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Abstract: This study forecasts and assesses drought situations in various regions of India (the Araveli
region, the Bundelkhand region, and the Kansabati river basin) based on seven simulated climates
in the near future (2015–2044). The self-calibrating Palmer Drought Severity Index (scPDSI) was
used based on its fairness in identifying drought conditions that account for the temperature
as well. Gridded temperature and rainfall data of spatial resolution of 1 km were used to bias
correct the multi-model ensemble mean of the Global Climatic Models from the Coupled Model
Intercomparison Project Phase 6 (CMIP6) project. Equidistant quantile-based mapping was adopted
to remove the bias in the rainfall and temperature data, which were corrected on a monthly scale.
The outcome of the forecast suggests multiple severe-to-extreme drought events of appreciable
durations, mostly after the 2030s, under most climate scenarios in all the three study areas.
The severe-to-extreme drought duration was found to last at least 20 to 30 months in the near
future in all three study areas. A high-resolution drought index was developed and proven to be a
key to assessing the drought situation.
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1. Introduction

Drought is a complex phenomenon that slowly results in lasting impacts. The risks of drought
are rising as a result of the depletion of the available surface and subsurface water resources.
The social and economic well-being of a country is highly impacted by the effects of drought [1–3].
In developing countries, this impact is severe since their economies are based on agricultural products [4].
Also, the effects of climate change and extreme weather can worsen the drought and impede the
overall socio-economic aspects [5]. Due to climate change, future projections of climate also show an
increase in global drought events [6]. Various regional studies on drought suggest a rise in the trend,
frequency, and intensity of droughts around the world [7–10]. On the regional scale, the effects of
climate change are believed to be more prominent [11,12]. Therefore, the spatio-temporal pattern of
future drought and the uncertainties associated with it should be understood to mitigate the effects of
such calamities. An effective way to understand the drought characteristics in the future is by making
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the use of climatic projections from various global climate models (GCMs) under different greenhouse
gas emission scenarios [13].

GCMs are essential tools for observing droughts in the wake of climate change. A vast majority
of GCMs are created under the Climate Model Intercomparison Project (CMIP), which is a collective
configuration designed to better the understanding of climate change. Climate Model Intercomparison
Project Phase 3 and Climate Model Intercomparison Project Phase 5 (CMIP5) are the model ensembles
developed based on Intergovernmental Panel on Climate Change (IPCC)’s fourth and fifth assessment
report, respectively. These contain data output from numerous GCMs. These GCMs exhibit increased
global aridity within the 21st century, mostly due to anthropogenic activities, leading to decreased
precipitation in tropical and subtropical regions [14–16]. Future projections of Atmosphere–Ocean
General Circulation Models show higher chances of increased wet extremes in regions where rainfall
rises and increased severe dry extremes where rainfall decreases [17]. In order to quantify or possibly
forecast the drought risks in the future using GCMs, various studies have been made [18,19].

While GCMs are key to defining atmospheric as well as oceanic processes, the spatial scale in
which the models operate is limited. The performance of the GCMs is known to be satisfactory at
inter-continental and large regional scales, yet the ability to accurately characterize the climate at a
finer spatial scale is underexplored and unsatisfactory. The coarse resolution of the GCMs restricts
the studies and fails to provide the information at a regional scale for drought impact in present and
future periods. To address this shortcoming of the GCMs, the downscaling of GCMs is required to
obtain the local future climatic situations. Along with the limitations posed by the resolution of the
climatic models, the biases contained in it impede the assessment of climate at a regional level [20,21].
Although the temperature and precipitation simulated by climate models at a large scale can be
accurate [22], the biases can hamper the analysis on regional scales. To quantify and remove this
bias, various techniques are applied in the raw climate model output, such as quantile mapping [23],
correction of monthly means [24], and quantifying the delta change [25]. Out of all these methods,
the most widely used method is quantile mapping, which matches statistical moments with due
consideration to observations by adjusting the distribution of the output from the model.

The effects of droughts can be seen in any climatic zone, but extreme effects can be seen in tropical
and sub-tropical regions like India [26]. An increase in the severity of climatological droughts is
predicted in the future in various sub-regions of India, according to studies [27,28]. With greater
influences of climate change and anthropogenic effects [29], drought is leading to problems in the
agricultural sector [30]. With about 16% of the total geographic area of India being arid and about
37% of the area being semi-arid region [31], drought will likely affect the agricultural economy.
The possibility of long-term and short-term drought in a developing country like India will have
threatening impacts on household water supply, energy generation, and food stock. Such effects are
seen in drought-prone Indian regions such as Rajasthan, Punjab, West Bengal, and Uttar Pradesh,
which have been evident throughout the past century [32,33]. The risk of such problems might be
further exacerbated in India due to droughts induced by low and variable rainfall during the monsoon
season [34]. The Indian summer monsoon, which is a vigorous regional rainfall event spreading
through June till September, shows spatio-temporal variability [35]. Moreover, the sensitivity of
monsoon to anthropogenic activities [36] could add to the complexity, making the monsoon climate in
India more unpredictable [37]. Climate models also suggest an increased intensity and frequency of
extreme dry and wet episodes in India [38]. In addition, the changes in the spatial distribution of rainfall
over India [39] may evolve into a near-catastrophic drought in the future. Likewise, the IPCC [40] has
suggested an increased risk of drought events over the arid regions of India. Furthermore, an increase
is projected in the temperature by about 1.5 to 3 ◦C in India [41]. Therefore, the study of climatological
drought in the future using the projected climate at relevant spatial and temporal scale is important for
Indian regions.

