
Academic Editor: Wei Zhu

Received: 5 September 2025

Revised: 4 October 2025

Accepted: 7 October 2025

Published: 10 October 2025

Citation: Imran Alhseeni, A.M.;

Bevrani, H. Bayesian Bell Regression

Model for Fitting of Overdispersed

Count Data with Application. Stats

2025, 8, 95. https://doi.org/

10.3390/stats8040095

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Bayesian Bell Regression Model for Fitting of Overdispersed
Count Data with Application
Ameer Musa Imran Alhseeni 1 and Hossein Bevrani 1,2,*

1 Department of Statistics, University of Tabriz, Tabriz 51666-15648, Iran; a.alhseeni@tabrizu.ac.ir
2 Department of Statistics, University of Kurdistan, Sanandaj 66177-15175, Iran
* Correspondence: bevrani@tabrizu.ac.ir or hossein.bevrani@uok.ac.ir

Abstract

The Bell regression model (BRM) is a statistical model that is often used in the analysis of
count data that exhibits overdispersion. In this study, we propose a Bayesian analysis of
the BRM and offer a new perspective on its application. Specifically, we introduce a G-prior
distribution for Bayesian inference in BRM, in addition to a flat-normal prior distribution.
To compare the performance of the proposed prior distributions, we conduct a simulation
study and demonstrate that the G-prior distribution provides superior estimation results
for the BRM. Furthermore, we apply the methodology to real data and compare the BRM to
the Poisson and negative binomial regression model using various model selection criteria.
Our results provide valuable insights into the use of Bayesian methods for estimation
and inference of the BRM and highlight the importance of considering the choice of prior
distribution in the analysis of count data.

Keywords: Bayesian estimation; Bell regression model; G-prior distribution; log-marginal
pseudo-likelihood; deviance information criterion

MSC: 62F15; 62F25; 62J12

1. Introduction
Count regression models are valuable for understanding the relationships between

predictor variables and count outcomes in various domains, offering a flexible and powerful
framework for analyzing discrete, non-negative data. Count data regression analysis has a
wide range of important applications. In biological and genetic studies, it is used to analyze
data such as the number of genes, genetic mutations, or disease occurrences over time [1].
In epidemiology and public health, this analysis helps assess disease incidence, mortality
rates, and the frequency of health events in specific populations [2]. Social scientists employ
count data regression to model phenomena such as criminal offenses, births, and deaths
within particular areas. Economic research utilizes this method to examine events including
business failures, patents, and the frequency of various economic activities [3]. In insurance
and actuarial science, it is applied to model claim frequencies and policyholder behavior [4].
Finally, environmental studies benefit from count data regression to analyze ecological
counts, such as species diversity in habitats and wildlife populations [5].

Undoubtedly, the Poisson regression model (PRM) is the primary choice for analyzing
count data. However, this model has a significant limitation: it assumes that the variance
in the count variable is equal to its mean. This assumption is often violated in real-world
datasets due to overdispersion, where the variance exceeds the mean. Consequently,
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the PRM’s applicability is limited in such scenarios, prompting the need for alternative
models. One such alternative is the Bell regression model (BRM), introduced by [6],
which has been well-received. BRMs have been widely discussed in various contexts, for
example, in the presence of multicollinearity [7–13], excess zeros [14,15], and shrinkage
strategies [16,17].

In statistical modeling, Bayesian inference has emerged as a powerful approach for
data analysis. By combining prior knowledge with observed data, Bayesian methods enable
the quantification of uncertainty and the estimation of model parameters. Although the
Bell regression model has been applied in many contexts, most existing work has focused
on frequentist estimation or shrinkage techniques. A Bayesian treatment of the BRM that
utilizes informative priors is largely absent from the literature. In particular, no study
has explored the use of G-prior distributions in this setting, even though the choice of
prior is known to strongly influence Bayesian inference. This paper aims to fill that gap
with several contributions. First, we propose a Bayesian formulation of the Bell regression
model and introduce the use of G-priors, with hyperparameters specified through KL-
divergence. Second, we develop a tailored Metropolis–Hastings algorithm for efficient
posterior inference. Third, we conduct a simulation study that directly compares G-priors
with the commonly used flat-normal prior, showing that G-priors consistently yield more
accurate and stable estimates. Finally, we demonstrate the practical value of our approach
through an application to mine fracture data, where the BRM with G-priors provides a better
fit than both the Poisson and negative binomial regression models, according to several
Bayesian model selection criteria. Together, these results highlight how incorporating
G-priors into Bayesian BRMs can strengthen inference and offer new insights for applied
researchers working with overdispersed count data. This paper was previously published
as a preprint [18].

