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Abstract: Information about forecast uncertainty is vital for optimal decision making in many
domains that use weather forecasts. However, it is not available in the immediate output of
deterministic numerical weather prediction systems. In this paper, we investigate several learning
methods to train and evaluate prediction interval models of weather forecasts. The uncertainty
models of weather predictions are trained from a database of historical forecasts/observations.
They are developed to investigate prediction intervals of weather forecasts using various quantile
regression methods as well as cluster-based probabilistic forecasts using fuzzy methods. To compare
and verify probabilistic forecasts, a novel score is developed that accounts for sampling variation
effects on forecast verification statistics. The impact of various feature sets and model parameters
in forecast uncertainty modeling is also investigated. The results show superior performance of the
non-linear quantile regression models in comparison with clustering methods.

Keywords: data clustering; forecast verification; fuzzy clustering; prediction intervals; probabilistic
forecast; quantile regression; uncertainty modeling; weather forecasting

1. Introduction and Background

Deterministic Numerical Weather Prediction (NWP) models provide expected values of weather
attributes on a three-dimensional spatial grid at certain forecast horizons [1]. These systems do not
provide information about the uncertainty of the forecasts. However, there is always some level of
error associated with point forecasts and therefore it is important to associate the forecast with an
estimation of their expected uncertainty depending on different meteorological situations [2].

The knowledge of NWP forecast uncertainty is crucial in decision making and optimization
processes involved in many applications. Wind power production [2–8], dynamic thermal rating
of transmission lines [9–13], and extreme weather event prediction [14] are few applications
where information about forecast uncertainty is often regarded as significant as the forecast values
themselves [15,16]. In transmission line thermal rating applications, ambient temperature and wind
data are used along with line current to determine the temperature of power conductors that limits the
thermal capacity of the line. In this scenario, the decision of how much current can be passed through
the transmission line cannot only rely on the deterministic weather forecasts. The knowledge of the
weather forecast uncertainty is also crucial in maintaining the operation of the power grid within
acceptable margins to account for the risk of conductor overloading and potential damage [17].
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Prediction Intervals (PI) provide a range of values within which actual observations may lie with
a certain degree of confidence [18–20], e.g., PI for ambient temperature may lie within [3◦, 10◦] with
a 95% confidence. There is a large body of literature on calculating PIs from NWP models using
ensemble forecasting systems [21–23]. However, forecast ensemble models incur large computational
costs as they need to simulate a large number of scenarios for various numerical models with different
initial conditions, making them infeasible in some applications. Specifically, for very short-term
forecast applications where new information is made available with high frequency, ensemble
forecasting is rather limited due to the computational burden imposed by rerunning an ensemble of
heavy computational models. Additionally, availability of historical performance datasets for many
forecast applications and existence of valuable uncertainty patterns in historical records have made
post-processing an increasingly attractive approach to uncertainty modeling [20,24–29].

Different weather situations exhibit different levels of forecast uncertainty, and therefore different
PIs can be found for different weather patterns discovered from the system performance records [2].
Clustering approaches and error distribution fitting methods have been used in a number of literary
works [20,30] to train forecast uncertainty models from historical datasets. Cluster-based approaches
present forecast uncertainty information as a full probability distribution of the target forecast using
a single model. PIs at any desired level of confidence are then obtained from the fitted error
distribution. In clustering-based PI computation, weather attributes and influential variables are used
to cluster historical weather forecasts. Parametric (e.g., Gaussian) and non-parametric (e.g., empirical)
distribution fitting models are employed to estimate the historical error distribution of each cluster.
The developed statistical models determine the desired quantiles of new forecast dynamically. PIs for a
future observation are calculated from the fitted error distribution of the cluster which the new forecast
case belongs to.

In quantile regression based forecast uncertainty models, no distribution is assumed for the
forecast error and each individual quantile is modeled independently [4,27,31]. Target quantiles
are modeled as a function of influential feature sets through an optimization process. Various
quantile regression methods have been developed and applied to weather data forecast uncertainty
modeling [26,27,32]. The application of local quantile regression to obtain non-linear models of
quantiles for wind power forecasts is proposed in [32]. In another study [27], additive quantile models
are applied to model the quantiles of wind power forecast error. In both works [27,32], the resulting
PIs are evaluated in terms of their inter-quantile range and actual observation frequencies compared to
the forecasted quantile. However, in these works, the skill of the PI forecasting system is not evaluated
in an objective framework. In another study [26], several statistical models including local quantile
regression are used to obtain probabilistic wind power forecasts from NWP outputs. The quality of
quantile forecasts is evaluated using sharpness and reliability measures instead of a forecast skill.
A fuzzy inference system is proposed in [20] to model PIs of wind power generation. The fuzzy model
is developed based on grouping of forecasts and a resampling technique is adopted for distribution
fitting. A detailed comparative study on the quality of non-parametric probabilistic forecasts of wind
power and their statistical performance is evaluated in [28]. It compares the fuzzy clustering based
methods with the quantile regression-based approach in modeling PIs. An improved version of this
approach is introduced in [30] where fuzzy clustering and error distribution fitting are applied to
model the uncertainty of NWP forecasts. Time-adaptive kernel density estimation method for wind
power forecasting is proposed in [24,25]. The model developed in [25] estimates the uncertainty of
short-term wind power forecasts and the quality of the proposed model is benchmarked against a
splines quantile regression model.