Concerning the drought in India, most of the studies have centered on assessing the past
drought and predicting the trends that lead to future drought [42–44]. Mallya et al. [43] detailed an
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increasing trend of drought in terms of severity and frequency in India. Naresh et al. [45] indicated the
increase in the area coverage of moderate drought conditions in India in recent decades. However, to
forecast future droughts, researchers used GCM-based future climate data. Ojha et al. [46] discussed
the rise of drought events in different regions of India using monthly time series of GCMs based
on precipitation-dependent drought indicator Standard Precipitation Index (SPI) at a coarse scale.
Using bias-corrected and spatially disaggregated data, Mishra et al. [42] claimed an increase in the
spatial extent and rise in occurrence of severe to extreme droughts in upcoming decades at a spatial
scale of 0.25◦. Studies concerning the Indian regions mostly used the precipitation-based drought
indicator SPI under the future projected climate. While precipitation is considered as fundamental to
analyze drought conditions, the role of temperature is also highly regarded when considering climate
change [47]. Drought indicators such as the Standard Precipitation and Evapotranspiration Index [48]
and scPDSI accounts for temperature in its formulation to incorporate the high water demand of the
atmosphere following an increase in temperature. Likewise, studies concerning droughts in India have
used several methods of bias correction of GCMs. These bias correction methods generally function
by assuming the statistical link between the observed and the simulated values. The status of such
a statistical relationship is used to predict the change in future data [23]. Therefore, the equidistant
quantile-based mapping method (EDCDFm) formulated by Li et al. [49] is preferred because of its
ability to account for changes in the future climate fields of GCMs.

The current study concentrates on the spatial distribution and severity of future drought conditions
in three topographically and meteorologically distinct areas in India. The state of the art Climate
Model Intercomparison Project Phase 6 (CMIP6)-based climate data will be used to forecast and assess
the near future drought situation (2015–2044) at a fine resolution of 1 km using a robust drought
indicator, scPDSI. The new set of climate projections under CMIP6 was established based on different
socioeconomic assumptions. The new scenarios, defined as shared socio-economic pathways (SSP),
are guided by a set of different land use and emissions constraints obtained under integrated assessment
models [50]. The CMIP5 features representative concentration pathways (RCPs) that inspect various
probable greenhouse gas emission levels in the future. These CMIP5 scenarios, namely, RCP2.6,
RCP4.5, RCP6.0, and RCP8.5, are updated differently in CMIP6. These scenarios are known as SSP1-2.6,
SSP2-4.5, SSP4-6.0, and SSP5-8.5. Various SSPs have been qualified to run climate models for CMIP6.
Since the simulated climate data from a few GCMs and limited ensembles will not be sufficient enough
to account for the uncertainties involved to assess the future processes, the multi-model ensemble
(MME) mean will be used. This work will depict the severity of CMIP6 GCMs-induced drought on a
regional scale, considering different environmental and socio-economic scenarios in the near future.
Upon completion of this research work, the expected outcomes will be helpful in responding to the
following questions.

(1) How will the emission, land use, and social changes affect the drought situation in the future?
(2) How will the simulated drought change in terms of severity, length, and spatial extent?

2. Study Area

The analysis was performed in three different study areas that vary topographically in terms of
distinct aridity. The three study areas are from western, central, and eastern India. A brief overview
of each of the study areas is presented. The three different study areas are the Araveli region (AV),
the Bundelkhand region (BK), and Kansabati river basin (KSB).

2.1. Study Area 1— the Araveli Region

The AV is located in Rajasthan, India, which lies in the northwestern part of the country, as shown
in Figure 1a. The region is dominated by the presence of a range of old mountains stretching from
northeast to southwest. The mountains run approximately 700 km, covering around 40,000 km2.
The elevation ranges from 300–670 m above the mean sea level, while major peaks of Araveli Hills
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range from 700 to 1700 m above the mean sea level. The region experiences dry climate most of the
year, outside of the monsoon/rainy season. June through September are the windiest, adding an
erratic pattern to rainfall. The agricultural practices and vegetation are dependent upon monsoon.
Irregular geomorphological and topographical conditions throughout the region lead to varying
aquifer situations where water resource availability shifts from one place to the other. Monsoon crops,
also known as the major crop, are cultivated in the months of June through September. October through
March are the months spent sowing and harvesting these crops. The months from March through May
are a major time for irrigation to cultivate summer crops. The mean annual rainfall for the study area
is approximately 674 mm.
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2.2. Study Area 2—Bundelkhand Region

The BK lies between two big states of India, namely, Uttar Pradesh and Madhya Pradesh, as shown
in Figure 1b. The domain stretches between 78◦11′ E and 81◦30′ E longitude and 23◦08′ N and 26◦30′ N
latitude. The geographical area of the study area is 71,619 km2. The elevation for this study area varies
between 200 and 400 m above the mean sea level. A dry sub-humid climate with a rainy season from
June to September is faced by this region. A population of around 15 million is dependent on rainfed
agricultural practices. Major rivers flow through and around this region: Bhetwa, Tons, Pahuj, Sindh,
and Chambal, being a few. The topography of the study area is governed by a rather uneven land filled
with undulations and rugged terrain. Monsoon and summer seasons based on agricultural products
such as wheat and soybeans are major products. Annual agricultural production is constituted by
sugarcane, pulses, and cereals, being the majority of all. The mean annual rainfall varies from 800 to
1000 mm.

2.3. Study Area 3—Kansabati River Basin

The KSB lies upstream from the Kansabati Dam. The study area is a portion of the river basin that
falls to the extreme west of West Bengal, which is geographically situated between 72◦16′ E and 74◦28′E
longitude and 73◦19 N and 74◦16′N latitude, as shown in Figure 1c. The physical area of the region is
6404 km2. The elevation lies between 110 and 600 m above the mean sea level. During the very hot
summer in May and June, the region experiences temperature up to 45 ◦C. Higher temperature leads
to an increased rate of evaporation directly influencing the natural vegetation as well as agricultural
practices in the region. The area is well equipped with an irrigation facility. The major crop products
of the region are maize, wheat, paddy, pulses, vegetables, and so on. Due to the low water-retaining
capacity of the lateritic soils along with the irregular rainfall, the basin is considered a drought-prone
area. Huge exploitation of groundwater resources to favor increasing cultivation has led to an increase
in water demands recently. The mean annual rainfall in the area is roughly 1268 mm.

