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Abstract: Forecasting hourly spot prices for real-time electricity markets is a key activity in economic
and energy trading operations. This paper proposes a novel two-stage approach that uses a
combination of Auto-Regressive Integrated Moving Average (ARIMA) with other forecasting models
to improve residual errors in predicting the hourly spot prices. In Stage-1, the day-ahead price is
forecasted using ARIMA and then the resulting residuals are fed to another forecasting method in
Stage-2. This approach was successfully tested using datasets from the Iberian electricity market
with duration periods ranging from one-week to ninety days for variables such as price, load
and temperature. A comprehensive set of 17 variables were included in the proposed model to
predict the day-ahead electricity price. The Mean Absolute Percentage Error (MAPE) results indicate
that ARIMA-GLM combination performs better for longer duration periods, while ARIMA-SVM
combination performs better for shorter duration periods.

Keywords: ARIMA-SVM (Support Vector Machine); ARIMA-RF (Random Forest); ARIMA-GLM
(Generalized Linear Model); electricity price forecasting; Iberian market; day-ahead price

1. Introduction

Electricity price forecasting is a branch of energy forecasting that focuses on predicting the spot
and day-ahead prices in the electricity market. Price forecasting is one of the fundamental tasks in
utilities and energy trading entities for various decision-making mechanisms, for example, adjusting
bids to maximize profits, scheduling outages and establishing load profiles. In particular, more
accurate short-term price forecasts benefit both producers and consumers, as they can maximize profit
and minimize the cost of a variety of applications such as home energy management programs in
dynamic pricing environments and demand response. Electricity price is highly unstable in the open
market or for consumers and its instability further increases by the deployment of the smart grid
as it is influenced by many visible and invisible factors. For example, short-term price (e.g., hourly
scales) depends on current demand, type of energy used for generation, historical price trend, hour
of days and so forth. Medium term (weekly scales) and Long-term price (monthly to yearly scales)
is influenced by factors like energy reserve (oil and gas), expected demand, population growth and
various economic factors. Most of the research on price prediction uses these factors as input features
for prediction models.
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This spot electricity market is a day-ahead market, unlike the commodity market which allows for
continuous trading. In this market, an agent submits its price bid for the next day before the market bid
closing time and usually is cleared by the market operator after a market clearing optimization process
is performed. A 1% saving in the MAPE (Mean Absolute Percentage Error) accuracy of a Short-term
price forecast (STPF) is approximately equal to $300,000 in savings per year per GW peak-load.
However, due to lots of factors, such as energy policy, urban population, socio-economical activities,
weather conditions, holidays and so on [1], the electric load data display seasonality, non-linearity and
a chaotic nature, which complicates electric load forecasting work [2]. Thus, a reduction in MAPE is of
importance to traders and transmission planners, such as for evaluating the magnitude and patterns
of congestion in the system. Price forecasting approaches are often based on multi-agent, fundamental,
reduced form, statistical, or machine learning techniques [3].

The conventional statistical models, which include the Auto-Regressive Integrated Moving
Average (ARIMA) models [4,5], regression models [6,7], exponential smoothing models [8], Kalman
filtering models [9], Bayesian estimation models [10,11] and so on use historical data to find out the
linear relationships among time periods. The methods such as artificial neural networks (ANNs) [12,13],
expert system models [14,15] and fuzzy inference systems [16,17] have been widely applied to improve
the performance of electric load forecasting. In [18], authors use Support Vector Regression (SVR)
with chaotic cuckoo search (SSVRCCS) model, improves the forecasting accuracy level by capturing
the non-linear and cyclic tendency of electric load changes. In [19], authors propose a method for
short-term price forecasting using self-organized map (SOM). They use a two-stage method, SOM
network is used in the first stage and support vector machine is used to fit the output from SOM to each
subset in the second stage in a supervised manner. Having removed the anomalies from the training
set they obtained mean absolute percentage error (MAPE) as 10.24% in hybrid network approach for
the ISO New England market in [20], Martinez-lvarez et al. presented a method which was based on
pattern sequence similarity. In this approach, a clustering technique was first used on the data before
application of the Pattern Sequence-based Forecasting (PSF) algorithm to produce one step ahead
forecasts of the electricity prices. In [21], the authors proposed fuzzy inference net (FIN) method for
price forecasting, the proposed method uses FIN to extract fuzzy rules with Fuzzy Self-organization
Mapping (FSOM) to evaluate the probability of unknown data for the predetermined cluster.

