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Abstract: Singular spectrum analysis (SSA) is a non-parametric forecasting and filtering method that
has many applications in a variety of fields such as signal processing, economics and time series
analysis. One of the four steps of the SSA, which is called the grouping step, plays a pivotal role
in the SSA because reconstruction and forecasting of results are directly affected by the outputs of
this step. Usually, the grouping step of SSA is time consuming as the interpretable components are
manually selected. An alternative more optimized approach is to apply automatic grouping methods.
In this paper, a new dissimilarity measure between two components of a time series that is based on
various matrix norms is first proposed. Then, using the new dissimilarity matrices, the capabilities
of different hierarchical clustering linkages are compared to identify appropriate groups in the SSA
grouping step. The performance of the proposed approach is assessed using the corrected Rand index
as validation criterion and utilizing various real-world and simulated time series.

Keywords: time series analysis; singular spectrum analysis (SSA); matrix norm; hierarchical
clustering; corrected Rand index

1. Introduction

Singular spectrum analysis (SSA) is a non-parametric technique that is increasingly becoming
a standard tool in the field of time series analysis. In this model-free method, a time series is
decomposed into a number of interpretable components such as trend, various oscillatory components,
and a structure-less noise. The remarkable features of SSA are that neither a parametric model
nor stationarity-type conditions have to be assumed for the time series [1]. The SSA method is
attracting considerable interest due to its widespread capabilities and it has many applications in
a variety of fields such as medicine [2–5], biology and genetics [6,7], finance and economics [8–16],
engineering [17–23], and other fields [24–26]. Whole and precise details on the theory and applications
of SSA can be found in [1,27–29]. For a recent comprehensive review of SSA and description of its
modifications and extensions, we refer the interested reader to [30].

It worth mentioning that a major difficulty of the SSA technique is identifying the meaningful
and interpretable components of a time series in the grouping step. Conventionally, the information
concealed in singular values and singular vectors of the trajectory matrix of a time series is used to
detect interpretable components such as trend and oscillations. Usually a scree plot of the singular
values, one-dimensional and two-dimensional figures of the singular vectors, and the matrix of the
absolute values of the weighted correlations enable us to provide a visual tool to identify appropriate
components. More details on grouping based on visual tools can be found in [1,28,29].

In the viewpoint of machine learning, the manual identification of groups in SSA can be regarded
as an disadvantage since the intervention of an analyst is required. A neater solution to this problem
is to apply an automatic grouping technique. In the SSA framework, the automatic grouping
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methods can be classified into two categories: frequency-based and distance-based methods. In the
frequency-based methods, which include two versions, the elementary components are automatically
split into disjointed groups using their frequency contributions that are measured by a periodogram.
In the first version of the frequency-based method, each frequency interval is considered separately,
and in the second version, the set of frequency intervals are simultaneously used. While the review of
theory and applications of automatic grouping via the frequency-based method is beyond the scope
of this paper, the interested reader is referred to the whole and precise details on this topic that are
explained in [1,3,29,31].

In the distance-based method; first, the dissimilarity of elementary components of a time series
is measured by means of a distance criterion (e.g., an appropriate function of weighted correlations
between components). Then, a proximity matrix is created using distances. Finally, the elementary
components are grouped automatically via distance-based clustering techniques such as hierarchical
methods. Although it seems that this interesting approach is an straightforward process, one question
that needs to be asked is which clustering method can provide an accurate and reasonable grouping.
The hierarchical clustering with complete linkage was used in [32], while the reason for selecting the
complete linkage was not clear.

The focus of this research revolves around the distance-based method. In this paper, we first
propose a new dissimilarity measure between two components of a time series that is based on various
matrix norms. Then, using the new dissimilarity matrices, the capabilities of different hierarchical
clustering linkages are compared to find appropriate groups in the grouping step of SSA. It is believed
that the outputs of this investigation can lead to a more timely and precise grouping with more precise
reconstructed series and forecasting results.