3. Data and Methodology

3.1. Data

CMIP6 historical observations (1950–2014) and future observations (2015–2044) of precipitation
and maximum and minimum temperature for different SSPs were used. CMIP6 climate variables such
as precipitation (Pr), maximum temperature (Tasmax) and minimum temperature (Tasmin), wind speed
(w), cloud cover (ccl), were obtained for each of the available models and scenarios at monthly
time-scales. Each of the SSP is established based on a certain level of radiative forcings related
to emissions, land-use scenarios, and societal concerns. CMIP6 multi-model climate projections
are the outcome of the Scenario Model Intercomparison Project (ScenarioMIP); the projections are
based on alternative scenarios pertinent to societal concerns regarding climate change relief, impacts,
and assimilation. A list of all the CMIP6 models used in this work is presented in Table 1.

Table 1. CMIP6 models employed with their respective spatial resolution.

Model Modeling Institution Spatial Resolution (km)

BCC-ESM1 Beijing Climate Center Earth System Model 250 × 250

CanESM5 Canadian Centre for Climate Modelling and Analysis 500 × 500

CNRM-CM6-1 National Centre for Meteorological Research 250 × 250

CNRM-ESM2-1 Centre National de Recherches Meteorologiques 250 × 250

GISS-E2-1-G Goddard Institute for Space Studies 250 × 250

GISS-E2-1-H Goddard Institute for Space Studies 250 × 250

MIROC6 Model for Interdisciplinary Research on Climate 500 × 500
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For the current study, three scenarios (SSP5-8.5, SSP2-4.5, and SSP1-2.6) have been considered and
are detailed in the supporting literature of O’Neill et al. [50].

Conventionally, the analysis of future droughts mostly uses limited climate models to assess possible
impacts. Since the outcomes of GCMs vary widely within the scenarios, the application of the MME
mean to account for the uncertainty in ensemble outputs has become a usual practice in climate science
research. Conditions for the selection of models in this work were based primarily on the availability
of future projections. This study considers all the available models within CMIP6, which is still in its
incipient stage. Figures 2–4 show the historical and the projected period and the respective maximum and
minimum values among all GCMs to exhibit the range of climate variables. The computed MME mean
represents the precipitation, and maximum and minimum temperatures well within the variation range
in every study area, as shown in Figures 2–4. The MME mean values indicate proper representation of
the extremes of both the climate variables with temperature values in the increasing order during the
projected period, whilst a very slight increase in the precipitation for the same period.
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3.2. Methodology

3.2.1. Bias Correction of Climate Variables

The gridded CMIP6 climate variables at various spatial resolutions were initially re-gridded
to a target resolution of 1 km using bilinear interpolation. Bilinear interpolation is a method for
computing values of a grid-based on a weighted average of four nearby grid cells. The weightage is
applied depending upon the distance of the nearest cells ensuring the smoothing of the output grids.
Furthermore, an MME mean of each of the climate variables were computed for simplicity and to
lessen the variance of the ensemble datasets. All available simulation output from 7 different climate
models for respective scenarios were considered.

To bias-correct the bilinearly interpolated CMIP6 future data, observed historical data with
identical spatial resolution is required. Identical spatial resolution results in an accurate and easier
grid to grid computation. A part of this study was to generate bias-corrected future climate data at a
1 × 1 km resolution, but no historical data was available with that finer resolution. Therefore, the delta
method of downscaling was used to develop observed historic gridded data (1985–2014) with a
spatial resolution of 1 × 1 km for both temperature and precipitation. In this approach, bilinear
interpolation was performed on Berkeley earth surface temperature data, while maintaining a similar
anomaly (1970–2000) to that of Worldclim2 temperature, to generate historically observed temperatures
(both maximum and minimum) at 1 km resolution. To bias-correct and refine the finer scale temperature
data, a method proposed by Leander and Buishand [51] was used. Meanwhile, to generate a fine-scale
(1× 1 km) observed historical precipitation data, a two-step technique was formulated. At first, quantile
mapping [52] was applied to rectify the bilinearly interpolated (0.05◦ × 0.05◦) Global Precipitation
Climatology Centre version 7, in association with the Climate Hazards Group Infrared Precipitation
dataset. Secondly, the rectified data from the first step and Worldclim2 (1970–2000) precipitation
were used to generate 1 × 1 km resolution precipitation data, employing the same process as that for
temperature. A complete explanation of the methodology can be found in Herrera et al. [53].

The primary focus of this work is to predict future droughts using monthly temperature and
monthly precipitation from the climatic models. Therefore, the downscaled MME mean of the
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precipitation and temperature for each of the scenarios was bias-corrected using the equidistant
quantile-based mapping (EDCDFm) proposed by Li et al. [49], as shown in Equation (1).

Xm_f_adjusted = Xm_f + F−1
o_h(Fm_f(Xm_f)) − F−1

m_h(Fm_f (Xm_f)) (1)

m = MME mean of CMIP6 data
f = future observations from CMIP6 (2015 to 2044)
o = historical observations from CMIP6 (1985 to 2014)
h = observed historical data from gridded data (1985 to 2014)
X = climate variables (Tasmax, Tasmin, and Pr)
F = cumulative distributive function (CDF)
F−1 = inverse cumulative distributive function

The EDCDFm method works in such a way that the relative difference between the CMIP6
values and observed values in the historical period remains the same for the future period so that the
adjustment function also continues to be the same. All the while, the differences among the CDFs of
the future, as well as historical periods, are also taken into consideration. In Equation (1), Fo_h and
Fm_h are the CDF of observed and MME mean of CMIP6 outputs at a given grid for historical time
period, respectively. Fm_f is the equivalent CDF of Fm_h for the future. Xm_f represents the MME mean
of CMIP6, while Xm_f_adjusted represents the future bias-corrected output.