In this paper, we propose a two stage model with Auto-Regressive Integrated Moving Average
(ARIMA) as the standard method for Stage-1, as it captures temporal, trend and seasonality information
more accurately than other existing methods. ARIMA is a well-known method for predicting
time-series data sets. In Stage-2 of the proposed model, machine learning techniques such as Random
Forest (RF), Support Vector Machine (SVM), Locally Weighted Scatterplot Smoothing (LOWESS) and
Generalized Linear Model (GLM) for better MAPE values are used.

ARIMA has been extensively used for load forecasting applications and as the key method for
forecasting short-term electricity price predictions. L. Wu et al. [22] presented a hybrid model for
day-ahead electricity market clearing price by using a combination of time-series and adaptive wavelet
neural network (AWNN). This model utilized an autoregressive moving average with exogenous
variables (ARMAX) model to find the relationship between price return series and explanatory variable
load series and a generalized autoregressive conditional heteroscedastic (GARCH) model to generate
the residual characteristics. The authors also utilized Monte Carlo simulation method to generate a
random number for time-series and AWNN models to improve the convergence rate. L. Wu et al. [23]
developed a two-stage integrated load and price forecast model for the New York Independent System
Operator (NYISO) market. The initial stage forecast considered the load and price forecast separately.
The second stage evaluated the price and load forecast interaction using the initial forecast as input,
with each stage utilizing a hybrid time series and AWNN combination. ARIMA model was utilized to
capture the linear relationship between price and load series and the residuals were evaluated using
the GARCH model. The main contribution from the paper is that the authors have used an iterative
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prediction procedure to analyze the interaction between the load and price signals. This framework
was used to forecast to the day-ahead price based on the historical data.

In [24], authors combined a time-varying regression model with ARMA in a two-stage model
after accounting for the impact of system load and wind power generation in the Western Danish
price area of Nord Pool’s Elspot. In the first stage, the non-linear and non-stationery influence of the
explanatory variables is accommodated using a time-varying regression model. In the second stage
of the model, authors have used a time series model such as ARMA and Holt-winters to account
for residual autocorrelation and seasonal dynamics. In [25], the authors have used a wide variety of
methods to compare the predictive accuracy for the day-ahead spot price of the Spanish electricity
market. The authors used the double seasonal ARIMA as a univariate method along with exponential
smoothing and both are used as a benchmark for comparison with the multivariate methods such as
feed-forward neural networks which include the explanatory variables such as wind generation and
weekdays. The results show that the exponential smoothing performed better than ARIMA, although
they performed differently as the horizon increases. The authors have shown that the inclusion of the
wind generation forecast as the explanatory variable has significantly increased the predictive accuracy
of the dynamic regression model. The authors were able to obtain improvement in accuracy through
the novel periodic model in relative to the dynamic regression model. In [26], authors proposed an
improved hybrid forecasting model for New South Wales in Australia that detaches high volatility
and daily seasonality based on empirical mode decomposition, seasonal adjustment and ARIMA. The
authors have compared the proposed hybrid model with the traditional ARIMA model and found that
the prediction errors were reduced noticeably. These models were tested for forecasting the Half-hourly
electricity prices. In [27], authors compared the accuracies of twelve time-series methods for California
and Nordic markets. These methods include standard auto regression and their extension spike
preprocessed, threshold and semiparametric auto regressions as well as mean-reverting jump diffusion.
These methods were tested with time-series data of system-wide load and hourly spot prices for the
California market, while hourly spot prices and air temperature data was used for Nordic market.
The authors have found evidence that model performs better with the inclusion of system load data
than the pure price models and model with air temperature generally does not perform better than
the pure price models. The authors have also found that semi-parametric models tend to perform
better for point and interval forecast than their competitors for diverse market conditions. In [28], the
authors have used several modeling techniques models such as Autoregressive moving average with
external input (ARMAX) and Periodic-ARMAX (PARMAX) models, ARX models identified by means
of stochastic filters, artificial neural networks and fuzzy models to predict the short-term electricity
price in the Colombian electricity market. The authors have included exogenous variables such as
reservoir levels and load demand in the model. ARMAX identified by means of a Kalman filter and
Takagi-Sugeno-Kang models performs the best with accuracy below 6%. In [29], authors have used
random forest method and compared it with ARMA for New York electricity market. This random
forest adaptive model provided confidence intervals associated with the prediction and adjusts itself
to the latest forecasting scenarios.