To have a general overview of the two separate but complementary stages of SSA, Section 2 briefly
presents a review of SSA. The novel dissimilarity measure between two components of a time series
based on various matrix norms is proposed in Section 3. Section 4 is dedicated towards comparing
the performance of different hierarchical clustering linkages and various dissimilarity measures via
simulation study. Applications of real-world time series data are given in Section 5. The conclusions
and summary are presented in Section 6.

2. Review of SSA

In brief, the SSA technique consists of two complementary stages: decomposition and
reconstruction. Each of these stages includes two separate steps. At the decomposition stage, the
series is decomposed into several components such as trend, seasonal, and cyclical components,
which enables us to preform signal extraction and noise reduction. At the reconstruction stage, the
interpretable components are reconstructed, which can be used to forecast new data points. For more
detailed information on the theory of basic SSA; see, for example [27]. The basic SSA is briefly reviewed
below and in doing so we mainly follow [3,33].

Stage 1: Decomposition (Embedding and Singular Value Decomposition)

In the embedding step, a time series YN = {y1, . . . , yN} is transformed to the sub-series X1, . . . , XK,
where Xi = (yi, . . . , yi+L−1)

T ∈ RL and K = N − L + 1. The vectors Xi are called L-lagged vectors.
The single choice of this step is the Window Length L, which is an integer such that 2 ≤ L ≤ N/2.
The output of the embedding step is the trajectory matrix X = [X1 : · · · : XK], which is also a
Hankel matrix. It is noteworthy that this embedding method has been introduced by Broomhead and
King [34,35].

In the singular value decomposition (SVD) step, the trajectory matrix X is decomposed into
X = UΣVT , where U and V are orthogonal and Σ is a diagonal matrix. The diagonal entries of the
matrix Σ are called the singular values of X and denoted by σ1, . . . , σL in decreasing order of magnitude
(σ1 ≥ · · · ≥ σL ≥ 0). The columns of U are called left singular vectors and those of V are called right
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singular vectors. If d = max{i, such that σi > 0} = rank(X) then the SVD of the trajectory matrix X can
be written as the sum of rank-one elementary matrices:

X = X1 + · · ·+ Xd, (1)

where Xi = σiUiVi
T , Ui is the ith left singular vector and Vi is the ith right singular vector (i = 1, . . . , d).

It is also well known that the left singular vectors of X are the eigenvectors of XXT .

Stage 2: Reconstruction (Grouping and Diagonal Averaging)

The grouping step splits the elementary matrices Xi into several groups and sums the matrices
within each group. If a group of indices i1, . . . , ip is denoted by I = {i1, . . . , ip} then the matrix XI
corresponding to the group I is defined as XI = Xi1 + · · ·+ Xip . Having the SVD of X, the split of the
set of indices {1, . . . , d} into the disjoint subsets I1, . . . , Im corresponds to the following representation:

X = XI1 + · · ·+ XIm . (2)

The goal of diagonal averaging is transforming each matrix XIj of the grouped decomposition (2)
to a Hankel matrix so that these can subsequently be transformed to a time series. Suppose that zij
stands for an element of a matrix Z, then the k-th term of the resulting series is obtained by averaging
zij over all i, j such that i + j = k + 2. This process is also known as Hankelization of the matrix
Z. The output of the Hankelization of a matrix Z is the Hankel matrix HZ, which is the trajectory
matrix corresponding to the series obtained as a result of the diagonal averaging. The Hankel matrix
HZ uniquely defines the series by relating the value in the anti-diagonals to the values in the series.
By applying the Hankelization procedure to all matrix components of (2), this expansion is obtained:
X = X̃I1 + · · · + X̃Im , where X̃Ij = HXIj , j = 1, . . . , m. This is equivalent to the decomposition of

the initial series YN = {y1, . . . , yN} into a sum of m series: yt = ∑m
k=1 ỹ(k)t (t = 1, . . . , N), where

Ỹ(k)
N = {ỹ(k)1 , . . . , ỹ(k)N } corresponds to the matrix X̃Ik .