Despite the increasing attractiveness of the topic and large number of applications, there are only
few studies in the literature that investigate a wide range of methods for forecast uncertainity modeling
in practical settings [30,33–35]. The application of kernel quantile regression method [33] in learning
non-linear uncertainty models and modeling weather forecast PIs is investigated in [34]. In this paper,
a comprehensive study on the application of various quantile regression and cluster-based distribution
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fitting methods in modeling weather data uncertainty is conducted. A hybrid clustering-quantile
regression approach is developed to mitigate the scalability limitation of non-linear kernel regression
models. For forecast evaluation purposes, the developed PI models are applied to real-world datasets.
Conclusive comparisons between PI forecasting systems is performed using a large real-world NWP
dataset with a focus on “forecast skill” to compare and verify probabilistic forecast models accounting
for sampling variation effects on forecast verification statistics. This approach also offers a good
foundation to investigate the role of different parameters involved in such models. The variety and
large size of the datasets used in this study compared to the previous studies in this domain also
contribute to the significance of the empirical aspect of the study.

A number of literary works [36–41] have developed various measures of forecast skill. The evaluation
of probabilistic predictions of scalar variables based on the continuous ranked probability score is
investigated in [36]. In [37] a verification system has been developed for the ensemble prediction system
based on the continuous ranked probability score. The importance of employing proper scores when
selecting between various measures of forecast skill is explained in [38]. Bröcker [39] investigates the
decomposition of proper scores into terms measuring the resolution and the reliability of a forecast.
Multi-model ensemble combination prediction skill is investigated in [40]. Discrimination/ranking
factor for ensemble forecasts is calculated in [41]. To the best of our knowledge, none of the previous
works has incorporated the effect of sampling variations in their forecast evaluations. The scores
developed in the existing studies [36–41] can be applied only in scenarios where both the predicted
and target probabilities are provided in the form of full probability distributions.

Due to the limited availability of test samples, score measurements are subject to sampling variations.
Therefore, it is crucial to assess the accuracy of observed skill when verifying the performance of
forecasting systems. To evaluate PI forecast models, a forecast verification score is developed that
considers the sampling effects on the forecast verification statistics. By decomposition and statistical
analysis of the score measurements, we propose a model that considers sampling variations and
uncertainties in the forecast evaluations, hence offering a more reliable comparison and evaluation of
the PI forecast models.

This article brings several important contributions to the areas of weather forecasting and forecast
uncertainty modeling. First, it presents a unique empirical and comparative study that covers a range
of different cluster-based probabilistic models and quantile regression methods for modeling PIs of
temperature and wind forecasts. It also develops a new hybrid clustering-quantile regression approach
for PI modeling and evaluates its accuracy and performance. Last but not least, it proposes a novel
forecast skill score which accounts for sampling variation effects.

The remainder of the text is organized as follows. Section 2 describes the basics of PIs and weather
forecast uncertainty models including fuzzy-based clustering approach and various quantile regression
models. The basic quality measures and the evaluation framework for PI forecasts are explained in
Section 3. Section 4 provides experimental results and analysis of the quality of PIs obtained using
different methods and parameter setups. Finally, the paper concludes with summarizing remarks and
future directions in Section 5.

2. Weather Forecast Uncertainty Modeling

This section introduces different quantile regression and clustering methods that can be used to
generate PIs for effective communication of forecast uncertainty.

2.1. Prediction Intervals

Conditional PIs, as opposed to the static interval forecasting system, take different widths
depending on the forecast context. Due to the random nature of forecast error, a forecast can be
represented by a full probability distribution denoted as f̂yt |x for the target attribute y at time t.
Note that this distribution is conditional on x, representing the available information at the time of
forecast. The uncertainty information of the forecast is represented by the spread of this distribution



Forecasting 2019, 1 172

with more uncertain predictions exhibiting a wider spread. Any desired θ quantile is then obtained
from this distribution [19]:

qθ
yt = F−1

yt |x(θ), P(yt < qθ
yt) = θ (1)

where Fyt |x is the cumulative distribution function of f̂yt |x. A (1 − α)-confidence level PI, Iα
t , is

defined by the lower and upper bound of PI that represent the range [qθl
yt , qθu

yt ], where θl = α/2 and
θu = 1− α/2 [28]. The confidence level specifies the expected probability of the actual observation to
be inside the PI range:

P(yt ∈ Iα
t ) = P(yt ∈ [qθl

yt , qθu
yt ]) = P(yt ∈ [Uα

yt , Lα
yt ]) = 1− α. (2)

2.2. Prediction Interval Modeling Using Fuzzy Clustering

Different weather situations exhibit various levels of error [2]. The clustering approach is adopted
to train clusters of forecast cases with a similar error behavior and develop PI models from weather
data performance history. In fuzzy PI modeling, weather situations are defined as fuzzy sets using the
training data. After past forecasts have been clustered, historical weather records are used to estimate
the error distribution of each cluster. PIs at any desired level of confidence are then calculated from
the distribution of forecast error at each cluster. Two attributes are considered to manually cluster
forecast records into four fuzzy sets using wind power forecasting dataset in [20]. The empirical error
distribution of a new forecast is then estimated using resampling.

Zarnani et al. developed several clustering algorithms to obtain groupings of weather situations
using forecast attributes [30]. After clustering, parametric or non-parametric density estimation
techniques are used to fit a probability distribution to the forecast error at each cluster. The authors also
evaluated application of crisp and fuzzy clustering in modeling weather forecast uncertainty. In crisp
clustering approach, each sample forecast is assigned to exactly one cluster. In fuzzy based clustering
approach proposed in [20], each forecast sample is assigned to multiple clusters with different
degrees of membership. Transitional weather regimes can be more effectively represented using
fuzzy-based forecast uncertainty models. Fuzzy clustering is adopted to model forecast uncertainties
in [30,35]. Published results confirm the high skill of PIs developed by error density estimation in
fuzzy clustering models.