In [30], authors have used a combination of novel hybrid intelligent techniques consisting of the
wavelet transform, firefly algorithm and soft computing model based on the fuzzy network to forecast
day-ahead electricity price in the Ontario market and Pennsylvania-New Jersey-Massachusetts (PJM)
market data. This model showed 40% improvement in forecast error than other hybrid models. In [31],
authors have proposed a novel hybrid model combining econometric and fundamental method for the
Iberian electricity market and compared their performance with other traditional forecasting models.
This model outperforms both traditional neural network and double seasonal ARIMA model. In [32],
authors have proposed a hybrid architecture comprising of ARIMA and local learning technique.
This model was tested for Ontario Energy Prices (HOEPs) of the Ontario, Canada and found it to
be robust and more accurate than individual forecasting methods. In [33], authors have proposed a
mid-term electricity Market clearing price forecasting consisting of support vector machine (SVM)
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and autoregressive moving average with external input (ARMAX) model in the PJM market. This
proposed hybrid model performed better than using a single SVM. In [34], short-term hourly price
forward curve was forecasted using the neural network and hybrid ARIMA-NN model. Both these
methods perform better than the standard time series approach like ARIMA. The proposed model
was validated using Czech electricity spot prices. In [35], authors have proposed a hybrid model
consisting of extreme learning machine (ELM) and maximum likelihood method. This probabilistic
electricity price forecasting was validated using the real price data from Australian electricity market.
Due to the fast learning, this proposed model performed hundred times faster than the bootstrap-based
traditional neural network approach. In [36], authors have proposed a hybrid technique consisting of
singular spectrum analysis and neural network. This hybrid model was found to be more accurate
than the existing methods such as ARIMA, neural network, linear regression, kernel ridge regression
and k-Nearest Neighbors (KNN). This model was validated for NYISO market and New York City
(NYC) region is incorporated to improve the accuracy of forecast in the day-ahead market. In [37],
authors have proposed a novel hybrid method consisting of two steps. In the first step, the hybrid
method is proposed consisting of wavelet transformation (WT), feature selection based on Mutual
Information (MI), extreme learning machine (ELM) and bootstrap approaches. The second step
involves the following parts: calculating the variance of the model uncertainties, estimating the
noise variance by maximum-likelihood estimation (MLE) and improving the accuracy of the interval
forecasting using the particle swarm optimization (PSO) algorithm. This effective method known
as Wt.-mutual information-ELM-MLE-PSO is validated through the electricity market real data of
Australian electricity network from the real-time and day-ahead market.

The main contribution of our approach is the use of multi-stage hybrid forecasting techniques
with ARIMA. This paper focusses on the day-ahead price forecast for the Iberian electricity market
using different hybrid techniques such as ARIMA-RF, ARIMA-SVM, ARIMA-GLM, ARIMA-ARIMA
and ARIMA-LOWESS. These techniques were investigated for various duration of datasets such as one
week, two weeks, three weeks, one month, 45 days, 60 days, 75 days and 90 days. These techniques
were also tested for weekday and weekend datasets for one month, two months, three months and
six months duration of datasets. This two-stage ARIMA model is also tested for a dataset with and
without explanatory variables in stage-2 to understand the influence of the residual prediction. Finally,
the results were compared with the existing literature for the same Iberian market to demonstrate the
fact that this model is a promising technique for short-term price forecasting.

The remainder of this paper is organized as follows: In Section 2 we give details of the electricity
price modeling and forecasting methods used in this paper. In Section 3 we focus on hybrid techniques
used for this study. In Section 4 we give details of the list of input variables considered for forecasting.
In Section 5 we provide forecasting results and discussion. In Section 6 we present the conclusions.

2. Modelling of Electricity Price & Forecasting Methods

The following three general steps are involved in the modelling of electricity prices as in [38].
These three steps are data collection, preparation and modelling. The data collection process involves
normalization and gathering historical data such as price, total load and different types of generation
data such as coal, natural gas, hydropower, nuclear, wind, solar, combined cycle and weather variables
such as temperature, irradiance and wind speed from the Iberian electricity market website. In data
preparation step, the collected data is processed using a.CSV file as an input to R software platform
(Version 1.1.383). Data from one week to 90 days taken from [39] were used to predict the next
day’s electricity price. The last step in the process is data modelling and/or implementation. Here,
R software, which has a collection of several statistical and machine learning libraries for easier
implementation, is used.
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2.1. ARIMA

ARIMA is a well-known stochastic method used extensively for analyzing time series data sets.
ARIMA contains three time-series components, namely AR (Auto-Regressive), I (Integrated) and MA
(Moving Average). Each of these time-series components is used to reduce its corresponding final
residuals, denoted as p, d and q, respectively [40]. Integrated (I) is the first step in ARIMA to extract
the trend information. This is done by differencing the data from its previous values.

