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Abstract: Increased Intracranial Pressure (ICP) is a serious and often life-threatening condition.
If the increased pressure pushes on critical brain structures and blood vessels, it can lead to
serious permanent problems or even death. In this study, we propose a novel regression model
to forecast ICP episodes in children, 30 min in advance, by using the dynamic characteristics of
continuous intracranial pressure, vitals and medications during the last two hours. The correlation
between physiological parameters, including blood pressure, respiratory rate, heart rate and
the ICP, is analyzed. Linear regression, Lasso regression, support vector machine and random forest
algorithms are used to forecast the next 30 min of the recorded ICP. Finally, dynamic features are
created based on vitals, medications and the ICP. The weak correlation between blood pressure and
the ICP (0.2) is reported. The Root-Mean-Square Error (RMSE) of the random forest model decreased
from 1.6 to 0.89% by using the given medication variables in the last two hours. The random forest
regression gave an accurate model for the ICP forecast with 0.99 correlation between the forecast and
experimental values.
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1. Introduction

Skulls are fixed volume vaults containing the brain, blood and Cerebrospinal Fluid (CSF).
The brain tissue occupies about 80% of the total intracranial volume. The remaining contains about 10%
blood in arteries and veins and about 10% CSF in the ventricles, the basal cisterns and the subarachnoid
space [1]. The total volumes are constant, and an increase in one should offset by an equal decrease
in the other. Otherwise, the pressure increases. Intracranial Pressure (ICP) is normally measured by
assuming that it is evenly distributed among all intracranial compartments, including the intradural
space of the spinal canal [2,3]. The normal ICP in healthy children is usually considered in the range of
5 to 15 mmHg.

Various pathological conditions may result in an increase in the ICP. In Traumatic Brain
Injury (TBI), an ICP increase of >20 mmHg for more than 5 min is widely accepted to be detrimental [4].
The main purpose of ICP monitoring in TBI is to prevent secondary injury resulting from an increase
in the ICP. In addition, measuring the ICP and Mean Arterial Pressure (MAP) allows calculation of
Cerebral Perfusion Pressure (CPP): CPP = MAP − ICP [5]. Attempts can then be made to optimize the
CPP with the goal of preventing cerebral ischemia.
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The ICP is commonly measured using fiber-optics technology, which allows continuous ICP
monitoring without CSF drainage. The fiber-optic type of catheter can be placed in the subdural space
or the brain parenchyma [6,7]. In this study, we create a forecasting model using the data that were
collected in a minute-based cycle in the pediatric intensive care unit. Our time series data cover the
period of 2013 to 2017.

Despite the importance of the continuous measurement of the ICP, signal processing capabilities
in existing commercial ICP monitoring devices remain poor, providing clinicians with less information
that is confined to the mean ICP. Accordingly, clinical decisions related to treating abnormalities of the
ICP are typically made solely based on the mean ICP, although raw continuous waveform data are
usually available [8,9]. Mathematical models that relate the ICP dynamics to the other physiological
parameters, the monitoring of which is minimally invasive, provide a powerful alternative for the
patients who might benefit from a direct measurement of the ICP.

Ursino et al. [10] used a model to forecast the ICP dynamics from non-invasive measurements
of arterial blood pressure, which appeared to conform to the ICP measured in the patients with
Traumatic Brain Injury (TBI) [11]. Guiza [12] developed a model to forecast the increase in ICP in
264 brain-injured patients 30 min in advance using dynamic information of four hours ahead with
0.72 accuracy. They forecasted the increase in ICP as high or low rather than the actual value of ICP
that we forecasted in this study using regression.

The eventual goal of this study is to use data-driven models that enable accurate ICP forecasts
in real time. After preprocessing the data, a forecasting model is created to forecast the next 30 min
of the ICP. Multiple regression algorithms are evaluated, and finally, a random model is selected to
forecast the outcomes’ reliability.

2. Methods

The Institutional Review Board (IRB) of the Children Health Care of Atlanta (CHOA) approved
to review 78 subjects’ charts between 9 January 2013 and 2 January 2017. An overview of the collected
data is reported in Table 1 in the Results Section.

