P-ARMA and NP-ARMA are considerably lower than those of
the other models. The season-specific MAPEs values are also plotted in Figure 5.

Table 2. Model accuracy statistics for one month ahead out-of-sample forecast.

Model MAPE MAE RMSE

P-STAR 5.56 397.99 513.22
P-AR 6.38 454.49 569.74

P-NPAR 6.19 439.79 563.21
P-ARMA 4.84 355.24 467.42
NP-STAR 5.44 402.78 526.67

NP-AR 5.93 435.63 550.41
NP-NPAR 5.18 379.98 492.81
NP-ARMA 4.83 348.31 460.80
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Figure 4. MAPE values of one month ahead post-sample forecasts for all models.

Table 3. One month ahead post-sample forecasts MAPEs with respect to seasons of the year.

Models Winter Spring Summer Autumn

P-AR 6.38 6.21 6.09 5.00
P-NPAR 7.40 5.86 5.96 4.53
P-STAR 6.66 4.84 5.47 4.50

P-ARMA 4.31 4.84 5.02 4.45
NP-AR 6.03 5.83 6.75 5.14

NP-NPAR 5.05 5.26 5.39 4.92
NP-STAR 3.78 5.86 5.53 5.77

NP-ARMA 4.36 6.96 4.79 3.74
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Figure 5. One month ahead post-sample forecasts MAPEs with respect to seasons of the year.

The ACF and PACF plots for the final error εm are plotted in Figures 6 and 7. In these figures,
we observe that there is no longer a meaningful autocorrelation structure present in the series. Overall
residuals from all models have been whitened and can be considered as satisfactory.

To verify the superiority of the results listed in Table 2, we performed Diebold and Mariano (DM)
test for each pair of models [70]. The results (p-values) of DM test are listed in Table 4. Each entry of
the table is the p-value of a hypothesis system where the null hypothesis assumes no difference in the
accuracy of the predictor in the column/row against the alternative hypothesis that the predictor in
the column is more accurate than predictor in the row. In this table, we can see that, among all possible
combination models, P-ARMA and NP-ARMA models at 5% level of significance are statically better
than the rest, except when comparing them to NP-NPAR.

Table 4. P-values for the Diabold and Marion test for same forecasts accuracy against the alternative
hypothesis that model in the column is more accurate than model in the row (using squared
loss function).

MODELS P-AR P-NPAR P-STAR P-ARMA NP-AR NP-NPAR NP-STAR NP-ARMA

P-AR - 0.41 0.02 0.00 0.25 0.01 0.09 <0.01
P-NPAR 0.59 - 0.06 0.01 0.39 0.03 0.23 0.01
P-STAR 0.98 0.94 - 0.02 0.82 0.16 0.66 0.03

P-ARMA 0.99 0.99 0.98 - 0.97 0.76 0.97 0.30
NP-AR 0.75 0.61 0.18 0.03 - 0.03 0.13 0.03

NP-NPAR 0.99 0.97 0.84 0.24 0.98 - 0.92 0.21
NP-STAR 0.91 0.77 0.34 0.03 0.87 0.08 - 0.04

NP-ARMA >0.99 0.99 0.97 0.70 0.97 0.79 0.96 -

Forecasted values from four best combination models are plotted in Figure 8. In this plot, we
can see that the forecasted values follow the observed values of electricity consumption very well.
Finally, it is worth mentioning that our best MAPE values are comparatively batter than those cited in
other works. For example, using four different models for Pakistan electricity consumption forecasting,
Yasmeen and Sharif [32] reported a minimum MAPE value of 5.99, a value 24% greater than our
minimum MAPE value of 4.83. For the total consumption forecast of Pakistan, Hussain et al. [71]
reported a RMSE value of 1796.9 that is considerably higher than our value of 460.80.
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Figure 6. ACF and PACF for the final εt for P-AR (a, b), P-NPAR (c,d), P-STAR (e,f) and P-ARMA (g,h).
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Figure 7. ACF and PACF for the final εt for NP-AR (a, b), NP-NPAR (c,d), NP-STAR (e, f) and
NP-ARMA (g,h).
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Figure 8. Actual and forecasted electricity consumption for only five best models (P-STAR. P-ARMA,
NP-AR, P-NPAR, and NP-ARMA) for the period January 2011–December 2014 (right).

5. Conclusions

The main aim of this study was to forecast one month ahead electricity consumption for Pakistan
using component estimation technique. To this end, the electricity consumption time series was divided
into two major components, i.e., deterministic and stochastic. The deterministic component consists
of trend (long-run) and yearly periodicity and was modeled by both parametric and nonparametric
approaches. For the stochastic component, we used four univariate time series models, including
AutoRegressive (AR), Nonparametric AutoRegressive (NPAR), Smooth Transition AutoRegressive
(STAR), and AutoRegressive Moving Average (ARMA) models. The estimation of both deterministic
and stochastic components led us to compare eight different combinations of these models. To check
the forecasting performance of all models, consumption data from Pakistan were used, and one month
ahead post-sample forecasts were obtained for four years. The predicting accuracy of the models
was evaluated through MAE, MAPE, and RMSE. To evaluate the significance of the differences in
the forecasting performance of the models, the Diebold and Mariano test was performed. The results
show that the component based estimation approach is highly effective for modeling and forecasting
electricity consumption. Among all possible models, P-ARMA and NP-ARMA produced the best
results, while NP-NPAR model remained competitive to the best. Finally, our forecasting results are
comparatively batter than those cited in other works. In the future, this study can be extended by
exploring the effects on out-of-sample forecasting when other exogenous variables are included in
the models.
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