3. Theoretical Background

3.1. Distances Based on Matrix Norms

It is well known that if x and y are two elements of a normed vector space, then ([36], Appendix A).

|‖x‖ − ‖y‖| ≤ ‖x− y‖ ≤ ‖x‖ + ‖y‖ .

Especially, if ‖x‖ = ‖y‖ = 1 then 0 ≤ ‖x− y‖ ≤ 2 or 0 ≤ 1
2 ‖x− y‖ ≤ 1. Therefore, we can

define the distance function dxy = 1
2 ‖x− y‖ satisfying 0 ≤ dxy ≤ 1.

Let A = (aij)
m,n
i,j=1 be an m× n matrix and ‖A‖ denotes the norm of it. Now, suppose Ai =

X̃i
‖X̃i‖ ,

where X̃i is the Hankelized version of matrix Xi in the SVD (1) (i = 1, . . . , d). If we define the distance
between two matrices Ai and Aj as dij =

1
2

∥∥Ai −Aj
∥∥ then the distance between two components Xi

and Xj can be measured by dij. Thus having the distance matrix D = (dij)
d
i,j=1 it is possible to cluster

the eigentriples by means of distance-based clustering methods such as the hierarchical clustering
approach. It is noteworthy that the reason for defining the matrix Ai with unitary norm (‖Ai‖ = 1)
is obtaining the distance measure dij satisfying 0 ≤ dij ≤ 1. This enables us to interpret the distance
between two components Xi and Xj easily.

The distance matrix D used in clustering is calculated by some commonly used matrix norms.
The matrix norms applied in this paper are as follows. More details on matrix norms can be found
in [37].
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1. The Frobenius norm

The most frequently used matrix norm is the Frobenius norm defined as:

‖A‖F =

√√√√ m

∑
i=1

n

∑
j=1

a2
ij.

2. The L1-norm

The L1-norm of the matrix A is defined as:

‖A‖L1
=

m

∑
i=1

n

∑
j=1
|aij|.

3. The 1-norm

The 1-norm of the matrix A is the maximum of the absolute column sums, that is,

‖A‖1 = max
1≤j≤n

(
m

∑
i=1
|aij|

)
.

4. The infinity norm

The infinity norm of the matrix A is the maximum of the absolute row sums, that is,

‖A‖∞ = max
1≤i≤m

(
n

∑
j=1
|aij|

)
.

5. The maximum modulus norm

In this case, the maximum modulus of all the elements in the matrix A is computed, that is,

‖A‖M = max
1≤i≤m
1≤j≤n

|aij|.

6. The 2-norm

The spectral or 2-norm of the matrix A is denoted by ‖A‖2. It can be shown that

‖A‖2 = The largest singular value of A =
√

The largest eigenvalue of AAT .

In addition to these matrix norm-based distances, we also use another dissimilarity measure that is
based on the weighted correlation or w-correlation. It shows the quality of decomposition and determines
how well different components of a time series are separated from each other. The w-correlation
between two time series Y(1)

N and Y(2)
N is defined as follows:

ρ
(w)
12 =

∑N
i=1 wiy

(1)
i y(2)i

‖Y(1)
N ‖w‖Y(2)

N ‖w
,

where wi = min{i, L, N − i + 1}, ‖Y(k)
N ‖w =

√
∑N

i=1 wiy
(k)
i y(k)i , (k = 1, 2).

We define the w-correlation-based distance between two components Xi and Xj as dij = 1−
∣∣∣ρ(w)

ij

∣∣∣.
It is noteworthy that there is another w-correlation-based distance between two components Xi and Xj
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defined as dij =
1
2 (1− ρ

(w)
ij ). This distance measure, which is explained in [29] and employed in the R

package Rssa [38–40], is not used in this paper.