In this study, Fuzzy C-Means (FCM) clustering is used to model NWP forecast uncertainty and
train PI models. Fuzzy patterns of historical forecasts are used to model the forecast error. This
way, the forecast uncertainty modeled dynamically, based on various influential weather attributes.
Groups of weather situations are discovered and their error distributions are modeled through
clustering. PIs for a new forecast case are obtained from the trained model of the cluster which
the new forecast belongs to. The intervals are then evaluated using verification measures described in
Section 3. The process of uncertainty modeling for PI computation and evaluation using clustering
based models is illustrated in Figure 1. The objective function of the clustering process takes the
following form:

J = argminc

N

∑
i=1

K

∑
j=1

um
ij ‖xi − cj‖2, (3)

where m is the fuzzification factor, cj is the center of cluster j, and uij represents the degree of
membership of point xi in cluster j (∑K

j=1 uij = 1).
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Figure 1. The process of uncertainty modeling for PI computation and evaluation-clustering based models.

2.3. Prediction Interval Modeling Using Linear and Non-Linear Quantile Regression

In this paper, a wide range of quantile regression models are developed to train forecast
uncertainty models. In regression models, each individual quantile of a target variable is independently
modeled as a linear/non-linear combination of a set of forecast attributes through an optimization
process. In linear quantile regression model, θ-quantile of the target variable y is estimated as a linear
combination of influential variables denoted as xj [42,43]:

q̂θ
y = f (x) = βθ

0 + βθ
1x1 + βθ

2x2 + · · ·+ βθ
dxd. (4)

In modeling θ-quantile of the traget attribute y, βθ
y vector of quantile regression coefficients is

estimated using the following objective function [31,42]:

β̂θ
y = argminβ

N

∑
i=1

Lθ(yi − (βθ
0 + βθ

1x1
i + βθ

2x2
i + · · ·+ βθ

dxd
i )). (5)

Linear programming techniques [42,43] are adopted to solve the optimization task using pairs
of (yi, xi) recorded in the historical dataset. The loss function of a θ-quantile of target variable is
defined as:

Lθ(δi) =

{
θδi δi ≥ 0
(θ − 1)δi δi < 0

and δi = yi − q̂θ
yi

. (6)

The dataset of (ei, xi) is used to model the lower and upper quantiles of target variable error,
where ei represents the error of historical forecast case i, and x is the vector of influential variables.
The (1− α)-confidence level PI of target variable y for any new forecast sample of xnew is estimated by
the quantiles of error denoted as β̂

θl
e and β̂θu

e :

Îα
new = [q̂θl

yi , q̂θu
yi
], q̂θl

yi = 〈β̂
θl
e , xnew〉+ ŷi, q̂θu

yi
= 〈β̂θu

e , xnew〉+ ŷi, (7)

where 〈., .〉 represents inner product of the two vectors. As opposed to the cluster-based models
described in Section 2.2, in quantile regression methods new models need to be trained for each level
of confidence.

A transformation basis function, Φ(x), can be developed to derive new features from the available
feature sets. The PI modeling methods that use the transformed features are referred to as Non-Linear
Quantile Regression (NLQR). In non-linear regression models, the non-linear relationships between
target variable and the new explanatory variables is optimized to model the forecast quantiles using
the formulation described in (5).
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2.3.1. Quantile Regression with Spline-Basis Functions

To train non-linear models of weather forecast quantiles, spline-basis functions [25,43] provide the
non-linear transformation of influential attributes to model forecast quantile non-linear models [44]:

q̂θ
y = βα

0 +
d

∑
j=1

d f j

∑
k=1

βθ
j,k f j,k(xj), (8)

where f j,k is the spline basis function with d f j degrees of freedom, determined by running experiments
on the training dataset. The regression model is then optimized by the linear optimization task
formulated in (5).

2.3.2. Local Quantile Regression

In Local Quantile Regression (LocQR) models a linear relationship between the target quantile and
influential features is estimated in the close neighborhood of the explanatory variables of x. In LocQR
models forecast intervals are modeled by considering a set of training samples centered around x [45]:

β̂θ
e,x = argminβ

N

∑
i=1

Lθ(yi − βθ(xi − x))W(xi, x). (9)

Forecast quantile of a new forecast case x is estimated using the closest training examples in
the feature space. Forecast quantiles are weighted based on the distance of x to its λN-th nearest
neighbour in the training sample x1...N [32]. Using LocQR, as opposed to other regression models,
in order to estimate the forecast quantiles for each new forecast case x, new regression models need to
be optimized at that specific point x.