Differencing operation is done until the residual becomes trendless, that is, stationary or zero
mean series. The first step of differencing is denoted by (0, 1, 0), while the second step of differencing
is denoted by (0, 2, 0). This process goes on until the data becomes trendless. Usually, the time series
data becomes trendless after differencing. Auto regression is the second step in ARIMA to analyze
the time-series data. After the time-series data becomes stationary, the AR component gets activated.
Autoregressive step extracts the previous value from the current value. This is obtained by using a
simple linear regression considering the independent or predictor variables, as its time-lagged values.
As shown in Equation (1) Yt represents the price at time t, φi denotes regression coefficient and et

denotes the error term.

Yt = c + φ1Yt−1 + φ2Yt−2 + . . . φpYt−p + et (1)

AR component of order 1 is denoted by the linear regression Equation (2) considering the
previous value.

Yt = c + φ1Yt−1 + et (2)

Moving Average (MA) is the final step of the ARIMA process in analyzing the time-series data.
While autoregression uses previous values to influence the current value, moving average captures the
previous error value terms. This is denoted by a simple linear regression, taking the lagged error term
as its predictor variables, as shown in Equation (3).

Yt = c + et + θ1et−1 + θ2et−2 + . . . θqet−q (3)

2.2. Locally Weighted Scatterplot Smoothing (LOWESS)

Locally Weighted Scatterplot Smoothing (LOWESS or LOESS) is a common tool used for regression
analysis to identify the relationship among variables of the model. Here, the trends are created using a
smooth line representing a time-plot or scatter plot [41]. LOWESS is best used in situations where line
fitting is carried out in the presence of noisy data.

LOWESS uses a non-parametric smooth curve-fitting strategy. The term “parametric” means
analyzing the data that can fit to a distribution. Since non-parametric does not assume any distribution,
it tries to find the best fit for the curve. The benefits of the non-parametric smoothing are in its flexibility
in fitting the data, relatively easy computation and ease of use.

2.3. Support Vector Machines (SVM)

Support Vector Machines are based on the idea of a hyperplane which divides the dataset into
two classes. The main purpose of the SVM is to create a flat boundary, or hyperplane, which helps
the SVM to model complex relationships. SVM is a supervised learning method for analyzing data
for regression purposes. In the supervised learning model, the data are classified, labelled and the
algorithm learns to predict the future values from the set of input values [42]. In case of classification
problems, the output will be categorical, while in the case of regression, the output will be a real value.
In this paper, SVM is used for regression since prices are to be predicted.

SVM has become a popular tool in recent days because of the availability of the open source
software such as ‘R’ where these algorithms are well supported in its libraries, which otherwise are
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complex to implement. The main advantage of SVM is its accuracy and efficiency because it uses a
subset of the training points. It works well on the smaller datasets.

2.4. Random Forest (RF)

The Ensemble-based method called random forests (or decision tree forests) emphasize only on
ensembles of decision trees [43]. This method integrates the basic principle of bagging with random
feature selection to increase additional variation to the decision tree models.

This model uses a vote to combine the tree prediction from the forest after the ensembles of trees
or forest are generated. Decision-tree method brings versatility and computing power to this machine
learning approach. It is extremely effective in handling large datasets since it uses a small random
portion of the dataset and its error rate for learning the tasks is better or on par with the other machine
learning techniques.

2.5. Generalized Linear Model (GLM)

Generalized linear model is a simple form of linear regression where the response variable is
allowed to have an error distribution other than a normal distribution [44]. This method generalizes
the simple linear regression by allowing the model to be related to the response variable through a link
function. This is done by allowing the variance of each sample to be a function of its predicted value.

In this model, each outcome Y of the dependent variable is presumed to be produced from a
family of probability distributions, including Normal, Binomial, Poisson and Gamma distributions.
The mean relies upon on the independent variables, X as shown in Equation (4).

E(Y) = µ = g−1(Xβ) (4)

where E(Y) is the expected value of Y, Xβ is the linear predictor, a linear combination of unknown
parameters β and g is the link function. The variance of the outcome Y is given by Equation (5).

Var(Y) = V(µ) = V
(

g−1(Xβ)
)

(5)

In this structure, the variance, V, is generally a function of the mean: It is convenient if V follows a
form from the exponential family distributions but it may generally be that the variance is a function of
the forecasted value. The unknown parameters, β, are typically calculated with likelihood, maximum
quasi-likelihood or Bayesian techniques.