3.2. Hierarchical Clustering Methods

In this investigation, hierarchical clustering methods are applied to cluster the components of
the time series in the grouping step of SSA. Hierarchical clustering is a popular and distance-based
method that is widely used to connect objects in order to form clusters based on their distance. In this
paper, we use the distances defined in Section 3.1 as a dissimilarity measure between two components
Xi and Xj.

Hierarchical clustering approaches can generally divided into two types: the divisive and the
agglomerative.

• Divisive: In this technique, an initial single cluster of objects is divided into two clusters such
that the objects in one cluster are far from the objects in the other cluster. The procedure continues
by splitting the clusters into smaller and smaller clusters until each object makes a separate
cluster [41,42]. This method is implemented in our research via the function diana from the
cluster package [43] of the freely available statistical R software [44].

• Agglomerative: In this method, the individual objects are initially treated as a cluster, and then
the most similar clusters are merged according to their similarities. This process proceeds by
successive fusions until all clusters are fused into a single cluster. [41,42]. The agglomerative
hierarchical clustering methods that are applied in this research are as follows [45].

1. Single: The distance between two clusters Ci and Cj (Dij) is the minimum distance between
two points x and y, where x ∈ Ci and y ∈ Cj; that is,

Dij = min
x∈Ci ,y∈Cj

dxy.

2. Complete: The maximum distance between two points x and y is treated as the distance
between two clusters Ci and Cj, where x ∈ Ci and y ∈ Cj; that is,

Dij = max
x∈Ci ,y∈Cj

dxy.

3. Average: Dij is defined as the mean of the distances between the pair of points x and y,
where x ∈ Ci and y ∈ Cj:

Dij = ∑
x∈Ci ,y∈Cj

dxy

ni × nj
,

where ni and nj are the number of elements in clusters Ci and Cj, respectively.
4. McQuitty: Dij is defined as the mean of the between-cluster dissimilarities:

Dij =
Dik + Dil

2
,

where cluster Cj is formed from the aggregation of clusters Ck and Cl .
5. Median: Dij is defined as follows:

Dij =
Dik + Dil

2
− Dkl

4
,

where cluster Cj is formed from the aggregation of clusters Ck and Cl .
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6. Centroid: Dij is defined as the squared Euclidean distance between the centres of gravity of
the two clusters; that is,

Dij = ‖x̄i − x̄j‖2,

where x̄i and x̄j are the mean vectors of the two clusters.
7. Ward: This method is based on minimizing the total within-cluster variance. The pair of

clusters with the minimum cluster distance is merged at each step of the analysis. This pair of
clusters provides a minimum increase in the total within-cluster variance after merging [45].
There are two algorithms ward.D and ward.D2 for this method, which are available in R
packages such as stats and NbClust [45]. By implementing the ward.D2 algorithm, the
dissimilarities are squared before the cluster updates.

In this research, we apply the function hclust from the stats package of R software to perform
agglomerative hierarchical clustering. More details on hierarchical clustering algorithms can be found
in [41,42,46,47].

To enable us to measure the similarity between grouping results obtained by a hierarchical
clustering method and a given "correct" grouping, we used the corrected Rand (CR) index, which is an
external cluster validation index. This index varies from -1 (no similarity) to 1 (perfect similarity), and
it has been proven that high values of the CR index indicate great similarity [47–50]. The CR index can
be implemented in the R function cluster.stats from the fpc package [51].

4. Simulation Results

Here, the performance of hierarchical clustering methods based on various dissimilarity measures
introduced in Section 3.1 are compared. In this simulation study, the various simulated time series are
evaluated in terms of the CR index. In the following simulated series, εt is the normally distributed
noise with zero mean.