2.3.3. Kernel Quantile Regression

To train non-linear models of weather forecast quantiles, the optimization process involved in
regression models can be performed in Reproducing Kernel Hilbert Space (RKHS). Kernel Quantile
Regression (KQR) [33] is a non-parametric regression to estimate forecast quantile non-linear models.
To model the θ-quantile of the target variable y using KQR, the βθ

y vector of quantile regression
coefficients is estimated using the following objective function:

β̂θ
y = argminβ C

N

∑
i=1

Lθ(yi − βθ x) +
1
2
‖β‖2

H, (10)

whereH denotes a RKHS on x, and the cost factor C accounts for the total loss over the penalization of
overfitting. The last term is the regularizer applied to penalize complex functions and avoid overfitting.
A dual form of the optimization problem can be obtained using Lagrange multipliers method that
represents the model by vector of weights (αi, i = 1 . . . N) over sample space rather than features in the
primal problem [46]:

α̂θ
y = argminα

1
2

αTKα− αT~y,

subject to C(θ − 1) ≤ αi ≤ Cθ, 1 ≤ i ≤ N,

~1Tα = 0,

where K is the kernel matrix obtained from Kij = k(xi, xj) = 〈Φ(xi), Φ(xj)〉, k is the corresponding
kernel function which provides Φ-mapping of inputs into a new feature space, Φ(x) is the
corresponding feature map of x, and α is the vector of Lagrange multipliers. A common choice
for the kernel function is Gaussian kernel [46] defined as Kij = exp(−‖xi − xj‖2/2σ2), where σ > 0
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is the kernel width parameter which needs to be tuned. In this study, other choices for the kernel
function are experimentally tested as well.

Due to the low scalability (high dimensionality) of the kernel quantile based models, the training
data is first clustered into a number of partitions using the feature set available for weather forecast
uncertainty modeling. In the second step, the kernel quantile regression algorithm is applied
independently to each partition to train two non-linear quantile models, one for the lower quantile
and another model for the upper quantile. To verify the model, a new forecast is first assigned to its
nearest cluster and then the quantile model trained for that cluster is used to estimate the quantiles
for the new forecast case. The developed hybrid clustering-KQR model has the highest computation
cost compared to other approaches. Experiments for the choice of clustering algorithm and number of
clusters are performed to fine tune the final output uncertainty model using KQR.

3. An Evaluation Framework for Prediction Interval Forecasts

In this section, various measures for evaluation of the quality of PI computation methods
are discussed. Reliability, sharpness, and resolution are introduced as the main attributes for the
assessment of PI models. A novel score is developed to evaluate the quality of PI computation methods
by taking sampling variation into account.

3.1. Basic Verification Measures

To model forecast uncertainties, some methods estimate the full probability distribution of the
target attribute while only a PI is considered in other models [28,47,48]. To evaluate the probabilistic
PI forecasts, some basic verification measures are widely used in the literature [26,28,49]. Reliability
and sharpness are basic quality measures for evaluating PI forecast models. Reliability measures the
ability of the forecasting system to provide PIs that represent their associated confidence level in test
experiments [20]. Reliability of PI forecast system in test scenarios for PIs with confidence level of
1− α is defined as follows:

Relα = ξ̄ Iα − (1− α), where ξ̄ Iα
=

1
NT

NT

∑
i=1

ξ Iα

i . (11)

The indicator variable ξ I
i tells if the actual outcome lies (“hit”) or not (“miss”) in the estimated PI.

According to the above equation, the reliability measure indicates the percent of actual observation in
the NT test samples that falls inside the PI.

The sharpness measure of probabilistic forecast models corresponds to the average width of
PIs estimated by a forecast uncertainty model. This measure demonstrates the ability of forecasting
systems to make predictions with lower uncertainty [20,27]:

Shpα = Width
α
=

1
NT

NT

∑
i=1

(q̂θu
yi
− q̂θl

yi ) =
1

NT

NT

∑
i=1

(Ûα
i − L̂α

i ). (12)

The resolution measure corresponds to the ability of PI forecasting system to provide a
situation-dependent assessment of the uncertainty. It is defined as the standard deviation (variation)
of the width of PIs:

Resα = [
1

NT − 1

NT

∑
i=1

(Ûα
i − L̂α

i − Shpα)2]
1
2 . (13)

3.2. Skill Score for Evaluating Prediction Interval Forecast Models

For the purpose of comparing the quality of various interval forecasting models, Root Mean
Squared Error (RMSE) only considers centers of the forecast intervals but ignores their boundaries
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(forecast uncertainty magnitudes). In this paper a novel score is developed that compares different PI
forecasting models. The developed score incorporates PI boundaries in estimating forecast quality:

SScore = −
NT

∑
i=1

[(ξ
L̂α

yi
i − θl)(yi − L̂α

yi
) + (ξ

Ûα
yi

i − θu)(yi − Ûα
yi
)], (14)

where ξ
q
i is equal to one if yi ≤ q, and zero otherwise. This scoring rule is negatively oriented,

i.e., smaller values are preferred as an error measure, and admits a maximum value of 0 for perfect
probabilistic predictions. In this measure, uncertain forecasts with wide PIs and missed observations
are penalized by the magnitude equal to their distance from the interval boundaries [27,28,32,50].
The skill score as defined above is “strictly proper” [38,51] and gives the optimal score to a forecast
whose PI follows the true distribution of the target [38]. Details of the mathematical definitions
and proofs can be found in [51]. It should be noted that while the term “skill score” here is used as a
synonym for “score”, skill scores are occasionally referred to as specific relative scores for the comparison
of predictive performances relative to a reference forecast in the atmospheric sciences [51,52].

The skill score defined in (14) can be simplified by considering several possible scenarios:

• when a “hit” occurs for forecast PI of case i, then (ξ
L̂α

yi
i , ξ

Ûα
yi

i ) = (0, 1); by substituting the values in
(14) we have SScorei(hit) = − α

2 (Û
α
yi
− L̂α

yi
) = − α

2 Width
α
i

• in the case of a “missed” observation appearing either on the right or the left side of the PI

boundaries, the values of (ξ
L̂α

yi
i , ξ

Ûα
yi

i ) are equal to (0, 0) or (1, 1), respectively.

– when it is on the right side, it has a positive distance of δi from the upper boundary Ûα
yi

;

by substituting these values we have SScorei(right miss) = − α
2 Width

α
i − δi.