The method was carried out in the individual grid cells such that the probability density
function (PDF) for simulated climate variables were transferred to the PDF derived based on observed
historically gridded data. Here, the EDCDFm method took the differences of PDF in between CMIP6
historical and future data. The steps involved to complete the bias correction is sequentially shown
in Figure 5. To make sure that the interpolation between the values of the empirical CDFs does not
occur, the parametric distributions were shaped to the climate data at each grid following the same
procedure as implemented by Li et al. [49]. The method first finds the biases in the historical period
(1985–2014) and then rectifies the future period (2015–2044) for all climate variables.
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Figure 5. Outline of bias correction steps with applied methods.

3.2.2. Potential Evapotranspiration

The drought index used in this work takes into account the evaporative demand of the atmosphere.
For our work, the simple and physically relevant Penman–Monteith (PM) method is implemented
compared to the Thornthwaite method of calculation. The PM method is a way to compute
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evapotranspiration from meteorological records. It computes evapotranspiration based on daily
mean temperature, solar radiation, wind speed, and relative humidity. The PM method is applied
here because of its ability to compute potential evapotranspiration (PET) based on a diverse set of
data, unlike the Thornthwaite method, which is dependent on inputs such as mean temperature and
latitude. The PM method is physically robust, even though the Thornthwaite equation is developed
entirely dependent on precipitation [54]. However, it is a notable fact that the latter method results in
overestimated values of PET in a warmer climate [55]. Moreover, the capability of the PM method to
calculate PET even without climate data over a prolonged period of time makes it a preferable option
to use. The reference crop evapotranspiration is based on the Food and Agriculture Organization
(FAO)-endorsed PM parameterization [56,57].

PET =
0.408∆ (Rn−G) + γ 900

T+273.16 U2(es − ea)

∆ + γ(1 + 0.34U2)
(2)

where Rn is the net radiation, G is the soil heat flux density, T is the mean temperature measure at 2 m
of height, U2 is the velocity of wind measured at 2m of height, (es-ea) is the vapor pressure difference
at 2 m height, ∆ is the gradient of the vapor pressure curve, and γ is the psychrometric constant.
The value of the wind coefficient for the reference crop is taken as 0.35 and the coefficient for the
reference crop is 900 KJ−1kgKday−1.

Climate variables such as the monthly mean of daily maximum, mean and minimum temperatures,
wind velocity, and cloud cover were used to calculate PET. Along with temperature and precipitation,
CMIP6-based future (2015–2044) cloud cover and wind velocity were downscaled and bias-corrected
to the spatial resolution of 1 × 1 km before estimating PET. National Centers for Environmental
Prediction-National Center for Atmospheric Research-based cloud cover and Climate Research Unit
(CRU) wind speed climatologies were used as the historical observation dataset (1985 to 2014)
to bias-correct CMIP6-based future cloud cover and wind speed data based on Li et al. [49,53].
The temperature values, windspeed (U2), and the vapor pressure deficit were measured at 2 m height.
The vapor pressure here is the difference between actual vapor pressure (ea) and saturation vapor
pressure (es). Monthly means of saturation vapor pressure were estimated from the formula for
vapor pressure.

e(T) = 0.6108 exp
( 17.27T

T + 237.3

)
(3)

Saturation vapor pressure can contain some bias because of the nonlinear nature of Equation (3)
and the presence of which can be checked by making a comparison between averaged temperature
computed from both the maximum and minimum temperatures and the mean temperature. When the
difference between two of the average temperatures is considerably less, the presence of bias can be
neglected in the vapor pressure. Likewise, the actual vapor pressure was also computed by minimum
temperature due to the limited record of suitable humidity and dewpoint temperature, similar to the
process followed in [58]. This process applied here may not fare well for semiarid and arid regions,
but, while matching our PET estimates with the CRU PET product, the process performed well.

3.2.3. scPDSI Drought Index

scPDSI is a popular drought index that is extensively used to quantify drought variations and
long-term changes with an improved understanding of spatial distribution in various local and global
scales. Palmer developed the index in 1965, which contained deficiencies such as rational sensitivity
towards the calibration period along with spatial incompetency to predict the drought distribution [59].
Overcoming these shortcomings, the self-calibrating Palmer Drought Severity Index was developed by
Wells et al. [60]. The new drought index provided an edge over the older one, such that by tuning the
index to suit the local conditions, the climatic variability would be comparable over any given study
area. Further details concerning the development of the scPDSI can be found in Wells et al. [60].
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The drought index was computed based on MME mean of monthly estimates temperature and
precipitation as well as the time series of monthly PET values from 2015 to 2044. A calibration period
from 2015–2044 was defined to establish hydroclimatic conditions that match the actual condition of
the study area. Calibration here refers to the scaling of the scPDSI algorithm to define its distribution
approximately between -4 and +4 (extreme values of scPDSI). The aim of the calibration period is to
contain severe droughts to adjust these occurrences to the extreme scPDSI values. The calibration
period in this work was defined with regards to the anthropogenic effect on climate change and
to be closely consistent with the CMIP6 dataset. Likewise, the initial condition regarding the soil
moisture was set to 100% of available water content during the calculation of scPDSI. It is done because,
unlike other drought indices, scPDSI considers the soil properties for the drought quantification.
This calculation was completed through a script set available in the R program for scPDSI.

3.2.4. Future Duration of Drought

Future duration of drought here refers to the number of months; a study area might face droughts
of different levels of severity in the near future (2015–2044). The scPDSI-based future drought estimation
based on three CMIP6 scenarios is made the focus in this research work to show the relative differences
in the occurrence of drought in each of the scenarios. Since each drought situation will last for a specific
length with a certain level of severity for each scenario, necessary mitigation steps can be adopted to
avoid or best mitigate such calamities. The aim is also to show how the scenarios defined by the latest
CMIP6 relates to actual emission levels, land use situation, and societal conditions, which are the basis
of its development. The levels of severity considered for the future duration of droughts are severe
(scPDSI < −3) and extreme droughts (scPDSI < −4) [53]. The drought period in the future is studied
comparatively with the drought in the historic period obtained using the observed historical dataset
from 1985 to 2014.