The remainder of the paper is structured as follows: Section 2 provides a detailed
explanation of the BRM, including prior specification, posterior inference, and model
selection criteria. In Section 3, a simulation study is carried out to compare the proposed
prior distributions for the BRM. The methodology is then illustrated in Section 3.2, where
the BRM is compared to the Poisson regression model (PRM) and the negative binomial
regression model (NBRM) using Bayesian inference. Finally, Section 4 provides a discussion
and concluding remarks.

2. Material and Methods
2.1. Bell Regression Model

The discrete Bell distribution is introduced by [6] based on a series expansion due
to [19,20]. Its probability mass function is defined as follows:

f (y) =
θye1−eθ

By

y!
, y = 0, 1, 2, . . . ; θ > 0, (1)

where By = e−1 ∑∞
k=0

ky

k!
indicates the Bell numbers. The important characteristics of the

Bell distribution are given by the following:

E(Y) = θeθ ,

V(Y) = θeθ(1 + θ) = E(Y)(1 + θ).

Since θ > 0, the variance value is greater than its mean, which is known as overdis-
persion. Consequently, the regression model is defined based on Bell distribution, which
will be suitable for count data with overdispersion. In regression contents, it is common
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to assume that the mean of the distribution depends on the vector of covariates. Let
y = (y1, y2, . . . , yn)T be a random sample from Bell(θi). We relate the µi := E(Yi) to p
covariates by the log link function, i.e.,

log(µi) = X⊤
i β, i = 1, 2, . . . , n (2)

where β = (β1, β2, . . . , βp)⊤ is the model parameter vector and X i = (xi1, xi2, . . . , xip)
⊤ is

the ith observation for p model covariates. Due to (2), the parameter of the Bell distribution
will be θi = W0(µi) (i = 1, 2, . . . , n), where W0(.) is the Lambert function [21]. Hence,
the model in (1) can be reparameterized as follows:

f (yi|X i) =
Byi

yi!
e1−eW0(µi) [W0(µi)]

yi . (3)

2.2. Bayesian Inference

Consider n observations of the response–covariates pair as D = {(yi, X i), i =

1, 2, . . . , n}. The likelihood function of the BRM is given as follows:

L(D|β) =
( n

∏
i=1

Byi

yi!

)( n

∏
i=1

[W0(µi)]
yi

)
en−∑n

i=1 eW0(µi) , (4)

where µi = exp
{

X⊤
i β

}
. Bayesian regression allows for the incorporation of prior knowl-

edge about the parameters, which is particularly useful when such information is available
or when making use of expert knowledge. The inference is based on the posterior distribu-
tion of BRM, i.e.,

π(β|D) = L(D|β)π(β)

=

( n

∏
i=1

Byi

yi!

)( n

∏
i=1

[W0(µi)]
yi

)
en−∑n

i=1 eW0(µi) × π(β). (5)

Thus, we first need to specify the prior distribution.

2.2.1. Specification of Priors

First, we consider a common prior on β = (β1, β2, . . . , βp)⊤ for our model, the flat-
normal prior Np(0, τ2 Ip), where τ > 0. When we set a large value for τ2, the resulting flat
prior becomes a diffuse prior. This diffuse prior assigns equal probability to all possible
values of the regression coefficients. Unfortunately, this can lead to overestimating the
magnitude of the regression coefficient and being overconfident about its sign. This is
problematic because when it comes to regression coefficients (other than the intercept), we
are typically more interested in knowing the magnitude and sign of the effect. Thus, we
consider the second prior on model parameters based on the idea presented in [22].

In a proposed regression model, if the mean µ of yi is assumed to be in the range
of (0, ∞), and a subject matter expert has information on the marginal distribution of µ

characterized by inverse-gamma distribution with parameters aµ and bµ, i.e., IG(aµ, bµ),
where aµ > 0 and bµ > 0 are known, the objective is to formulate a prior on β that
incorporates this prior information while adjusting for covariates. Following [23], we
consider a G-prior distribution for the regression parameters. This choice is particularly
suitable for BRMs because it allows for prior information on the marginal distribution of the
mean response to be incorporated while adjusting for covariates, making it a natural and
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flexible prior structure for regression models with overdispersed count data. The G-prior
can be considered as follows:

β ∼ Np

(
Mu, gn(X⊤X)−1

)
, (6)

where u = (1, 0, . . . , 0)⊤, M is a prior mean for the intercept and g > 0 is a scaling constant.