– when it is on the left side, an equal score is obtained.

As the overall miss rate is (1− ξ
Iα

), the skill score obtained by a PI forecasting system over NT
test cases is defined as:

SScore = −NT(θlWidth
α
+ (1− ξ

Iα

)δ
α
) = −NT(

α

2
Width

α
+ ∆̄α), (15)

where ∆̄α is the average distance of observations from the PI boundaries. It is calculated as the mean of
∆i values for test cases i = 1 . . . N. For test case i, ∆i is equal to zero for a hit, and δi for a miss, where δi
is defined as the distance of observation from the boundaries. The sample statistic ∆̄α,j measured
in a cluster with fewer test cases has higher uncertainty compared to the case where it is measured
in another cluster with larger test cases. Therefore, the statistic ∆̄α is subject to sampling variations.
This sampling variation is caused by the limited number of test samples and it makes the skill score
measurements uncertain. An uncertainty analysis needs to be performed to incorporate sampling
variation impact on forecast evaluation process.

3.3. Uncertainty of Skill Score Measurements

The impact of sampling variations on forecast verification statistics is significant in weather
forecast verification studies [15]. In this study a novel skill score is developed that models the
uncertainty of skill score measurements accounting for sampling variations.

In cluster-based PI models introduced in Section 2.2, after partitioning feature space into K
clusters, the skill score in each cluster is independently estimated using the test cases that belong to
that specific cluster. The overall score of the PI forecast system is estimated as the weighted average
of the skill scores calculated in each cluster. Also, in quantile regression based models, the forecast
records are clustered into a numbers of groups to analyze the skill score sampling variations and
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estimate confidence bound. Therefore, the terms Width
α

and ∆̄α are estimated as the weighted sum of
their measured values in K clusters, with NTj test cases in each cluster j:

ŜScore = −NT(
α

2
Width

α
+ ∆̄α) = −

K

∑
j=1

∣∣∣NTj

∣∣∣ (α

2
Width

α,j
+ ∆̄α,j) (16)

In the case of PI models based on clustering, each cluster (j = 1, . . . , K) is independently evaluated
using the NTj test cases that actually belong only to that cluster. Finally, a weighted average of the K
skill scores yields the overall score of the method. It is plausible that the sample statistic ∆̄α,1 measured
in a cluster with fewer test cases (e.g., NT1 = 100) has higher uncertainty compared to the same statistic
∆̄α,2 in a cluster measured using more test cases (e.g., NT2 = 4000). To obtain a β-confidence bound
on skill score with a desired level of confidence, the sampling distribution of ∆̄α,j is estimated by
bootstrapping technique in each cluster j [53]. The β-quantile of the ∆̄α,j statistic is then estimated as a
one-sided confidence interval denoted as ∆̄α,jβ

. Using Equation (15) the β-confidence bound over skill
score is obtained as SScoreβ:

P(∆̄α,j < ∆̄α,jβ
) = β, P(SScore > SScoreβ) = β. (17)

According to [51], the bootstrap-based skill score is considered to be a proper score. A 95%
confidence bound is deemed to find the confidence interval over ∆̄α,j using 2000 bootstrap samples.
Figure 2 presents an example of sampling distribution of ∆̄α,7 and its confidence bound for a sample
cluster of test cases estimated using quantile regression model with spline-basis functions.

Figure 2. Bootstrap distribution of average delta for a sample cluster—#test cases = 588 and #misses = 26.

As previously described, the reliability/coverage measure for PI forecasters suggests that the
empirical coverage of observations in a test setting is comparable to the required confidence level.
In this study, the 95% confidence lower bound of the coverage measure is calculated to account for
sampling variation in the verification of PI forecasts. As indicated by the Binomial test, a cluster with
90% coverage (hit rate) in 1000 test cases has a greater lower bound (i.e., Coverage0.95 = 88.3%) when
compared to a cluster with 90% coverage in 200 test samples (i.e., Coverage0.95 = 85.8%). Also, the
SScore0.95 measure is used to verify different forecast uncertainty models by considering sampling
uncertainties in test experiments. The overall performance of a PI forecast model is evaluated by the
skill score measure. For further details on the importance of the uncertainty analysis refer to [30].
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4. Evaluation Study

The developed clustering and regression based approaches for modeling NWP forecast
uncertainty are used to train PI models from performance history. The quality and accuracy of
the resulting interval forecasts are measured using the proposed evaluation framework.

4.1. Data and Models

The performance of cluster-based and quantile regression-based uncertainty models in obtaining
PI forecasts from numerical weather forecasting model is evaluated through experimental studies.
The dataset is obtained from the Weather Research and Forecasting (WRF) model with the resolution
of one hour. The WRF v3 simulations are run in three nested grids with the resolutions of 10.8 km,
3.6 km, and 1.2 km. Weather observations at the same time and location as the WRF model are also
obtained from the National Center for Atmospheric Research (NCAR) data repository.

PI modeling experiments are based on 51,000 records of historical data, each containing 35 features.
The dataset covers three years (2007–2009) of weather records collected two meteorological stations in
the cities of Hope and Agassiz in the province of British Columbia, Canada. A second NWP dataset of
13,000 records contains hourly temperature and wind speed forecasts at 60 stations in BC, Canada for
summer 2009. For this dataset, forecast uncertainty models are developed using 10 available features.
Due to the similarity of results obtained using the two datasets and the larger size of the first set,
only the results for the first dataset are reported here.