4. Results

The duration of drought in the future thirty years is displayed through varying maps that allow
us to identify major drought-prone areas. The aim is to provide relevant information to aid in the
resiliency of such areas before and during said drought through proper management of water resources.
The time period of the drought index is for a thirty-year period, which is referred to as the near future
and is presented for each of the CMIP6 scenarios.

4.1. Araveli Region

The distribution of future drought duration is similar throughout the study area for most of
the scenarios. However, severe drought under the SSP5-8.5 scenario yields different durations all
over AV. The majority of the grids in AV region under the severe drought (scPDSI < −3) are expected
to face droughts of around 10 months in the near future under the SSP1-2.6 scenario, as shown in
Figure 6a. Almost all of the AV under the same scenario for extreme drought (scPDSI < −4) shows a
fairly constant duration of drought, as shown in Figure 6b. As per the temporal plot of grid averaged
scPDSI values in Figure 7a, severe droughts are expected around 2018 and 2025 for a year while a
sustained drought period is expected during the mid-2030s. A very few numbers of grids points
on the northern side of AV particularly in Ajmer district show around 25 months of severe drought
on average during the entire thirty years of future under the SSP1-2.6 scenario. Likewise, few grid
points in the southeastern side of the region, particularly in the Chittauragarh district, show a drought
duration of around 20 months. Seemingly, a longer duration of severe drought is found in areas other
than the central area. Udaipur district that is almost entirely in the central area is less drought-prone,
which makes sense since the central area generally receives more rain compared to the other parts of
the region. Extreme drought is expected to persist in the early half of the 2030s, as seen in Figure 7a.
The extreme drought condition (scPDSI < −4) under SSP1-2.6 is found to last around 5 to 10 months
in the near future in the majority of the AV region, as shown in Figure 6b. Interestingly, there also
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exist such grids in AV that face no extreme drought at all, which are found in the extreme northern
part. Hence, it can be considered that the future drought condition may not be devastating under the
SSP1-2.6 scenario as compared to droughts faced by the same region around 1984 till 1987 [61].
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Relatively diverse drought periods are evident under the SSP2-4.5 scenario compared to SSP1-2.6.
For severe droughts under the SSP2-4.5 (Figure 6c), the western half of the study area is expected
to face around 13 months of drought in the near future. The rest of the area of AV may face severe
drought periods of less than 10 months in the near future. The overall region is likely to face 12 months
of severe drought periods on average, although higher severe drought periods are expected in eastern
AV compared to western AV under the SSP1-2.6 scenario. The temporal plot of grid averaged scPDSI
in Figure 7b shows the persistence of severe to extreme drought during the first half of the 2030s under
the SSP2-4.5. Other than that, very few grids of the study area are expected to face a severe drought
period of around 20 months. These grids lie in the northern extreme end of the study area. The extreme
drought durations are expected to have maximum values in western AV denoted by yellow and red
patches in Figure 6d. This can be attributed to the presence of desert areas around the western half
of the AV. Compared to SSP1-2.6 and SSP2-4.5 scenarios, severe and extreme drought durations are
expected to be varying all over the study area.

Unlike other scenarios, under SSP 5-8.5, the lengthiest extreme drought duration is expected in
the eastern part of AV (Figure 6e). Also, based on grid averaged scPDSI in Figure 7c, the majority
of the severe to extreme droughts under the SSP5-8.5 scenario are expected between 2018 and 2025.
The severe drought duration under SSP 5-8.5 is expected to be higher in eastern AV compared to
western AV of the study area. Around the eastern part, the total average duration of severe drought is
expected to be around 28 months in the near future, as shown in Figure 6e. This duration of severe
drought is expected to be around 22 months along the central region in districts such as Ajmer and
Udaipur, which can be observed in Figure 6e. The extreme western area of AV, which is the Sirohi
district, is expected to face severe drought duration spanning about 15 months in the near future, while
the extreme drought duration seems to remain constant throughout the whole region with a very small
duration of around seven months in the near future. This can be considered less harmful considering
the extreme drought durations which are expected in previous scenarios. Also, Bhuiyan et al. [61]
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accounted for extreme droughts for over 36 months from 1984 till 1987 and the year 2000 in AV. Based
on this, seven months of extreme drought in the near future seems less concerning. From Figure 6f,
the duration of extreme drought is expected to remain nearly spatially uniform throughout the study
area. An exception is denoted by blue patches in the eastern region, particularly in the Chittauragarh
district. The extreme drought duration is found to be minimal in the same district with a duration of
around four months on average in the near future.

4.2. Bundelkhand Region

Based on the analysis of future drought, the duration of severe drought events under the SSP1-2.6
scenario is expected to last between 10 and 40 months in the near future (Figure 8a). The climate
of the Bundelkhand region is a hot semi-humid region. Districts like Banda, Chattarpur, and Sagar
are usually expected to have worse drought situations with relatively longer duration due to their
records of higher temperatures. However, the Banda district, which lies in the extreme east end of
Bundelkhand according to the analysis, is expected to face drought duration between 20 and 30 months
(Figure 8a), whereas the Chattarpur district, which lies in the central Bundelkhand, is expected to face
severe drought duration between 30 and 40 months in the near future. The indication of 40 months of
severe duration is expected in a lesser number of grids lying in the central and eastern part of the study
area denoted by red patches in Figure 8a. These grids lie around the districts such as Tikamgarh, Panna,
and Chattarpur. On the other hand, extreme drought events (scPDSI ≤ -4) are expected to last for fewer
months compared to severe drought (Figure 8b). Almost all of the region except the central region of
the study area is expected to face an extreme drought of at most five months. Hence, in the near future
under the SSP1-2.6 scenario, if the emissions induce radiative forcing of 2.6 W/m2, the extreme drought
situation may have the least implications as extreme to severe droughts of 3–5 months is prevalent
based on the past record (1976–2009) of the study area [62]. Also, Figure 9a shows that a good half of
the 2020s is expected to face severe to occasional extreme drought situations. The duration of both
severe and extreme droughts according to the analysis is almost similar for both SSP1-2.6 and SSP2-4.5
scenarios which can be seen in Figure 8a,c and Figure 8b,d, respectively. However, the difference in the
spatial distribution of the duration of droughts throughout the study area is noticeable in both cases.