3. Proposed Hybrid 2-Stage Model

The Flowchart in Figure 1 shows that the initial price forecast is carried out by ARIMA deployed
in Stage-1 and residuals are then computed before Stage-2 begins. In Stage-2, residuals are fed as
input to the collection of other forecasting methods. The two-step residual extraction method has
been briefly reported using ARIMA with GLM in our previous paper [38]. In the present paper, we
are applying the same process to ARIMA-SVM, ARIMA-RF, ARIMA-LOWESS and ARIMA-ARIMA.
Some details on the proposed two-stage model are provided next.

This two-stage approach was proposed to improve the forecasting estimation that mutually
benefits from ARIMA and the other methods. In this approach, ARIMA was considered in the first
stage since it is a well-known stochastic process known for performing well with the time series dataset.
This process was executed in R Programming environment. In the first stage, a dataset containing all
the 17 predictor variables such as hourly price, demand, generation and temperature variables were
used to build an ARIMA model. To build this model, a statistical package known as ‘arima’ was used.
This ARIMA model was used to predict the price (F) for the day-ahead electricity market. Residual
dataset (r) is created by differencing the forecasted values (F) from the actual values (A).



Forecasting 2019, 1 32

Forecasting 2018, 1, x FOR PEER REVIEW  7 of 21 

(F) from the ARIMA model in the first stage to get the final adjusted price (AFP). The details of the 
first and second stage approach are given in the next sub-section. 

 
Figure 1. Flowchart of the proposed two-stage approach. 

Table 1 demonstrates the combination of the ARIMA model (p, d, q) with the MAPE values for 
the different duration of the datasets. 
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In the second stage, the residual dataset (r) is fed as a time-series dataset to the different methods.
In this case, methods such as GLM, SVM, RF, LOWESS and ARIMA. Future residuals (R) are predicted
using all these methods. This future residual (R) are added along with the forecasted price (F) from the
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ARIMA model in the first stage to get the final adjusted price (AFP). The details of the first and second
stage approach are given in the next sub-section.

Table 1 demonstrates the combination of the ARIMA model (p, d, q) with the MAPE values for
the different duration of the datasets.

Table 1. Auto-Regressive Integrated Moving Average (ARIMA) model parameters for
different duration.

Data Duration p d q MAPE

One week 4 1 3 5.36
Two weeks 2 0 1 4.23

Three weeks 4 0 4 4.07
One month 5 0 4 5.64

45 days 2 1 2 2.7
60 days 1 1 0 1.99
75 days 4 1 3 1.99
90 days 4 1 3 2.80

Weekday-one month 5 0 4 8.16
Weekday-two months 3 1 1 1.81

Weekday-three months 2 1 2 3.58
Weekday-six months 1 1 0 4.48
Weekend-one month 2 0 1 13.07

Weekend-two months 2 1 3 9.94
Weekend-three months 5 1 1 9.73

Weekday-six months 2 1 2 9.91

3.1. Stage-1: Initial Price Forecast (F) Using ARIMA

Step 1. In Stage-1, ARIMA was used to predict the day-ahead prices. Input variables that are
considered include historical electricity prices, generation and consumption load and weather data
like solar irradiance, temperature and wind speed. These variables are fed as time-series data to the
ARIMA model. The relationship between the predictor variables and forecasted variables is then
initialized through this model.

Step 2. An ‘auto-arima’ function built in R-software was used to identify the best-fit by inputting
the residual values (p, d, q) of the three-time series components I, AR and MA. After identifying the
best-fit model, the ‘forecast’ function is used to predict the day-ahead price.

Step 3. The same process is repeated for other datasets. In this study, one week, two weeks, three
weeks, one month, 45 days, 60 days and 75 days of datasets from the Iberian electricity price market
are used to predict the day-ahead electricity prices.

Step 4. After the price predictions, residuals are calculated by differencing the predicted value (f)
from the actual value (A).

3.2. Stage-1: Input Residuals to the Hybrid Model

3.2.1. ARIMA-SVM

The steps involved in the two-stage residual extraction method, that uses combinations of ARIMA
and SVM, are as follows:

Step 1. In Stage-2, the residual dataset is fed as an input to the SVM model. SVM model is then
initialized by calling the function ‘ksvm’ which is available in the kernlab package. The SVM model is
then used to predict the residual for the next day by calling the ‘predict’ function.

Step 2. Finally, the calculated residual (R) from Step 1 is then added to the predicted price from
the ARIMA method (P) to get the final price.
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3.2.2. ARIMA-RF

The following are the steps in deploying the hybrid combination of ARIMA and RF methods to
forecast the day-ahead price:

Step 1. In Stage-2 of the hybrid model, the residuals from the ARIMA model are fed as time series
input data to the RF model. The ‘random forest’ function in the Random Forest package of R helps in
fitting the RF model.