Suppose that X1, X2, . . . , Xn
iid∼ H(x) with the mean A and covariance matrix Σ. With X i

including the intercept in the first element, the first element of A is one and entries in the
first row and those in the first column of Σ all are zero. For the new subject with covariates
X ∼ H and response y, we can see that the mean of y equals µ(X i) = h−1(X⊤

i β) and also
assume that X i and β are independent [22]. Therefore, we have

E(X⊤
i β) = E

(
E
(
X⊤

i β|X i
))

= E
(
X⊤

i Mu
)
= M,

and

V(X⊤
i β) = E

(
V
(
X⊤

i β|X i
))

+V
(
E
(
X⊤

i β|X i
))

= E
(

gnX⊤
i (X⊤X)−1X i

)
+V

(
M
)

= g.tr
(

n(X⊤X)−1(Σ + AA⊤)).

Since n(X⊤X)−1 converges in probability to
(
Σ + AA⊤)−1,

V(X⊤
i β)

p→ gp.

Ref. [24] found that for a various H(.) considered in their simulations, X⊤
i β is ap-

proximately distributed as normal for any given value of X i. Therefore, it is reasonable
to consider that X⊤

i β ∼ N(M, gp). Using these results, we can select the value of M and
g in G-prior distribution so that the induced distribution of µ(X i) = h−1(X⊤

i β) matches
the marginal prior distribution µ ∼ IG(aµ, bµ). We minimize the Kullback–Leibler diver-
gence, specifically DKL(P ∥ Q), since this measures how well the distribution induced
by our model (P) approximates the prior information distribution (Q). Thus, we have
M = E

(
h(µ)

)
and g = V

(
h(µ)

)
/p. In our regression model, we considered h(.) as the log

link function; hence,

M = ψ(aµ) + log(bµ) and g =
1
p

ψ(1)(aµ) (7)

where ψ(.) and ψ(1)(.) are digamma and trigamma function, respectively. When the values
for aµ and bµ are not available, we use aµ = bµ = 1 as the defaults, yielding relatively weak
prior information on the location of µ. It is worth noting that, under standard conditions,
G-priors are known to yield consistent Bayesian estimators [23,24].

2.2.2. MCMC Algorithm

Consider the posterior distribution by using flat-normal prior and G-prior distribution
in (6), which is analytically intractable. Monte Carlo Chain Markov (MCMC) simulation
methods, such as the Gibbs sampler and Metropolis–Hastings algorithm, are utilized to
obtain a sample from the posterior distribution [25]. To implement the Metropolis–Hastings
algorithm, the following steps are taken:

1. Start with any point β(0) and stage indicator k = 0.
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2. Generate β̃ according to the transitional kernel K(β̃, β(k)) = Np(β(k), Σ̃), where Σ̃ is a
known symmetric positive defined matrix.

3. Accept β̃ as β(k+1) with the following probability:

min
{

1,
π(β̃|D)

π(β(k)|D)

}
. (8)

4. By increasing the stage indicator, repeat steps (1) to (3) until the process reaches a
stationary distribution.

The computational program is available upon request from the authors.

2.3. Model Selection Criteria

There are multiple techniques available to compare and select the best-fitting model
among several competing models for a given dataset. One commonly used technique in
applied research is the conditional predictive ordinate (CPO) statistic. To learn more about
the CPO and its applications in model selection, see [26,27]. Suppose that D is the full data,
D(−i) for i = 1, 2, . . . , n denotes the data with the ith observation deleted, and the posterior
distribution based on D(−i) is denoted by π

(
β|D(−i)

)
. For the ith observation, CPOi is

defined as follows:

CPOi =

[ ∫
β

π(β|D)

f (yi|β)
dβ

]−1

.

The low CPO values indicate poor model fit, but a closed-form CPO is unavailable
for the proposed model. However, a Monte Carlo estimate of the CPOi can be obtained by
using a single MCMC sample {β(1), β(2), . . . , β(T)} from the posterior distribution π(β|D).
Thus, the CPOi can be approximated by

ĈPOi =

[
1
T

T

∑
k=1

1

f (yi|β(k))

]−1

.