While under the SSP1-2.6 scenario, a relatively diverse distribution of severe drought period is
expected, under the SSP2-4.5, the majority of the area in Bundelkhand is expected to face a constant
duration of droughts. Severe droughts of duration between 10 and 20 months and extreme drought of
5 and 10 months in the near future are expected as per Figure 8c,d, respectively. However, prolonged
severe droughts of duration 30 to 40 months in the near future is expected in the eastern side of the study
area, particularly in the Banda and Panna district (Figure 8c), which are well known for hot surging
temperatures in recent years. Rather shorter durations of extreme droughts are expected under the
SSP2-4.5 scenario (Figure 8d) in the majority of the BK, which indicates a lesser risk in the future, although
some regions lying in the eastern part, which is the Panna district, is expected to face extreme drought
duration of around 15 months in the near future. With these observations, it can be stated that under
the SSP2-4.5 scenario, the drought durations will be shorter in the majority of the area compared to the
SSP1-2.6. The extreme and severe droughts under the SSP2-4.5 scenario are expected mostly after 2030 but
intermittently, as shown in Figure 9b. A series of dry and wet periods can be observed in the near future.

A comparatively lesser duration of drought is expected under the SSP2-4.5 scenario in the majority
of the study area. However, under the SSP5-8.5 scenario, prolonged duration of severe drought with
duration ranging between 25 and 35 months is expected in the near future. The majority of the study
area is expected to be under the longer duration of severe drought and more pronounced drought
duration in western districts such as Lalitpur and Tikamgarh (Figure 8e) with the duration of drought
averaging 32 months in 30 years of time. Shorter duration of severe droughts is expected in the
southern region of the Bundelkhand, particularly in the Sagar district, with a duration averaging 23
months in the near future. Apart from the southern extreme regions, other regions are expected to
face a severe drought of more than 25 months. Although severe drought duration is expected to last
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between 2 to 3 years, the duration of extreme drought in any of the scenarios is shorter, and SSP5-8.5 is
no exception. The longest duration of extreme drought that is expected to occur in the BK under the
SSP5-8.5 scenario is a total of 6 months in the near future. As per Figure 9c, the droughts are not long
enough to pose significant harm in 30 years. The majority of the area in BK except for the outskirts of
the Jalaun district in the northern region is expected to face an extreme drought of around 5 months,
as shown in Figure 8f. The extreme drought duration under SSP5-8.5 is similar in all scenarios in
the majority of the area, while some parts of BK show a much longer duration of extreme drought.
These durations can be considered ineffective over the thirty years of duration based on past records of
drought in the study area [62].
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4.3. Kansabati River Basin

The distribution of severe drought duration is spread randomly over the study area. The duration
is expected to range between 10 and 40 months under the SSP1-2.6 scenario. The severe drought
duration of around 40 months in the near future is found in around central-northern half of the
study area and the extreme southern regions denoted by red patches in Figure 10a. The study area
experiences very hot summers and the temperature reaches 45 ◦C in the months of May and June,
which gives an idea that the climatic conditions are favorable for drought. In Purulia district that
lies in the upper northern half of the study area, the severe drought durations are expected to last
around 10 to 35 months approximately. The uneven distribution of drought duration throughout the
study area, rather than a belt of similar drought durations, shows the efficacy of the spatial resolution
of the drought data. It also can be attributed to the climatic variability in the study area, but the
variation of the drought duration obtained through the analysis shows the actual application of high
spatial resolution.

The spatial distribution of durations of both extreme and severe drought under SSP1-2.6 is similar
but with different durations. It is evident in Figure 10a,b, with red patches denoting the upper limit of
drought durations highlight similar regions. From this, it can be inferred that places where severe
drought lasts for a longer time eventually turn into an extreme drought situation. The maximum
duration of extreme drought is expected to last around 15 months in the near future. Likewise, in a
similar manner like other study areas, the extreme drought situation is expected to last for a lesser
duration of time compared to severe drought. In the majority of the study area, extreme drought is
expected to last between 5 and 10 months, while there are also places that are expected to be unaffected
by the extreme drought situation. Bankura district, which lies in the central part of the study area,
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and Purulia district, lying at the eastern extreme end, are expected to face little or no extreme drought.
Under the SSP1-2.6 scenario, severe and extreme droughts can be expected every decade with a fairly
lengthy spell during the early 2030s, as seen in Figure 11a.
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Under the SSP2-4.5 scenario, the severe and extreme drought durations are found to be very
similar which is unusual compared to other scenarios and study areas. The severe drought duration can
be expected to last between 20 and 60 months. The Purulia district in the northern half of the study area,
according to the analysis, may face droughts ranging between 40 and 60 months. The SSP2-4.5 scenario,
which accounts for higher emission rates and increased land use patterns compared to SSP1-2.6, can be
a cause for droughts of longer duration according to the analysis results. Severe drought duration of
around 20 to 30 months can be expected in the southern central half of the study area (Figure 10c).
Over 60 months of severe drought in the near future is the longest duration of drought that can
be expected. The drought durations obtained under SSP2-4.5 are expected to be distributed evenly
compared to drought durations under SSP1-2.6. An extreme drought duration of 10 months is expected
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to be dominant in the lower half of the study area, as shown in Figure 10d, while chances of no extreme
drought also exist. The duration of extreme drought can be expected to higher in the lower half of the
study area compared to the upper half. The upper north regions of the Kansabati region filled with
cyan patches and few of the grids filled with red patches denote the extreme drought duration ranging
between 20 and 40 months. Unlike any other cases, the extreme drought duration under SSP2-4.5 for
this study area is concerning in regards to a seemingly longer duration of extreme drought of around
30-40 months. In the occurrence of such a scenario, the conditions can be difficult to recover from
because a long term drought faced by the study area in the past lasted for 22 months [63]. Severe to
extreme drought can be expected after 2015 till the early 2020s, as per Figure 11b, although a significant
wet period can be expected after 2021, which can end around 2035.
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Under the SSP5-8.5 scenario for severe drought conditions (Figure 10e), the longer drought
duration is expected to last around 27 to 30 months in the near future. The severe to extreme droughts
are observed to take effect during the 2020s, with some brief wet spells as per the temporal plots of grid
averaged scPDSI values (Figure 11c). Spatially, the longer duration of severe drought can be found
abundantly in the lower half of the study area (Figure 10e). In the extreme lower end, dark red patches
show, on average, 30 months of severe drought duration. Apart from the extreme lower end, the longest
duration of severe drought can be found in the central part of the study area, as shown in Figure 10e.
Shorter duration of severe drought under the SSP 5-8.5 scenario is evident in many other locations
in the study area ranging from 20 to 26 months. Some locations facing the least duration of severe
drought spanning around 20 months can be observed in the extreme upper end. Extreme drought
conditions can be expected to last at least five months in the near future throughout the study area
(Figure 10f). The duration of extreme drought is considerably less compared to severe drought duration.
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Around seven months of extreme drought under SSP5-8.5 duration can be considered unalarming
since long terms droughts in KSB have lasted for 10 to 22 months in the past [63]. It also can be stated
that under the SSP5-8.5 scenario, the chances of greater implications of drought situations are relatively
less compared to drought situations that could occur under the SSP2-4.5 scenario.