Step 2. The RF model is then used to predict the future residuals (R) which are added to the earlier
predictions to obtain the adjusted final price forecast.

3.2.3. ARIMA-LOWESS

The following are the steps in deploying the hybrid combination of ARIMA and LOWESS methods
to forecast the day-ahead prices:

Step 1. In the Stage-2 of the hybrid model, the residual dataset from the ARIMA model is fed as
time series input data to the LOWESS model. The ‘loess’ function in the Stats package of R helps in
fitting the LOWESS model.

Step 2. The loess model is then used to predict the future residual (R) which is added along with
the predicted price to get the final price forecast.

3.2.4. ARIMA-ARIMA

The following are the steps in deploying the combination of ARIMA and ARIMA to forecast the
day-ahead price:

Step 1. In Stage-2 of the hybrid model, the residuals from the ARIMA model are fed as input data
to the same ARIMA model. The ‘auto-arima’ function in the Stats package of R helps in fitting the
ARIMA model in Stage-2.

Step 2. The ARIMA model is then used to predict the future residual (R) which is added along
with the predicted price from the ARIMA method in the first stage to get the final price forecast.

4. Explanatory (Input) Variables for Day-Ahead Price Forecast

Data Explanation

The day-ahead electricity prices are greatly influenced by several explanatory variables [45] as
shown in Table 2. They are as follows:

(a) Hourly electricity price for day D and day D-6.
(b) Hourly load data, including total load demand, hydro power demand, solar power demand, coal

power demand, wind power demand and combined cycle power demand for day D and day D-6.
(c) Hourly weather data, including temperature, wind speed and solar irradiance.

Table 2. Seventeen decision variables.

Variable No. Description

1, 2 Hourly Price D, Hourly Price D-6
3, 4 Hourly Power Demand D-1 & D-6
5, 6 Hourly Hydropower Generation D-1 & D-6
7, 8 Hourly Solar Power D-1 & D-6

9, 10 Hourly Coal Power Generation D-1 & D-6
11, 12 Hourly Wind Power Generation D-1 & D-6
13, 14 Hourly Combined Cycle Power Generation D-1 & D-6

15, 16, 17 Hourly Temperature, Wind speed, Radiation D+1
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All the fundamental price variables are taken into consideration for all the hybrid methods. The
day-ahead price forecast results for different durations are discussed next.

5. Results and Discussion

As discussed above, several two-stage hybrid models have been used to predict the electricity
prices of the Iberian Markets in this study. The hybrid models include ARIMA-GLM, ARIMA-RF,
ARIMA-SVM, GLM and ARIMA-LOWESS. The hybrid models are trained and tested using datasets
ranging from one-week to three months.

The dataset durations include one-week, two-weeks, three-weeks, one month, 45 days, 60 days,
75 days and 90 days. The specific data durations are shown in Table 3. We evaluate the performance of
our forecast models through a statistical measure known as MAPE (Mean Average Percentage Error)
which represents the daily error in price predictions.

MAPEday =
1
24

24

∑
i=1

pactual − ppred

pactual (6)

Table 3. Comparison of Mean Absolute Percentage Error (MAPE) values for various data duration.

MAPE ARIMA ARIMA-GLM ARIMA-SVM ARIMA-RF

Short-Term Price Forecast (Day-Ahead)

MAPE1week 5.36 5.00 3.73 5.24
MAPE2weeks 4.23 4.43 3.98 4.01
MAPE3weeks 4.07 4.14 3.64 3.69
MAPE1month 5.64 5.54 5.05 5.44
MAPE45days 2.7 2.54 2.49 2.38
MAPE60days 1.99 1.92 2.037 2.027
MAPE75days 1.99 1.92 2.009 2.2263

Table 3 shows a numerical comparison of the MAPE values for various data durations.
Figures 2–8 graphically show the MAPE comparison of hybrid models. Each figure shows the MAPE
comparison of ARIMA, ARIMA-GLM, ARIMA-RF and ARIMA-SVM. All the variables have been
taken into consideration.

However, in Figure 9, only four variables are considered since LOWESS can be modeled only
with a maximum of four variables. In the last dataset (90 days), all methods use the following specific
four variables: Price D, Price D-6, Power demand D-1 and Power demand D-6.

Figure 2 indicates that ARIMA-SVM combination outperforms other methods using a one-week
dataset. In addition, from Table 2 it is also evident that the ARIMA-SVM model gives a better prediction
with smaller durations of data such as for one week, two weeks, three weeks and one month.

From Figure 3, we observe that MAPE values for two weeks are reduced but not substantially.
One of our objectives was to test multiple durations of the datasets and observe how MAPE changes
with the duration of datasets.