Influential features extracted from the first dataset for PI modeling include ambient temperature
(t2, measured at 2 m), wind speed and direction (ws and wd, at 10 m), surface pressure (sp),
dew temperature (dt), relative humidity (rh), hour of day (h), day (d) and month of year (m), and
weather station identification. The set of features containing the above variables is referred to as the
basic feature set. In addition, predicted temperature, horizontal and vertical wind speed and wind
direction for different pressure levels of 500, 700, 850, 905, and 950 millibar are considered, referred
to as the pressure level feature set. To take the temporal aspects of weather situations into account,
additional features are derived from the gradient of surface pressure between the current forecast
and the forecasts of 1, 3, 6, and 12 h ahead, denoted as pg1, pg3, pg6, and pg12. To identify the
best predictor attributes of uncertainty, the 95% PI model of temperature forecasts is estimated with
different feature sets. Table 1 describes seven different combinations of the basic features and pressure
tendency. Table 1 lists several extended feature sets that include pressure level attributes. In addition,
dimensionality of some large feature sets is reduced using the most significant components obtained
through Principal Component Analysis (PCA).

For the evaluation of various PI forecasting models, the available dataset is split into a training set
and a test set. In all models the dataset is normalized using standardized anomaly technique based on
the training set. To validate the trained models developed using cluster-based and regression models,
three-fold cross validation is performed by splitting different years into folds; two years of data is used
to train the forecast uncertainty models and PIs for the third year is obtained using the trained model
and evaluated for the quality. Performing a random-based K-fold cross validation yields the same
result and therefore only three-fold cross validation results are reported here.

To allow comparison of various uncertainty models, several baseline models are developed.
A climatological model computes PIs considering the entire forecast history (K = 1). Also, two other
baseline models are developed using manual categorization of forecast records based on a categorizing
attribute; one based on forecast month (K = 12) and another one based on forecast temperature
(K = 10).



Forecasting 2019, 1 179

Table 1. Defining feature sets in Prediction Intervals (PI) models.

Combinations of basic features

Feat Set m d h t2 ws wd sp pg

C1 • •

C2 • • •

C3 • • • •

C4 • • • •

C5 • • • •

C6 • • • • • •

C7 • • • • • • • •

Extended features

Feature Set Basic Feats. Pressure Levels Feats. pg1, pg3, pg6, pg12 PCA

BF1 •

BF2 • •

BF2PG • • •

BF2PC8 • •

BF2PGPC4 • • • •

BF2PGPC8 • • • •

4.2. Comparative Analysis of the PI Forecast Models

For the clustering-based approach, various models are developed based on different combination
of feature set (as listed in Table 1), fitting method (Gaussian, Weibull, Empirical, and Kernel
density smoothing), clustering algorithm (K-means, CLARA, and FCM) and number of clusters
(K). Results from an earlier study [30] confirm that the proposed FCM clustering approach achieves
forecast PIs with higher skill compared to other clustering-based and baseline models. The fuzzification
factor and number of clusters in the FCM model are experimentally tuned to the values of 1.2 and 45,
using grid search as suggested in [30].

In quantile regression models, the forecast records are grouped into a number of clusters between
2 and 100 to analyze the skill score sampling variations in these subspaces and to estimate its
confidence bounds. In quantile regression approaches the upper and lower quantile models are
trained independently. As a result there may be cases where the upper and lower quantiles overlap
and do not conform to each other. These exceptional cases are substituted by the climatological baseline
PI model to provide a balanced comparison among all models.

Figure 3a depicts the impact of the number of degrees of freedom on the skill score of the
Spline-based Quantile Regression (SPQR) models when using different feature sets. Different curves
represent the variation of SScore0.95 over different feature sets when the number of clusters is equal
to K = 50. The number of clusters is selected in a way that best represents the groups of weather
situations in the clustering-based models. In this figure, the degree of freedom by which the best score
is achieved for SPQR model is encircled. It is noticeable that feature sets BF2 and BF2PG provide the
best PIs for SPQR models. Figure 3b demonstrates the impact of the number of degrees of freedom on
the skill score of SPQR models when using different number of clusters. This figure shows that the
SPQR model with four degrees of freedom consistently provides the best skill score regardless of the
numbers of clusters used for analyzing the skill score sampling variations.



Forecasting 2019, 1 180

2 4 6 8 10 12 14

0
.2

5
0
.3

0
0
.3

5

Degrees of Freedom

S
S

c
o
re

0
.9

5

SPQR − K=50

C8
C7
C6
C5
C4

C3
C2
C1
BF2PGPC8
BF2PGPC4

BF2PG
BF2PC8
BF2

(a)

2 4 6 8 10 12 14

0
.2

2
0
.2

4
0
.2

6
0
.2

8

Degrees of Freedom

S
S

c
o
re

0
.9

5

SPQR − Feat=BF2

K=2
K=3
K=4
K=5

K=10
K=20
K=30
K=50

K=70
K=90
K=100

(b)
Figure 3. Projection of SScore0.95 for spline quantile regression models over different degrees of freedom
using various feature sets and number of clusters used in skill score uncertainty analysis. (a) Feature
sets; (b) number of clusters used in skill score uncertainty analysis.