5. Discussion

The current study explicitly uses the MME mean of 7 different GCMs along with its ensembles.
Instead of using an individual GCM’s output, using an ensemble of GCM output contributes reliable
estimates, especially while considering projected climate scenarios as it comprehends a range of model
uncertainties and variances [64]. As CMIP6 is still in its incipient stage, the current study includes
all available GCMs for temperature, precipitation, wind speed, and cloud cover. The use of MME
mean is believed to have better representativeness than an individual model by decreasing the spatial
error and variability [65,66]. Therefore, the projected drought obtained from future precipitation and
temperature can be considered to be a fair representation of all the involved GCMs with reduced
uncertainty and variability.

As per the results of the analysis, the drought in the AV region is observed to be concerning during
the 2030s in SSP1-2.6 and SSP2-4.5 scenarios. During the 2030s, although the change in precipitation
is not significant, the temperature is observed to be on the rise. The AV region, which is mostly dry
with desert areas, experiences the arid and semiarid climate and is expected to face a little to no
change in precipitation in the near future. Gupta et al. [67] also found a similar precipitation situation
during 2021–2050 compared to the historical period. The AV region, which is historically known
to experience less rainfall because of the hills facing the direction of the mountains that divert the
direction of the monsoon to the leeward side, can experience dry climate because of the increase in
evaporative demand of air in the future. This is corroborated by comparing the drought in the near
future with the historic drought. The drought duration maps shown in Figure 12 show a lesser duration
of both severe and extreme drought compared to the future drought durations under almost all of the
scenarios in Figure 6. It is important to note that the duration of extreme drought may not see a big
change in the future. Also, the interval between severe droughts in the near future is longer and much
longer between consecutive extreme droughts for both SSP1-2.6 and SSP 2-4.5 scenarios (Figure 7).
However, the interval between severe to extreme droughts is fairly less in the SSP5-8.5 scenario, which
is a contrasting result compared to other scenarios. On the contrary, the interval between the severe
to extreme droughts during the historical period was short (Figure 13). Therefore, it can be said that
droughts in the future may not be frequent but may last for a while if it appears.
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Figure 13. Grid averaged scPDSI values from 1985 to 2014 for study area AV based on historic
observed data.

The future drought duration, as shown in Figure 8, is expected to increase in BK compared to the
drought in the historic period. The increase in the drought duration is observed under all the scenarios
but more significantly for the severe drought. The area of spread is also observed to be increasing in
the near future compared to the historical period in SSP1-2.6 and SSP5-8.5 scenarios. More precisely,
the increase in both the duration and the areal spread is more significant in the severe drought compared
to the historical period, as shown in Figure 14. Bisht et al. [68] also exhibited an increase in Indian regions
in terms of drought occurrences and the drought durations in the near future. The future drought
situation can be attributed to increasing water stress under warming scenarios, which can further be
related to higher evaporative demand. Further, the BK region lies in the humid subtropical region, and a
rather insignificant increase in precipitation can be observed (Figure 3), and this insignificant increase in
precipitation can be attributed to due to anthropogenic aerosol emissions according to Bollasina et al. [69].
However, due to the humid climate, the number of droughts faced in the near future may be frequent
but not as frequent and sporadic as in the historical period (Figure 15). Similarly, Mishra et al. [70]
stated that yearly variability due to sea surface temperature in the Indian Ocean could end up causing
droughts in the Gangetic Plain, within which BK lies.Forecasting 2020, 2 FOR PEER REVIEW  20 
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The drought duration in KSB is observed to be increasing significantly in the near future compared
to the historical period (Figure 16). Even though an increase in precipitation is observed during the
projected period, the drought duration is still expected to be on the rise based on Figure 10. This can be
attributed to the subsequent increase in the evapotranspiration demand, along with the increasing
projected temperature [71]. The KSB region also lies in the Gangetic Plain and is expected to face
the drought in the future, according to Mishra et al. [70]. The severe and extreme droughts are more
frequent in the SSP1-2.6 and SSP5-8.5 scenarios over the projected period. However, compared to the
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historic drought (Figure 17), the drought occurrences in the future are observed to be less frequent
and more steady, although the instances of drought post-2030 are observed to be a lot less under
the SSP5-8.5 scenario. The climate of KSB is also humid, which indicates a similar future drought
situation as that of BK. While AV is already a dry region, BK and KSB, which are humid regions, are
expected to have higher projected precipitation in the near future. This corroborates the statement by
Salvi et al. [72] that wet areas are getting wetter and dry areas are getting drier.
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On the basis of previous accounts of drought durations in each study area, a fair sense of drought
duration that is normally experienced can be established. Based on Bhuiyan et al. [61], in the AV,
the severe to extreme drought occurred during 1984–1987. Then, again in the year 2000, the majority of
the region faced severe to extreme drought. Based on this, the length of severe to extreme drought
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experienced is roughly around 36–48 months. Hence, for the near future, less than 10 months of
extreme drought as per all the scenarios seems less harmful. Since drought studies have not been
separately carried out for a long period in the respective study area, an older account of drought had
to be referred to. Similarly, Thomas et al. [62] for the BK region stated that most of the districts in
the region have been facing severe to extreme droughts for 3–5 months between the time period of
1976–2009. As per the current study as well, the extreme droughts are expected to last at most 5–10
months based on results under all the scenarios in the near future. Likewise, AK Mishra and Desai [63]
reported that short term droughts in KSB lasted for 1.5–2 months. Medium-term droughts lasted for
3–5 months. Long terms droughts lasted for 10 to 22 months. The severity of the droughts was not
taken in the account by the study, but the length of drought in the study area gives an idea that extreme
drought may not have bigger implications. It is noteworthy that the duration of extreme droughts in
all of the study areas under the SSP5-8.5 scenario is less compared to extreme droughts under SSP1-2.6
and SSP2-4.5 scenarios. In all of the three study areas, the duration of extreme droughts has not been
observed to be significant. Therefore, the projected duration of extreme droughts during the near
future does not seem to pose greater setbacks.