2.1. Data Acquisition and Preprocessing

We used the vitals, ICP and medications data for children at Egleston and Scottish Rite hospitals
from September 2013 to February 2017. The data were stored in Hadoop [13], and the monitored
ICP data were consecutively added to the database. In 1996, the Health Insurance Portability and
Accountability Act (HIPAA) suggested some general requirements to enforce the security of protected
health information [14]. After getting approval from HIPPA, we extracted Intensive Care Unit (ICU)
patients’ raw data using database queries.

We monitored 78 patients’ ICP using the Integra Camino system. All transducers were implanted
in the brain parenchyma. Given the diversity of children’s ages, we used “year” as their age unit.
The length of ICP monitoring was considered to be per “day”, both because of the short-term ICP
monitoring for some patients and the small median of patients’ ICP monitoring (less than a month).
Time-averaged values of ICP, MAP and CPP were recorded per minute by the Phillips medical
system in Atlanta, GA. The vitals include Heart Rate (HR), Respiratory Rate (RR), Blood Pressure (BP)
and MAP. Missing data were possibly due to monitoring disconnections or data loss during patient
transportation. Dealing with the missing data in the dataset is a frequent problem, and it may affect
the final forecasting model significantly. To solve this issue, we impute the missing values if they were
missing by less than 50% in the dataset. There are different methods for imputing missing values,
which are based on other available data. Due to the long time needed for multivariate imputation,
we decided to use simple mean imputation where the missing observation of a variable is replaced
by the mean of the non-missing observations. Otherwise, if data were missing by more than 50%,
we removed that feature [15,16]. These features were medications that were given to the patients.
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2.2. Statistical Analysis and Machine Learning

The simple Pearson correlation method was used to see if there was any meaningful correlation
between ICP and the changes in vitals during the patients’ ICP monitoring at the hospital.

We split the 78 patients into 52 and 26 individuals in two groups of training and testing, randomly.
The median of the length of ICP monitoring for the patients was 17 days. In the training group,
the length of ICP recordings (days) for 38 patients was less than 17 days. In the testing group,
16 patients had a length of ICP recording less of than 17 days.

We used Autoregressive Integrated Moving Average (ARIMA) and Exponential Smoothing (ETS)
models to forecast ICP. The ARIMA model analyzes and forecasts uniformly statistic information,
transmission and intercession of data [17]. This model is well specified when the underlying process
is linear. The ETS model, as a robust stochastic model, does not only rely on the correlation of data.
In this approach, the most recent observations were weighted higher than the previous ones. Therefore,
the ETS model can produce smarter forecasts compared to the average method [18,19]. In order to
forecast the next 30 min of a patient ICP, both the ARIMA and ETS models were fitted to the ICP time
series data. Within an ARIMA model, there are three variables; auto-regressive (p), differencing (d)
and moving average (q), and the model is often notated as (p,d,q). These parameters were optimized
using auto.arima() in R software (3.0.2). On the other hand, ETS (M,A,N) forecasts by multiplying
errors (M), adding trends (A) and ignoring seasonal effects (N).

We also used dynamic averaging time series to forecast ICP (see Figure 1). The choices of delay
time and embedding dimension are important; as good choices can reduce both the amount of required
data and the effect of any noise. The optimum values of the embedding parameters were determined
by sensitivity analyses. This analysis is concerned with the behavior of the optimal solution with
respect to the parameters. Let us consider the time series of x = x1, x2, ..., xN . Xconstructed by the
sliding window and Y would be our input and output matrices, respectively. The sliding window with
a fixed size of two hours was used to forecast the next thirty minutes. Since it may not be feasible to
forecast all of next thirty minutes at once, only one step ahead of a five-minute forecast was produced
each time.

Figure 1. Sliding window.
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Dynamic features were used for a two-hour prediction period, as shown in Figure 1.
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Each data point is the mean of 5 min of data calculated by:

fk =
1
k ∑k

n=1 xi = x̄k (2)

Based on the domain experts’ idea and literature review, the ICP change in less than five minutes is
not considered to be dangerous, and averaging can help to smooth our data. The forecast horizon was
one since the forecast was one step ahead. In the first row, the working window includes k historical
observations (x1, x2, ..., xk), which were used to forecast the next value x(k+1). In the second row,
the oldest value was removed from the window, and the latest value x(k+1) was added, keeping the
length of the sliding window constant at k. The next forecast value would be x(k+2), and so on, until
the end of the dataset. If the number of observations is N, then the total number of data points is (N-k).
After creating this matrix, %66 of data were used for training and %33 were used for testing set and
details, as tabulated in Table 1.