The statistic for model comparison is the log-marginal pseudo-likelihood (LMPL)
defined as follows:

LMPL =
n

∑
i=1

log(ĈPOi). (9)

Therefore, the largest value of LMPL indicates that the data is well-fitted by the model
under consideration.

The second criterion which is proposed by [28] is called the deviance information
criterion (DIC). Based on MCMC samples, the DIC can be estimated as follows:

D̂IC = 2
[
− 2

1
T

T

∑
k=1

log L(D|β(k)) + log L(D|β̄)
]

, (10)

where β̄ is the mean of MCMC samples. The model with the lowest D̂IC value is considered
as the best-fitted model.

The final two criteria considered here are the expected Akaike information criterion
(EAIC) by [29] and the expected Bayesian information criterion (EBIC) by [30]. These
criteria can also be estimated using the following:

ÊAIC = −2
T

∑
k=1

log L(D|β(k)) + 2p, (11)



Stats 2025, 8, 95 6 of 11

and

ÊBIC = −2
T

∑
k=1

log L(D|β(k)) + p log(n), (12)

where p is the number of model parameters. The model that exhibits the lowest value of
these criteria, similar to the DIC, is considered to be a better fit for the data.

3. Results
3.1. Simulation Study

In this section, we conduct a simulation study to illustrate the implementation of the
proposed regression methodology.

The model we consider here is given by

µi = exp
{

β1xi1 + β2xi2 + . . . + βpxip
}

, i = 1, 2, . . . , n. (13)

Here, we consider the model with intercept; thus, we set xi1 = 1. The observations for
the covariates, i.e., xi2, . . . , xip, are generated from standard normal distribution. The real
value of the parameters in model (13) is considered as follows:

β =
(
0,−0.5, 1, 1, . . . , 1︸ ︷︷ ︸

p−2

)⊤. (14)

In summary, we obtained the response observations from Bell
(
W0(µi)

)
. In order to

evaluate the effectiveness of our proposed method, we tested it with different sample sizes
n = 50, 100, 200 to represent low, medium, and high sample sizes, and with different
numbers of covariates p = 3, 6. For the prior distributions, we consider flat-normal
distribution with τ = 102 and G-prior defined in (6) with hyperparameters obtained from
(7) by setting aµ = bµ = 1.

We generate two parallel independent MCMC runs of size T = 50,000 for each poste-
rior distribution and discard the 10,000 first generated sample as the burn-in to eliminate
the impact of initial values. For computing the posterior estimates, we used every 20th
sample to reduce the autocorrelations of the generated chains and yield better convergence
results. In the Metropolis–Hastings algorithm, the proposal covariance was set equal to the
covariance matrix of the maximum likelihood estimator. The convergence of the MCMC
chains was monitored using the trace and autocorrelation function (ACF), Heidelberger–
Welch, and Gelman–Rubin convergence diagnostics [31]. Additionally, we performed a
small sensitivity study to evaluate the robustness of the model with respect to the choice
of hyperparameters in the prior distributions by testing different values of τ and M for
prior distributions.

The summaries of the parameters in the posterior distribution exhibit minimal dif-
ferences and do not impact the results presented in Tables 1 and 2. These tables display
the results of posterior inference for both prior distributions. These tables show the esti-
mated values using the squared loss function, posterior standard deviations (PSD), and 95%
highest posterior density (HPD) intervals. The results show that as the sample size grows,
both the posterior standard deviations (PSDs) and the widths of the 95% HPD intervals
become smaller. Across all cases, the G-prior gives tighter intervals and lower PSDs than
the flat-normal prior, which means that it provides more precise estimates. In addition,
the acceptance rate of the algorithm stayed high (90% to 95%) for both priors, indicating
that the sampling procedure worked efficiently.

Table 3 presents the mean squared errors (MSEs) and the mean absolute errors (MAEs)
for the estimates found in Tables 1 and 2. Table 3 shows that the MSE and MAE of the
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G-prior are consistently lower than those of the flat-normal prior, except in the case p = 6
and n = 200. This suggests that the G-prior generally produces more accurate and stable
parameter estimates, with particularly clear benefits when the sample size is small or
moderate. For both prior choices, we also observe that increasing the number of covariates
leads to higher MSE and MAE values.

Table 1. Bayesian inference of model (13) based on prior distributions when p = 3.