In LocQR model, the PI evaluation process requires a relatively long computational time as the
upper and lower quantile models are trained for each new forecast test case. Therefore, LocQR models
are trained for a specific number of points randomly selected from the training samples. The LocQR
model trained for the nearest knot to the new test case is applied to estimate the PIs for each new
forecast case. The performance of the LocQR forecast uncertainty model is investigated by considering
the role of kernel radius, λ, and different numbers of knots. Two feature sets of BF2 and C3 are
considered in the experiments for computing skill score of PI models estimated using LocQR. Figure 4
indicates that, when BF2 feature set is used to train the PI models, the best skill score is achieved for
λ = 0.7. BF2 feature space has higher dimension and therefore a larger neighborhood is required for
the local model to efficiently learn forecast uncertainties. However, when using the lower dimensional
feature space of C3, λ = 0.1 will provide the best skill score for LocQR models. Results also confirm
that using a lower number of knots (e.g., 3000), the PI models can achieve comparable accuracies with
higher computational efficiency.

To handle the large size of the kernel matrix in KQR models, the Cholesky decomposition [24] is
applied to the kernel matrix to reduce its rank. Also, to address the high dimensionality of KQR models,
the training data is first clustered into K partitions based on the influential attributes used in the model.
KQR models are then trained for each partition independently. Results from the experiments confirm
that the quality of PI forecast is optimized when K-means clustering with 10 clusters is applied to
train hybrid clustering-KQR models. In KQR forecast uncertainty models, different choices for kernel
function are experimentally tested. Gaussian kernel compared to other alternative choices results in an
improved quality and skill of PI forecasts. The kernel parameters of σ, i.e., kernel width, and C, i.e., the
position of the center of the peak, must be tuned. The skills of PIs over options for parameters σ and
C are represented in Figure 5a. To evaluate the impact of various feature attributes on the quality of
temperature PI forecasts of the trained KQR models, box plots of skill scores are presented in Figure 5b.
As can be seen in this figure, the two feature sets BF2 and BF2PG provide PI forecast models with
higher quality. These two feature sets include wind speed components at five pressure levels that
contain information about the level of instability of the forecast atmospheric situation. This information
can be very helpful for the uncertainty models to achieve higher skill. Among the basic feature sets,
C3 has the best score, suggesting that the attributes of temperature, wind speed, and hour-of-day are
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the key features in the uncertainty models. It is also observed in the experiments that PIs of KQR
models applied to lower dimensional feature sets, e.g., BF1 or C3, have higher skills compared to
other forecast uncertainty models. For example, a set of experiments reveals that SScore0.95 = 0.3006
is achieved by KQR model while a SScore0.95 of 0.3359 is obtained from SPQR approach when these
models are applied to BF1. This demonstrates the higher competency of KQR models in handling lower
dimensional quantile learning problems due to the hybrid nature of the learning process involved.

Figure 6b presents sample temperature PIs with various confidence levels along with observations
in a station obtained from the best SPQR model with four degrees of freedom. It is important to note
that these variations in the forecast uncertainty are learned using historical statistical information of
the different weather situations.
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Figure 4. Skill score diagrams of Local Quantile Regression (LocQR) models as a function of lambda
and number of knots. (a) BF2 feature set; (b) C3 feature set.
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The PI quality measures based on three-fold cross validation for FCM clustering based and
quantile regression models are presented in Table 2. The best model set up for various quantile
regression, clustering-based, and baseline models along with the basic quality measures are reported in
this table. For the purpose of point forecast evaluation, the median of each PI is considered as the point
forecast of the trained model. This forecast is calibrated based on the historical patterns in the forecast
accuracy records. The performance of point forecasts of the uncertainty models are evaluated using
RMSE measure. Results confirm that the point forecasts obtained from the trained uncertainty models
have significantly higher performance when compared to baseline models. This can be attributed
to the fact that, in the learning-based models, the median of the forecast error is modeled using the
influential attributes. This can be considered as dynamic elimination of forecast bias in these models.
The results of this study also conform to the results discussed in [28], however, the improvement
obtained using quantile regression models over clustering based models is considerably greater in the
experiments reported here.

Table 2. PI verification measures for top models of different methods based on three-fold (yearly)
cross validation.

Algorithm K Features Fit/Params Sharpness
(◦C)

Coverage
(%)

Coverage0.95

(%)
Resolution RMSE SScore SScore0.95

SPQR 50 BF2 d f = 4 6.68 93.56 91.10 1.76 1.92 0.2125 0.2323

LocQR 50 BF2 λ = 0.7 6.92 93.46 90.97 1.73 2.00 0.2202 0.2406

NLQR 50 BF2 - 6.92 93.15 90.62 1.79 2.00 0.2264 0.2492

KQR 50 BF2 σ = 0.0042
C = 4 7.16 93.09 91.51 1.85 2.05 0.2362 0.2561

LQR 50 BF2PG - 7.91 94.39 92.05 1.64 2.17 0.2438 0.2640

FCM 45 BF2 Kernel 10.62 94.89 92.77 1.59 2.77 0.3220 0.3432

Base-Month 12 Month Kernel 12.21 95.12 94.10 1.91 3.12 0.3601 0.3704

Base-Temp. 10 Normal Temp. 11.70 94.44 93.57 0.98 3.04 0.3620 0.3725

Base-Clim. 1 - Normal 12.17 94.78 94.49 0.00 3.11 0.3740 0.3774

Experimental results reveal that all PI models developed using learning methods surpass the
baseline models (p < 0.0005). Results confirm the higher quality of PI forecasts estimated by quantile
regression models compared to the cluster-based models. The best PI forecast models are obtained
from the SPQR model with four degrees of freedom using BF2 feature set. It is followed by LocQR,
NLQR, KQR, and LQR. All these quantile regression models outperform the best fuzzy clustering
based method with 45 clusters and kernel density smoothing in terms of SScore0.95. Empirical width
distribution of the forecasted 95% PIs using different uncertainty models is depicted in Figure 6a
where horizontal line shows the best baseline model. The figure shows that quantile regression models,
compared to the FCM clustering model, provide relatively sharper PI forecasts.