Dynamic features included MAP, CPP, BP, ICP, RR, HR and medications. Medications that were
given in the last hour included morphine, mannitol, Versed, saline-3 pct, pentobarbital, Dilaudid,
lorazepam, rocuronium, fentanyl, succinylcholine and vecuronium. Non-overlapping intervals per
minute were selected to extract these features. Medications data were added to the feature set as binary
values, considering whether they were consumed at those time intervals or not. The observations
showed minute by minute feature changes for each patient. Linear regression, Lasso regression,
support vector machine and random forest were implemented to forecast the next 30 min of the ICP
using the dynamic feature sets.

Running a regression is a simple statistical way to establish a relationship between a dependent
variable and a set of independent variable(s). The Lasso regression, which performs both variable
selection and regularization, showed less error in forecasting using our data comparing to the
linear-based regression model. This regression is based on the shrinkage estimation, and it is a
popular tool for the analysis of a high-dimensional dataset such as ours. The advantages of Lasso
include: (1) a smaller Mean Squared Error (MSE) compared to the conventional methods; (2) handling
the multicollinearity problems more efficiently; (3) weighting the features reliably; and (4) shrinking
coefficients [20–22].

The Support Vector Machines (SVM) technique, which is based on statistical learning theory [23],
provided better results in forecasting compared to the other regression models we used for our study.
It can be applied not only to classification, but also to the case of regression. Still, it contains all the
main features that characterize the maximum margin. A regression function is generated by applying
a set of high dimensional linear functions. Hence, given a set of data xi Ai

N
(i=1) (where xi is the input

vector Ai is the actual value and N is the total number of data patterns), the regression function
can be presented as: R = w.φ(xi) + b. In this equation, ω is the weighted vector, b is the constant
and φ(xi) denotes a mapping function that is utilized in the feature space. The coefficients (wi and b)
are calculated by minimizing the regularized risk function as follows:

P(R) = C
1
n ∑N

i=1 Lε(Ai, Ri) +
1
2
||w||2 (3)
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where:

Lε(Ai, Ri) =

{
0, if |Ai − Ri| ≤ ε

|Ai − Ri| − ε, otherwise
(4)

In Equation (2), C and ε are user-defined parameters and Lε(Aj, Ri) is called an ε-insensitive
loss function. The parameter ε is the difference between the actual values and the values calculated
from the regression function. This difference can be treated as a tube around the regression function.
The loss equals zero if the forecast value is within the ε-tube. Furthermore, 1

2 ||w||2 is used to estimate
the flatness of a function. Thus, C is a parameter determining the trade-off between the empirical risk
and the model flatness. It corresponds to a linear method in a high dimensional nonlinear feature space
related to the input space and carries out the regression estimation by risk minimization. This risk
minimization consists of the empirical error and the confidence level value.

The SVM method might prevent the over-fitting problem since the feasible region is a convex
set. This would make the SVM solution a global optimum [24]. Here, we used a polynomial kernel of
degree one to represent the similarity of the training samples in a feature set over polynomials of the
original variables.

We also used the random forest method [25] to build our prediction model. This model is made
of many different decision trees generated from a random bootstrap decision sampling of the same
training data. Decision trees can divide the feature space into a number (J) of regions Rj, 1 ≤ j ≤ J and
fit a specific model in each one. The decision model assigns a constant value, vj, 1 ≤ j ≤ J, to each
region as: if (x ∈ R) then y = vj. Thus, a regression tree can be defined as:

∑N
n=1 I(x ∈ Rj) ∗ vj′ (5)

where:

I(x ∈ Rj) =

{
1, if x ∈ Rj

0, otherwise
(6)

At each inner node during the regression process, the RF traverses down the data to choose the best
splitting feature that results in the highest information gain from a small number of randomly-selected
features rather than using all the features. Finally, the output is calculated as the arithmetic mean of all
individual tree predictions [26]. The random forest has many of advantageous aspects that make it
very suitable for many prediction problems. First, it is fast enough to apply on a regression problem;
second, it is robust to the noise; and third, it handles a high number of features easily [27]. The random
forest was chosen to handle the multicollinearity of the features as explained above.