G-Prior Flat Normal

95% HPD 95% HPD

True Value Estimate PSD Lower Upper Estimate PSD Lower Upper

n = 50
β1 0 −0.0984 0.2022 −0.4795 0.3073 −0.1088 0.2135 −0.5245 0.3017
β2 −0.5 −0.4743 0.1830 −0.8319 −0.0946 −0.4990 0.1874 −0.8604 −0.1053
β3 1 1.0369 0.1440 0.7547 1.3125 1.0629 0.1482 0.7726 1.3460

n = 100
β1 0 −0.1609 0.1430 −0.4254 0.1273 −0.1636 0.1465 −0.4449 0.1175
β2 −0.5 −0.5825 0.1168 −0.8042 −0.3377 −0.5903 0.1172 −0.8164 −0.3505
β3 1 1.0240 0.0876 0.8479 1.1900 1.0329 0.0891 0.8569 1.2067

n = 200
β1 0 −0.1171 0.1051 −0.3133 0.0911 −0.1202 0.1081 −0.3203 0.0926
β2 −0.5 −0.4977 0.0817 −0.6432 −0.3273 −0.5007 0.0822 −0.6459 −0.3300
β3 1 1.0404 0.1067 0.8329 1.2342 1.0527 0.1091 0.8369 1.2478

Table 2. Bayesian inference of model (13) based on prior distributions when p = 6.

G-Prior Flat Normal

95% HPD 95% HPD

True Value Estimate PSD Lower Upper Estimate PSD Lower Upper

n = 50
β1 0 0.0045 0.2046 −0.4025 0.3899 −0.0801 0.2286 −0.5406 0.3511
β2 −0.5 −0.5517 0.1238 −0.8012 −0.3143 −0.5742 0.1282 −0.8326 −0.3259
β3 1 0.9397 0.1027 0.7257 1.1282 0.9798 0.1089 0.7535 1.1779
β4 1 0.8249 0.1167 0.5838 1.0548 0.8750 0.1202 0.6326 1.1170
β5 1 0.9214 0.1046 0.7168 1.1318 0.9283 0.1087 0.7099 1.1381
β6 1 1.0821 0.1615 0.7607 1.3963 1.1515 0.1770 0.8025 1.4978

n = 100
β1 0 −0.1425 0.1471 −0.4346 0.1352 −0.2118 0.1588 −0.5130 0.0938
β2 −0.5 −0.4448 0.0803 −0.6019 −0.2862 −0.4491 0.0810 −0.6077 −0.2882
β3 1 1.0378 0.0571 0.9199 1.1507 1.0550 0.0585 0.9329 1.1725
β4 1 0.8337 0.1112 0.6046 1.0405 0.8784 0.1147 0.6420 1.0970
β5 1 0.8680 0.0866 0.7029 1.0404 0.9007 0.0889 0.7356 1.0770
β6 1 1.0771 0.1061 0.8626 1.2812 1.1223 0.1132 0.8899 1.3387

n = 200
β1 0 −0.0152 0.0981 −0.2078 0.1788 −0.0406 0.1016 −0.2321 0.1737
β2 −0.5 −0.4573 0.0542 −0.5611 −0.3551 −0.4670 0.0546 −0.5710 −0.3645
β3 1 0.8729 0.0674 0.7455 1.0197 0.8881 0.0684 0.7556 1.0359
β4 1 0.9738 0.0577 0.8647 1.0938 0.9837 0.0596 0.8677 1.1038
β5 1 1.0507 0.0552 0.9496 1.1600 1.0565 0.0562 0.9520 1.1654
β6 1 0.9395 0.0658 0.8172 1.0727 0.9539 0.0669 0.8329 1.0912
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Table 3. MSEs and MAEs for the estimated values reported in Tables 1 and 2.

MSE MAE

G-Prior Flat Normal G-Prior Flat Normal

n p = 3 p = 6 p = 3 p = 6 p = 3 p = 6 p = 3 p = 6

50 0.0036 0.0087 0.0052 0.0093 0.0537 0.0754 0.0576 0.0871
100 0.0111 0.0126 0.0120 0.0150 0.0891 0.1018 0.0956 0.1102
200 0.0051 0.0042 0.0057 0.0035 0.0533 0.0537 0.0579 0.0507

3.2. Application

In this section, we apply our methodology to a mine fracture dataset that was primarily
analyzed by [32]. The dataset includes four variables: the thickness of the inner burden
in feet (x1), the percentage of extraction from the previously mined lower seam (x2),
the height of the lower seam (x3), and the time since the mine has been opened (x4).
The number of fractures in the mine is denoted by y, and there are 44 observations available
for each variable.