Based on the results, all the regions may experience severe droughts in the near future.
Hence, droughts may affect the living conditions in these regions. The results also provide insights into
water resources management in India. Soil moisture deficit can be a concerning problem due to the
longer drought period in these regions. Hydrologic processes, such as runoff and water storage, can be
disrupted due to a lack of soil moisture. Subsequently, due to lack of soil moisture, agriculture output
may be affected. Half of the Indian population is based on the agricultural economy. From 1983 to 2014,
the contribution of agriculture to gross domestic product (GDP) of India has plummeted significantly
by 25% [73]. This drop in agricultural GDP has contributed to agronomic inefficiency, leading to a
concerning risk to food security in the future. India as a whole is projected to have a population of
1.8 billion at the end of 2050, according to the United Nations [74]. A majority of cities are located
in BK and KSB and contains major Indian rivers. The current study indicates severe droughts in all
the study areas and especially in BK and KSB, which, in turn, will affect water availability. This will
seriously impact the presence of plant species, resulting in desertification. The projection of electricity
demand shows an increasing rate in the future. Due to projected drought situations, the dependable
hydroelectric power generation can be at stake due to reduced water availability. This can create a
shortage of power in the future, leading to greater economic setbacks. Therefore, suitable preparedness
is required, taking into consideration the results of the current study, to lessen the risk posed by
drought in these respective regions in the future. The plans and policies should be placed while also
considering the regional implications of the projected hazard.

6. Conclusions

This study uses the latest CMIP6 to forecast and quantify the future droughts in various regions
of India. A high-resolution drought data was generated, considering simulated precipitation and
temperature data as a basis, for a drought index commonly known as scPDSI. The study used historical
modeled precipitation and temperature from CMIP6 and historically observed precipitation and
temperature data to bias-correct the future CMIP6 data. The future droughts were quantified for
different emissions, land-use, and societal constraints, commonly called scenarios. The findings of this
research are noted down as follows:

(1) Prolonged durations of severe drought (scPDSI ≤ −3) can be expected under the SSP2-4.5 and
SSP 5-8.5 scenarios between 2015 and 2044.

(2) The period of a possible lengthy spell of worse drought situation can be identified as the period
between the mid-2030s and early 2040s for the Araveli and Bundelkhand regions.

(3) Distinct drought durations, even in the smallest of the vulnerable areas, were identified due to
fine spatial resolution of the obtained drought index dataset.
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The MME mean of seven different GCMs was created to address the variability among climate
models, and model-induced uncertainties were able to accumulate the overall effects giving equal
weightage to all models. A succession of dry and wet periods observed in thirty years of the future
shows the effectiveness of the MME mean. The outcome of this study shows that the occurrence of
drought exists nearly every decade in warming climate under all scenarios. Particularly, drought
durations in the AV region around the 2030s can be a noteworthy situation in the future because
two of the scenarios show the possibility of such drought. A severe drought of around 21 months
in total in the near future can be expected under the worst of the scenarios. Continuous drought in
a place like AV, which is known for its arid climate mostly throughout the year, can be concerning.
Hence, proper management of water resources should be planned in the future, mostly in the eastern
and western regions of AV. For BK, dry periods are dominant in the future with shorter durations of
wet periods appearing, intermittently raising concerns in all scenarios except for SSP2-4.5. However,
a total of 2–3 years of severe drought in the near future can be expected under the projection of the
SSP5-8.5 scenario. Unlike in AV and BK, KSB can be expected to face serious droughts in the 2020s.
A total of around 35 months of extreme drought can be expected under the SSP2-4.5 scenario. It can
be concluded that worse climatic situations may somewhat lead to favorable conditions for inducing
droughts. However, significant differences between climate scenarios of CMIP6 in detecting future
droughts were not noticed. The future changes in climate tend to show that severe drought durations
will most probably be a concern as per the analysis under SSP2-4.5 and SSP5-8.5 scenarios for all study
areas. The mid-2030s can be considered as drought-prone periods regardless of severity in climatic
situations. The drought occurrences, durations, and intensity may probably decrease after the late
years of the 2030s.

The study areas considered for this research work have been traditionally drought-prone. With the
development of a high-resolution drought index spanning a future period of thirty years, remote and
less developed localities or districts can benefit from timely solutions of water management as a result
of future drought forecasting. Timely water management done as a result of forecasting can have
positive benefits in food security, agricultural practices, health, and the economy of any given place.
Hence, this study can be applied to forecast drought in other smaller regions while taking advantage
of finer spatial resolution.
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