3. Results

Overall, 78 patients with continuous ICP monitoring were chosen for this analysis. Out of these
78 patients, 42 were male and 36 were female. The number of children who were less than eight years
old and more than eight years old was 44 and 34, respectively. According to the patient’s length of ICP
recording, there were 54 recorded less than 17 days and 24 recorded for a longer time (Table 1).



Forecasting 2019, 1 52

Table 1. Intensive Care Unit data overview.

Patients Total Mean/SD Training Set (n = 52) Testing Set (n = 26)

Age: 0 to 2 5 3 2
Age: 2 to 8 39 25 14

Age >8 34 24 10
Sex: Male 42 26 16

Sex: Female 36 21 15
Days of ICP recordings 17/14 17/16 17/19

ICP (mmHg) 15.3/16.4 15.5/18 16.3/17.1

Figure 2 shows the Pearson correlation among vitals and ICP. Pearson correlation [28] results
demonstrated a lack of significant correlations between vitals and ICP.

Figure 2. Correlation among vitals.

There is a poor positive correlation between HR and RR. Other than that, there is not any
meaningful correlation among vitals in Figure 2. In this study, we did not add any information
regarding the types of traumatic brain injury including brain contusion, brain bleed and brain shift,
a notable omission.

This study focused on evaluating the forecasting performances of various models for both the
short and relatively long term. The sliding window w was set to be two hours of ICP data by minute,
and the forecasting horizon k was set to five, meaning five forecasts were produced ranging from five
minutes ahead to 30 min ahead into the future. After preprocessing, 66% of data were used for training
and 33% of data for testing, considering the normal distribution among features in both sets.

A baseline, linear regression did the worst in forecasting time series as it was not able to predict
the change points in the forecast line. Exponential time series did a better job than simple linear
regression with lower error rates. ARIMA reduced the mean absolute error to around one, but kept
the squared correlation coefficient the same as the two previous forecasting algorithms.

Figure 3 compares the ICP forecasting for a patient during the next 30 min using both of
these models.



Forecasting 2019, 1 53

(a) Forecasts from ARIMA(1,1,4)

Minute

m
m

H
g

(b) Forecasts from ETS(M,A,N)

Minute

m
m

H
g

Figure 3. (a) Forecast using ARIMA; (b) forecast using Exponential Smoothing (ETS).

Both forecast estimates above were provided with confidence bounds: 80% confidence limits
shaded in darker blue, and 95% in lighter blue. Longer term forecasts usually have more uncertainty,
as the model regresses future Y on previously predicted values. As you can see, after a sharp change
in ICP, neither ETS nor ARIMA can forecast accurate values of continuous ICP. We obtained an RMSE
of 3.3 using ETS. ARIMA reduced this amount of error to 3.0. However, due to the non-stationary
nature of some of the patients ICP data, we could not track the same pattern using ARIMA.

To create better prediction model, we used two hours of vitals and medication to create dynamic
features based on a sliding window every five minutes. Two Lasso regression and random forest used
for regression. Plots represented in Figures 4 and 5 helped to choose the most accurate model to fit our
data the best.
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Figure 4. Fitted Lasso model.

In Figure 4 each color represents the value taken by a different coefficient in the Lasso model.
As it is shown here, with the small L1 norm, there was much regularization. On the other hand,
as Lambda grew, the regularization term had a more substantial effect, and we saw fewer variables in
our model (because more and more coefficients will be normed to zero). Lasso simultaneously selected
relevant predictive variables and optimally estimated their effects [29].