The impact of number of clusters on SScore0.95 for different quantile regression models is depicted
in Figure 7. This figure also confirms that the PIs obtained by SPQR models have higher quality and
skill compared to other models. For LocQR models, the model with λ = 0.5 has a higher skill score
compared to λ = 0.7 without considering sampling variation. However, when the sampling variations
are taken into account in SScore0.95 using higher number of clusters, the model with λ = 0.7 gets a
higher skill score confidence bound. The misleading initial ranking when using skill score only is
most likely due to the fact that the model provides good PIs in the areas that insufficient samples
are available to reliably evaluate the quality of the PIs. This example signifies the role of skill score
uncertainty analysis in PI evaluations.
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(a) (b)

Figure 6. Comparing various learning models. (a) Empirical width distribution of forecast 95%
PIs—horizontal line shows the best baseline model; (b) Trends of various confidence level PIs and the
actual observations obtained from Spline-based Quantile Regression (SPQR) models.
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4.3. PI Forecast Evaluation Results

For the evaluation of various PI forecasting models, the trend of Reliability and Reliability0.95

for different levels of confidence is depicted in Figure 8. For the specific confidence levels of 0.1, 0.5,
and 0.95 the observed coverage measure of various PI forecast models is presented in Table 3. It also
reports δ̄, i.e., the average distance of an observation from PI boundaries among the missed cases as
defined in Section 3.2. The average width of PIs estimated using various forecast uncertainty models
at different levels of confidence is presented in Figure 9a. The average distance of observations from
PI boundaries, i.e., ∆̄α, over the selected range of confidence levels estimated by various PI forecast
models is projected in Figure 9b. Figure 10 compares the overall skill score of various PI forecasting
models at different confidence levels. Results indicate that the PIs estimated using SPQR model,
compared to other forecast uncertainty models, achieve higher quality in terms of sharpness, reliability,
and overall skill score.

The main difference between quantile regression and clustering based methods in modeling
forecast uncertainty is that, unlike quantile regression models, the forecast error information
is not directly incorporated in the optimization process involved in the cluster-based models.
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More specifically, the quantile of forecast error in regression models is directly estimated using a
regression model that relates the forecast error to the influential attributes. The parameters of the
regression model are then fine-tuned by incorporating forecast error information in the optimization
process. However, in cluster-based models, clusters of weather data historical records are first
trained based on forecast weather situations without considering forecast errors. After clustering of
forecast samples is completed, error density model in each cluster is estimated using the distribution
fitting process. This evidences the superior performance of quantile regression models compared to
clustering-based forecast uncertainty models.
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Figure 8. Comparison of Reliability and Reliability0.95 between various methods over confidence levels.
(a) Reliability; (b) Reliability0.95.
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Figure 10. Comparison of SScore0.95 between various methods over confidence levels.

Table 3. Detailed coverage and miss ratio observations in test for three confidence levels.

(1 − α) = 0.95 (1 − α) = 0.5 (1 − α) = 0.1

Algorithm Avg. δ
(◦C)

Miss
(Left)%

Hit
(Center)%

Miss
(Right)%

Avg. δ
(◦C)

Miss
(Left)%

Hit
(Center)%

Miss
(Right)%

Avg. δ
(◦C)

Miss
(Left)%

Hit
(Center)%

Miss
(Right)%

SPQR 0.70 3.3 93.6 3.2 1.06 25.8 48.9 25.3 1.35 45.5 9.9 44.6

LocQR 0.75 3.4 93.5 3.2 1.11 26.8 49.2 24.0 1.41 46.8 10.0 43.2

NLQR 0.78 3.4 93.2 3.4 1.12 25.8 48.9 25.3 1.42 45.3 10.0 53.7

KQR 0.82 3.4 93.1 3.5 1.20 28.4 46.2 25.4 1.55 46.3 11.2 42.5

LQR 0.82 2.8 94.4 2.9 1.22 25.2 49.7 25.1 1.55 45.1 10.0 54.0

FCM 1.08 2.7 94.9 2.4 1.62 24.8 50.3 24.9 2.03 44.9 10.0 45.2

Base-Month 1.11 2.5 95.1 2.4 1.82 24.6 50.7 26.6 2.32 44.8 10.3 44.9

5. Conclusions

This article introduced several new uncertainty models developed to extend the usefulness of
NWP forecasts through PIs. The models are based on various quantile regression techniques, a new
hybrid kernel quantile regression method, and several clustering approaches. To measure the quality
and accuracy of the various PI models, a new evaluation framework that considers the impact of
sampling variations has also been developed. The proposed PI forecasting models can be used in
real world applications to enhance point forecasts of NWP systems with information on prediction
uncertainty.

The results of conducted computational experiments bring some interesting insights into the
nature of individual approaches, including the impact of different model parameters and the selection
of features. Although clustering-based models have a marginally higher reliability, the results
demonstrate the superior performance of quantile regression models, especially the spline quantile
regression model, in terms of overall forecast skill. Cluster-based approaches model the entire
probabilistic distribution of a forecast in a single model, while quantile regression models need
to be updated for each new forecast case.

Development and application of kernel expansion functions to obtain non-linear quantile
regression models is a promising direction for future research in atmospheric uncertainty modeling.
The use of time series based methods for PI modeling can also be considered. A very interesting future
direction would be to combine predictions from multiple trained models in an ensemble to further
improve the accuracy [54].
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