(a) Exponential: yt = exp(0.03t) + εt, t = 1, 2, . . . , 100.
(b) Linear: yt = 0.5t + εt, t = 1, 2, . . . , 100.
(c) Sine: yt = sin(πt/6) + εt, t = 1, 2, . . . , 100.
(d) Cosine+Cosine: yt = 0.7 cos(πt/2) + 0.5 cos(πt/3) + εt, t = 1, 2, . . . , 100.
(e) Exponential×Sine: yt = exp(0.03t) sin(2πt/3) + εt, t = 1, 2, . . . , 100.
(f) Exponential+Sine: yt = exp(0.03t) + sin(2πt/3) + εt, t = 1, 2, . . . , 100.

In this simulation, four signal to noise ratios (SNRs) including SNR = 0.25, 0.75, 5, and 10 were
used to assess the effect of the noise levels on the grouping results. The simulation was repeated 2000
times for each scenario (a–f) and for each SNR. In order to enable a better comparison based on the CR
index, a dashed horizontal line y = 1 is added to all figures of the CR index.

The simulated series (a–f) have various patterns including trend and periodicity. In order to
observe the structure of each simulated series, the simulation was done once with SNR = 5. The time
series plots are depicted in Figure 1.



Forecasting 2019, 1 195

0 20 40 60 80 100

0
5

10
15

20

(a) Exponential

0 20 40 60 80 100

−
10

0
10

20
30

40
50

(b) Linear

0 20 40 60 80 100

−
1

0
1

2

(c) Sine

0 20 40 60 80 100

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(d) Cosine+Cosine

0 20 40 60 80 100

−
15

−
10

−
5

0
5

10
15

(e) Exponential*Sine

0 20 40 60 80 100

−
5

0
5

10
15

20

(f) Exponential+Sine

Figure 1. Time series plots of simulated series.

Considering the theory of time series of finite rank proposed in [27], the simulated series (a–f)
have finite rank. Therefore, it is possible to determine the “correct” groups. Table 1 shows the “correct”
groups for each of the simulated series that are determined based on the rank of the corresponding
trajectory matrices. For more details; see, [27].

Table 1. Correct groups of the simulated series.

Simulated Series Correct Groups

Exponential {1}, {2, . . . , L}
Linear {1, 2}, {3, . . . , L}
Sine {1, 2}, {3, . . . , L}

Cosine+Cosine {1, 2}, {3, 4}, {5, . . . , L}
Exponential×Sine {1, 2}, {3, . . . , L}
Exponential+Sine {1}, {2, 3}, {4, . . . , L}

In Figure 2, the CR index is shown for the exponential series (case a) with different SNRs, which
are computed for various hierarchical clustering algorithms and different values of the window length
(L). It can be concluded that the ward.D and ward.D2 methods have the worst performance for each L,
at each level of the SNR and for all clustering methods and all kinds of distances. However, clustering
based on the w-correlation and the Frobenius norm results in the best performance, except for the
complete method. In this case, the similarity between the grouping by the complete method and
“correct” groups decrease as L increases. In addition, clustering based on L1, Infinity and 2-norm
distances exhibit good performance in detecting the “correct” groups for L = 10. The capability of
these distances goes to decline for a larger L except for the single method and 2-norm distance.
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Figure 2. Corrected Rand (CR) index for the exponential series (case a).

Figure 3 depicts the CR index for the linear series (case b). Similar to the case with an exponential
series, the ward.D and ward.D2 methods can not provide a satisfactory result for each L, at each level of
the SNR and all types of distances. Moreover, the efficiency of the clustering based on the w-correlation
and the Frobenius norm is better than the other distances. In addition, the performance of L1, infinity
and 2-norm distances are acceptable only for L = 10. The capability of these distances decreases for a
larger L.
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Figure 3. CR index for the linear series (case b).