We also applied random forest for forecasting the next 30 min of ICP. Random forest increases
diversity among the regression trees by resampling the data with replacement and randomly changing
the predictive variable sets over the different tree induction processes. In current work, we used R
software to build regression trees. For the training of this type of model, it is necessary not only to
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define the space dimensionality of random features, but also the number of trees to be built based
on the decision limits generated by said division variables. To establish the optimal value of these
parameters, a number of experiments were carried out using a different number of trees and a different
number of split variables. The number of trees ranged between one and 100. Figure 5 shows our
trained random forest tree performance with 100 trees and the related error.

Trees

Er
ro

r

Figure 5. Trained Random Forest with 100 trees.

As you can see, MSE decreased as the number of tree increased. Prediction accuracy of all
algorithms was assessed using the squared correlation coefficient (R2) between predicted ICP and
actual ICP values in the next 30 min, Mean Absolute Error (MAE), RMSE and Relative Root Squared
Error (RRSE) (see Table 2).

R2 = 1− ∑N
i=1(ŷi − yi)

2

∑N
i=1(yi − ȳi)2

(7)

MAE =
1
N ∑N

i=1(yi − ŷi)
2 (8)

RMSE =

√
1
N ∑N

i=1(yi − ŷi)2 (9)

RRSE =

√
∑N

i=1(ŷi − yi)2

∑N
i=1(ȳi − yi)2

(10)

RMSE for Lasso regression was 2.76. the RRSE changed from 31 to 21.5% after adding medications.
In support vector machine, the error rate was less than linear regression. However, comparing to other
regression results, random forest explained more of the variability of the response data around its
mean. The algorithms used for prediction are listed in Table 2.

Table 2. Algorithms used for prediction.

Algorithm CC MAE RMSE RRSE

linear Regression 0.97 2.39 4.13 23.2%
ETS 0.97 2.15 3.3 20.2%

ARIMA 0.97 1.89 3.0 18.7%
Lasso Regression 0.98 1.80 2.76 21.5%

Support Vector Machine 0.98 1.59 2.74 14.25%
Random Forest 0.99 0.59 0.89 5.7%

Lasso regression and support vector machine achieved the same (R2); however, the RRSE
of support vector machine was significantly less than Lasso regression. Finally, the best model,
random forest, obtained the least RRSE for the forecast. For the selection of the best regression
model, we determined that it was the one in which the several error rates were lower than the other
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algorithms. From the numbers in Table 2, it is immediately obvious that random forest outperformed
other algorithms in forecasting. Adding medications decreased RMSE from 1.6 to 0.89 using random
forest. This helps the physicians to read predictions for the next 30 min using the last two hours of data.
A squared correlation coefficient of 0.99 implied that the random forest model explained 99% of the
variance in our data. Furthermore, this model resulted in a less average distance of predictions from
actual data points (0.59).

4. Discussion

The clinical context of this research is using a novel approach to generate continuous,
streaming next-30-min ICP forecasts to facilitate ICP management. Currently, intervention is
implemented until ICP rises above a certain threshold (20 mm H2O). One may envision that eventually,
it may be desirable for clinicians to intervene based on predictions before the actual rise of ICP.
The dynamic time series forecasts non-stationary phenomena much better than ordinary forecasting,
so it can preserve both higher and low frequency components of the ICP changes. In general, it is
capable of revealing a certain trend of the data, which is likely to be missed by conventional techniques
of using constant features for prediction.

The normal intracranial pressure increases with age, as cranial bones will be more rigid
and structures close with age. Figure 6 shows ICP change with age.

Figure 6. ICP change with age.

Comparing ICP in different age groups shows that a small increment in intracranial volume
results in a notable change in ICP. The pressure increase is faster in children and slower in older adults.
In the presence of any intracranial masses (tumors, cysts or hydrocephalus), the ICP can increase
rapidly. This sharp increase can decrease the Cerebral Blood Flow (CBF) significantly and cause
cerebral ischemia and death [30,31]. Reliable prognosis of ICP trends with long prediction horizons is
required for clinical purposes; this may be regarded as the multistep prediction task. In the experiment
described in this paper, multi-step prediction has been used. Each row in the sliding window matrix
was used to predict the next k steps ahead, and this iteration was repeated k times to achieve thirty
minutes of prediction.