From Figure 4, it is yet again evident that the combination of ARIMA-SVM performs better than
other methods with 17 variables.

From above, it is noted that the MAPE values are reduced as the duration of the datasets is
increased. Using 17 variables in the above case studies, there seems to be a linear reduction in MAPE
values starting from one to three weeks. Another important inference from these results is that there is
a sharp reduction in MAPE for ARIMA-RF combination than other methods. This is a strong evidence
that the random forest is well-suited for larger datasets.
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For the 1-month duration of data seen in Figure 5, error values seem to increase compared to the
3-week data set. This may be due to some irrelevancy or missing fields in data. This might also due to
the fact that the price variable is not highly correlated with the predictor variables.Forecasting 2018, 1, x FOR PEER REVIEW  11 of 21 
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From Figure 6, the accuracy of the calculated values has improved when substantially considering
all the seventeen variables. If one includes the important variables such as price D and price D-6,
one can then greatly reduce the forecasting error. We find that the ARIMA-RF is effective for larger
datasets, because the ensembles take a small portion of the dataset.

As seen from Figure 7, these hybrid models work better for durations greater than 45 days. All the
proposed hybrid combinations closely predict the pattern of price-spikes, while matching with the
actual data.

A similar conclusion can be inferred from Figure 8, as the duration of datasets increases.
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Table 4 shows the MAPE results for the 90 days dataset using four variables (Hourly Price D,
Hourly Price D-6, Hourly Power Demand D-1 and D-6). Since LOWESS cannot be used with more
than four variables, the ARIMA-LOWESS model is compared with the other hybrid models also using
the same four variables as shown in Figure 9.

Table 4. Comparison of day-ahead forecasting performance of several hybrid models for 90 days of
dataset using 4 variables (Hourly price D, Hourly price D-6, Hourly power demand D-1 & D-6).

MAPE ARIMA ARIMA-GLM ARIMA-SVM ARIMA-LOWESS ARIMA-RF

MAPE90days 2.80 2.59 2.73 2.66 3.12
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Figure 10 compares the MAPE values from one-week to 75 days. From Figure 10, it can be seen
that the models may need to be tested with additional data durations for scalability. For such models,
variables such as price, load and temperature values have been considered. The MAPE error can
be significantly reduced by considering only those important variables that highly correlate with
the price.
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Figure 10. Comparison of MAPE for all dataset from one week to 75 days to predict day-ahead price
(31 July 2015).

The electricity market has to be studied thoroughly to consider which variable significantly
impacts the electricity price. The larger penetration of renewable energy sources such as wind and
solar resources into the grid might impact the price significantly. The weekday and weekend patterns
were also analyzed using our proposed model and the results are summarized in Tables 5 and 6.

Table 5. Comparison of day-ahead forecasting performance of several hybrid models for weekday
dataset using 17 variables.

MAPE ARIMA ARIMA-GLM ARIMA-SVM ARIMA-RF

MAPE1month 8.16 8.30 7.41 7.01
MAPE2month 1.81 1.86 1.84 2.33
MAPE3month 3.58 3.83 3.82 4.72
MAPE6month 4.48 4.54 4.62 5.78

Table 6. Comparison of day-ahead forecasting performance of several hybrid models for weekend
dataset using 10 variables.

MAPE ARIMA ARIMA-GLM ARIMA-SVM ARIMA-RF

MAPE1month 13.07 12.4 12.01 13.7
MAPE2month 9.94 9.15 9.26 9.52
MAPE3month 9.73 9.22 9.15 9.19
MAPE6month 9.91 9.63 9.53 9.88

From Table 5, one infers that two months of weekday datasets give a better prediction, as this
dataset highly correlates with the predicted price. For weekend datasets, only 10 variables are
considered to be of importance. The variables that take previous day’s influence into consideration
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were removed from the datasets. Thus, taking into consideration only variables such as hourly
price D-6, hourly power demand D-6, hourly hydropower generation D-6, hourly solar power D-6,
hourly coal power generation D-6, hourly wind power generation D-6, hourly combined cycle power
generation D-6, temp, wind speed, radiation D+1, etc.

Figures 11 and 12 show MAPE values for weekday and weekend datasets. The results do not
significantly improve the MAPE values but they certainly indicate that the models may require
additional data to identify patterns for better forecasts.
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Figure 12. Comparison of MAPE for 1, 2, 3 and 6-month weekend dataset to predict day-ahead price
(26 July 2015).

Table 7 shows the MAPE results for the two-stage ARIMA models with and without explanatory
variables in the Stage-2. From these results, one can clearly infer that the inclusion of the explanatory
variables in Stage-2 has great influence on the residual predictions.