In Figure 4, the CR index for the Sine series (case c) is drawn. Similar to the simulated exponential
and linear series, the output of ward.D and ward.D2 methods are not good for large L, at each level
of the SNR and all types of distances. Additionally, the efficiency of the clustering based on the
w-correlation and the Frobenius norm is better than the other distances. As can be seen in these figures,
the single, average and McQuitty methods are better than other methods when the Frobenius norm is
used to measure the dissimilarity. Another interesting find is that for large L and at each level of the
SNR, the single method outperforms other methods if L1, 1-norm Infinity and 2-norm distances be
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used. However, the average and McQuitty methods are better than other methods for the maximum
modulus norm.
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Figure 4. CR index for the sine series (case c).

Figure 5 presents the CR index for the cosine+cosine series (case d). Similar to the previous
simulated series, at each level of the SNR and all types of distances, the utility of ward.D and ward.D2
methods goes to decline as L increases. Additionally, the superiority of the w-correlation and the
Frobenius norms over the other distances are more visible for large SNR. As can be seen in these
figures, for large L and at each level of the SNR, the single method outperforms other methods when
the maximum modulus norm is not used. In the case with the maximum modulus norm, the average,
McQuitty and centroid methods present better outputs.
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Figure 5. CR index for the cosine+cosine series (case d).

Figure 6 depicts the CR index for the exponential×sine series (case e). This is similar to the
previous simulated series; firstly, the efficiency of the clustering based on the w-correlation and the
Frobenius norm is better than the other distances, especially for the single, average and McQuitty
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clustering methods. Secondly, the ward.D and ward.D2 methods can not provide a satisfactory result
for large L, at each level of the SNR and all types of distances. It is noteworthy that in this simulated
series, the L1 norm shows a good performance, which is not obtained from the previous simulated
series. It can be concluded from these figures that the single method is better than other methods for
SNR < 1. In the case with SNR > 1 and L = 48, the capability of the single method in detecting the
"correct" groups is considerable when the 2-norm is used.
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Figure 6. CR index for the Exponential×sine series (case e).

In Figure 7, the CR index for the exponential+sine series (case f) is drawn. The results that can be
concluded from these figures are broadly similar to that of the exponential×sine series (case e); and
thus, they are not repeated here.
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Figure 7. CR index for the exponential+sine series (case f).

5. Real-World Data

In this section, we compare the efficiency of hierarchical clustering methods along with different
matrix norms using three real-world data. These real-world time series are as follows:
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1. Seasonally non-adjusted food and vehicle products of France from January 1990 to February 2014.
These data are taken from INSEE (Institute National de la Statistique et des Etudes Economiques)
including 290 observations. These series were previously used in [52–54]. Those interested in a
summary of the data are referred to [52] instead of replicating this information here. The time
series plots for these data, which are depicted in Figure 8, clearly show that they have a seasonal
structure along with a non-linear trend.

2. Gross domestic product (GDP) of the United States of America (USA) in billions of dollars from
January 1947 to January 2019. This quarterly time series contains 289 observations that are taken
from Federal Reserve Economic Data available at https://www.quandl.com/data/FRED/GDP.
As shown in Figure 8, the GDP series is non-stationary with a non-linear trend that appears to
increase exponentially over time.

Table 2 reports the identified groups and window length (L) for the real-world time series.
We chose the groups based on information obtained from one-dimensional figures of the eigenvectors
Ui, two-dimensional figures of the eigenvectors (Ui, Ui+1), and the matrix of the absolute values of
the w-correlations. For example, consider the food product time series. The two-dimensional figures
of the eigenvectors of this time series are shown in Figure 9. This figure, which is the scatter plot of
successive eigenvectors, is used to detect the harmonic components with different frequencies. Each
regular P-vertex polygon in the scatter plots of eigenvectors denotes a harmonic component with
period P [27]. Therefore, for identifying the harmonic component it is sufficient to find regular P-vertex
polygons, which may be in a spiral form. Corresponding pairs of eigenvectors identify the harmonic
component. Hence, it can be concluded from Figure 9 that the pairs of eigenvectors 2–3, 4–5, 6–7, and
8–9 correspond to the harmonic components of food product time series. More details on the window
length selection and group identification can be found in [1,29].