There have been multiple studies that have tried to forecast ICP; however, they did not consider
medication’s effect on ICP forecasting. Several studies have done classification rather than regression
to forecast ICP [32,33]. In this study, we presented different models for forecasting ICP in children
based on dynamic features. We demonstrated that increased ICP could be forecast using time-based
ICP changes in the past. However, ARIMA and ETS models did not work well because of erratic
fluctuations in ICP, so they could not forecast them accurately. Applying regression models allow us to
forecast ICP accurately 30 min ahead.

Forecasting ICP for k time steps with less error rate can be regarded as a really satisfactory
result, even in comparison with the results achieved in other areas of interest [34,35]. This is possible
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mainly due to recent advances in data pre-processing, like preparing the dynamic sliding window for
short-term and long-term forecasting. Nevertheless, what is a satisfactory result from the mathematical
point of view may be quite disappointing in practical applications. In particular, no method of
mathematical forecasting, available to date, is able to predict irregular and/or incidental break points
in the signal, if they had not been heralded in the historical course of the process; whereas, in fact,
prediction of such changes in the ICP trend as early as possible would be most valuable to the
neurosurgeon and nurses. Hence, we shifted our interest from the “simple” long-term forecasting of
the ICP to k step forecasting using dynamic time series features. Our ultimate goal was to describe an
error rate of different machine learning algorithms to forecast k steps ahead of ICP.

To the best of our knowledge, this is the first forecasting that considers medications other than
vitals in order to forecast ICP. This presents an advantage of intervening before the patient needs
surgery in the operating room [36]. Our novel approach predicts the ICP average in children in the
next 30 min, giving physicians and nurses enough time to make an intervention and decrease it by
using specific medications. Future studies are required to investigate the effect of static features on
predicting intracranial pressure.

5. Limitations of the Study

Limitations of this study should be noted. To deal with real-world problems, we are often faced
with missing values in the data due to monitoring malfunctions or human errors. Handling different
types of missing data was the only important limitation of this study. First, we only used a dataset
of patients who had a bolt as they had less missing values. We removed the other dataset including
patients who had an extra-ventricular device or patients who had been monitored with both a bolt
and an extra-ventricular device, respectively, due to the high percentage of missing values. Second,
surgery features had a high volume of missing values. We eliminated those features in order to achieve
realistic results.

Traditionally, the missing values are simply omitted. However, omitting those missing values
may cause temporal discontinuity. In order to prevent that, missing values were imputed using mean
imputation. We believe having a complete dataset without needing to fill out missing values will
improve the error rate of forecast.

6. Conclusions and Future Works

This study aimed to evaluate the performance of the multiple regressors for forecasting the next
30 min of ICP in children. Compared to other regressors, the random forest performed well in the
context of regression with dynamic features of time series. The specific objectives were to study the
behavior of forecasting models with a low resolution of data, adding dynamic features of medications
given in the ICP monitoring time and testing error rates in different models. The results of this research
provide new insights into the performance of random forest in the context of forecasting dynamic
time series. The random forest does not over fit because of the validation set that was used for testing,
the law of large numbers and only two user-defined parameters to be set: the number of trees and the
number of random split variables. The number of trees is directly proportional to the regressors’ error
rate until reaching a state (100 trees) in which the generalization error converges adopting values lower
than 1%. Once the error has converged, the number of random variables only alters the regressors
error rate slightly.

The forecasting of ICP in the next 30 min based on dynamic features can give a reasonable estimate
for ICP, which provides an appropriate time for intervening before serious problems occur. Given the
inclusion criteria of the study, all patients had an ICP device of a parenchymal electrode (Camino bolt).
Having complete data of patients with the bolt would be a significant help in generalizing the model
and using it for forecasting ICP in any types of patients.

In terms of future work, There are several directions that can be pursued in order to improve
upon this work. More types of ICP monitoring data can be used, including patients who have an
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extra ventricular device for monitoring ICP. Other dynamic features such as surgical features could be
helpful in generalizing the model. Furthermore, using other imputation models for missing values such
as median imputation, random forest imputation or expectation maximization techniques might give
realistic values compared to the simple mean imputation that was used here. Additional forecasting
models, such as neural networks, especially recurrent neural networks, should be included in order
to create a more comprehensive evaluation of the forecasting technique for intracranial pressure
in children.
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