Table 8 presents and compares the MAPE results of the Iberian electricity market as published in
the literature. This comparative table clearly strengthens the fact that the ARIMA–based two-stage
model is a promising forecasting method to improve the accuracies in residual training for short-term
price forecasting.
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Table 7. Comparison of MAPE results for two-stage ARIMA model with/without explanatory variables
in Stage-2.

MAPE ARIMA
ARIMA-ARIMA (with
Explanatory Variables

in Stage-2)

ARIMA-ARIMA
(without Explanatory
Variables in Stage-2)

MAPE1week 5.36 4.66 5.34
MAPE2weeks 4.23 4.44 3.79
MAPE3weeks 4.07 4.14 4.02
MAPE1month 5.64 5.54 5.65
MAPE45days 2.7 2.54 2.73
MAPE60days 1.99 1.78 1.91
MAPE75days 1.99 1.84 1.98

Table 8. Comparison of MAPE results for Iberian electricity market with published literature.

Methods MAPE

Mixed Model [46]—one week 14.90
ARIMA with 2 Variables—five months [47] 13.39

Neural Network—40 days [48] 11.40
Weighted Nearest Neighbor—23 months [49] 10.89

Wavelet-ARIMA with 4 Variables—47 days [50] 10.70
Fuzzy Neural Network [51] 9.84

Adaptive Wavelet Neural Network with 2 variables [52] 9.64
Neural network Wavelet Transform with 1 variable [53] 9.5

WNF with 1 variable—42 days [54] 9.47
Elman Network [55] 9.09

Hybrid Intelligent systems with 3 Variables 7.47
Wavelet-ARIMA-RBFN 6.76

Hybrid wavelet-PSO-ANFIS [56] 6.50
Cascaded Neuro-evolutionary Algorithm with 2 variables-50 days [57] 5.79

Table 9 categorizes the MAPE results as good, average and bad for easy classification of readers.
MAPE results between 1–4.99% are termed as good results, while MAPE results between 5–9.99% is
classified as average results. MAPE results above 10% are classified as poor results. One can infer that
the MAPE results are good for most of the data duration except for one week and one month.

Table 9. MAPE categorization for Iberian electricity market for various data duration.

MAPE ARIMA ARIMA-GLM ARIMA-SVM ARIMA-RF

Short-Term Price Forecast (Day-Ahead)

MAPE1week Average Average Good Average
MAPE2weeks Good Good Good Good
MAPE3weeks Good Good Good Good
MAPE1month Average Average Average Average
MAPE45days Good Good Good Good
MAPE60days Good Good Good Good
MAPE75days Good Good Good Good

Table 10 shows the statistical test results conducted for different methods for the different duration
of the Iberian electricity market. Correlation test was conducted to identify the statistical significance
and to find out which method was superior to the other. This provides insights into the strength of the
linear association between the forecasted and the actual value.
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Table 10. Statistical test for Iberian electricity market for various data duration.

Parameter ARIMA ARIMA-GLM ARIMA-SVM ARIMA-RF

Short-Term Price Forecast (Day-Ahead)

Correlation1week 0.941 0.947 0.964 0.946
Correlation2weeks 0.958 0.970 0.973 0.957
Correlation3weeks 0.963 0.971 0.969 0.963
Correlation1month 0.966 0.971 0.967 0.962
Correlation45days 0.977 0.979 0.976 0.974
Correlation60days 0.982 0.983 0.982 0.981
Correlation75days 0.979 0.981 0.979 0.976

Correlations close to 1 indicates a very strong linear relationship between the two variables.
Therefore, the correlation here of about 0.9 indicates a strong relationship for all the hybrid models for
all the different dataset.

The results show that the ARIMA-SVM method outperformed other hybrid models for smaller
dataset such as one week and two weeks, while for larger dataset ARIMA-GLM showed superiority
than the other hybrid models.

6. Conclusions

The paper investigated a novel two-stage approach that combined the ARIMA model in Stage-1
and the resulting residuals as input to another forecasting method in Stage-2. The datasets used
were drawn from the Iberian electricity markets. The results indicated a promising insight into the
need for a focus on the residual improvement and training for forecasting the price markets. For the
shorter duration of the dataset, ARIMA-SVM combinations outperformed other hybrid models. While,
for a longer duration of the datasets, ARIMA-GLM performed better than the other models such as
ARIMA, ARIMA-SVM, ARIMA-RF and ARIMA-LOWESS. Future work using our proposed model
will include testing and validating the results with larger data sets and investigation of the impacts on
the MAPE values.
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