(a) Food Products of France
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Figure 8. Time series plot of real-world data.

https://www.quandl.com/data/FRED/GDP
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Pairs of eigenvectors

1 (99.65%) vs 2 (0.05%)2 (0.05%) vs 3 (0.05%)3 (0.05%) vs 4 (0.04%)4 (0.04%) vs 5 (0.04%)5 (0.04%) vs 6 (0.03%)6 (0.03%) vs 7 (0.03%)7 (0.03%) vs 8 (0.02%)

8 (0.02%) vs 9 (0.02%)9 (0.02%) vs 10 (0.01%)10 (0.01%) vs 11 (0%) 11 (0%) vs 12 (0%) 12 (0%) vs 13 (0%) 13 (0%) vs 14 (0%) 14 (0%) vs 15 (0%)

15 (0%) vs 16 (0%) 16 (0%) vs 17 (0%) 17 (0%) vs 18 (0%) 18 (0%) vs 19 (0%) 19 (0%) vs 20 (0%) 20 (0%) vs 21 (0%) 21 (0%) vs 22 (0%)

Figure 9. Scatter plots of eigenvectors for food products time series.

Table 2. Identified groups of the real time series.

Real Time Series L Groups

Food product 144 {1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, . . . , 144}
Vehicles 144 {1}, {2, 10}, {3, 4}, {5, 6}, {7, 8}, {9}, {11, 12}, {13, 14}, {15, . . . , 144}

GDP 144 {1}, {2, . . . , 144}

Figure 10 shows the CR index for the real-world time series. It can be concluded from this
figure that, similar to the outputs of the simulation study, the ward.D and ward.D2 methods are
unable to identify proper groups. In the food product series, centroid linkage with w-correlation-based
distance is the best method. Additionally, the single method shows a good performance especially for
w-correlation, Frobenius, and 2-norm. However, the average method is better than other methods for
the maximum modulus norm.

In the vehicles series, the single linkage with w-correlation and Frobenius norms are the best
methods. Note that the centroid linkage performs well only for w-correlation-based distance. Similar to
the food product series, the average method is better than other methods for the maximum modulus
norm, which is in accordance with the simulation results for harmonic series (cases c and d).

In the GDP series, hierarchical clustering with the single and centroid linkages can exactly split the
components into the groups reported in Table 2. This result is also true for the median linkage with the
w-correlation and maximum modulus norm.
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Figure 10. The CR index for the real-world time series.

6. Conclusions

In this paper, we have proposed a novel dissimilarity measure between components of a time
series based on various matrix norms such as Frobenius, L1-norm, 1-norm, 2-norm and so on.
Various matrix norms result in different distance matrices that can be used to cluster eigentriples at the
grouping step of SSA by means of distance-based clustering methods such as hierarchical clustering
techniques. In this research, a comparison study has been conducted in order to find a suitable matrix
norm and a proper hierarchical clustering method to identify appropriate groups in SSA. In general,
the simulation results and real-world data applications indicated that the accuracy of clustering based
on the w-correlation and the Frobenius norm is better than other distance measures. Also, the results
support the idea that single linkage along with 2-norm can provide satisfactory automatic grouping.
However, the evidence from this study implies that the ward.D and ward.D2 linkages could not detect
meaningful groups.

Despite these explicit findings, determining the best hierarchical clustering linkage is not a
straightforward procedure. It depends on the structure of the time series and the level of SNR.
For example, in the exponential synthetic data (case a) and the GDP series, which includes an
exponential-like trend, the efficiency of the single, centroid and median linkages are almost similar,
and these techniques outperform the other method. Additionally, in a time series with a seasonal
pattern, it seems that the single and average linkages are able to separate periodic components from
noise. In summary, findings of this investigation suggest that automatic grouping of eigentriples using
the single, average, centroid, and median linkages by means of the w-correlation and the Frobenius norm
as distance measures, can lead to more accurate results.
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