We examine three count regression models: the Bell regression model (BRM), the Pois-
son regression model (PRM), and the negative binomial regression model (NBRM). To be-
gin, we assess whether the response variable follows each distribution using a chi-square
goodness-of-fit test at the 95% confidence level. The results, presented in Table 4, indicate
that the Poisson distribution does not provide an adequate fit for this dataset, despite its
previous use in similar analyses by [32,33]. In contrast, both the Bell and negative binomial
distributions demonstrate a good fit, highlighting their suitability for modeling this data.

As in the Simulation Section, MCMC runs of size 50,000 were generated for each
posterior distribution of BRM, PRM and NBRM under the G-prior distribution. To reduce
the autocorrelations of the generated chains and obtain better convergence results, ev-
ery 20th sample was used after discarding the first 10,000 generated samples as burn-in.
The posterior means, medians, PSDs, and 95% HPD intervals for both regression models
are presented in Table 5. The results indicate that the BRM provides estimations with
the lowest PSD and narrowest HPD intervals. Moreover, the HPD intervals of the BRMs
indicate that x1 and x3 are not significant while only x2 is significant based on the HPD
intervals of PRM and NBRM.

We compared the BRM, PRM, and NBRM using the LMPL, DIC, EAIC, and EBIC
criteria in Table 6. The results show that the BRM consistently performs best across all
measures. In the real data application (Tables 5 and 6), the BRM with a G-prior not only
yields narrower HPD intervals but also achieves stronger model selection scores. While
the NBRM offers an improvement over the PRM, the BRM still provides the most reliable
fit, even with a small sample size. This highlights the practical usefulness of the Bayesian
BRM for applied researchers working with limited or overdispersed count data.

Table 4. Goodness-of-fit test for the mine fracture dataset.

Count Observed Bell Poisson Negative Binomial

0 10 10.149 4.744 6.640
1 7 9.164 10.567 10.752
2 8 8.274 11.767 10.173
3 8 6.226 8.736 7.342
4 4 4.216 4.864 4.475
≥5 7 5.970 3.321 4.618

χ2 1.216 12.523 4.813
p-value 0.943 0.028 0.439
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Table 5. Bayesian inference of models for the mine fracture dataset.

95% HPD

Model Parameter Mean Median PSD Lower Upper

Bell

β1 −3.5991 −3.5864 1.0666 −5.6350 −1.6295
β2 −0.0015 −0.0015 0.0009 −0.0032 0.0002
β3 0.06310 0.0634 0.0127 0.0380 0.0879
β4 −0.0032 −0.0031 0.0055 −0.0148 0.0069
β5 −0.0323 −0.0316 0.0164 −0.0666 −0.0032

Poisson

β1 −4.1262 −4.0515 1.4028 −7.0078 −1.7307
β2 −0.0015 −0.0014 0.0011 −0.0035 0.0006
β3 0.0695 0.0689 0.0168 0.0386 0.1031
β4 −0.0031 −0.0027 0.0074 −0.0174 0.0116
β5 −0.0314 −0.0304 0.0227 −0.0764 0.0117

Negative Binomial

β1 −3.9884 −3.9600 1.2110 −6.6541 −1.8616
β2 −0.0014 −0.0014 0.0010 −0.0032 0.0005
β3 0.0675 0.0674 0.0148 0.0414 0.0987
β4 −0.0027 −0.0024 0.0060 −0.0139 0.0095
β5 −0.0314 −0.0315 0.0186 −0.0665 0.0059

Table 6. Bayesian Criteria for the fitted models to the mine fracture dataset.

Model LMPL DIC EAIC EBIC

Bell −72.4172 144.4801 149.3860 158.3070
Poisson −78.1424 156.8615 161.5732 170.4942

Negative Binomial −75.7465 149.3917 154.5123 163.4332

4. Discussion and Conclusions
This paper has presented a comprehensive Bayesian framework for Bell regression

models (BRMs). To the best of our knowledge, it is the first study to introduce G-priors in
this context, underscoring the critical importance of prior choice when modeling overdis-
persed count data. Alongside the G-prior, we considered a flat-normal prior, with inference
carried out using a tailored MCMC algorithm. Our simulation study demonstrated that the
G-prior consistently yields more precise parameter estimates, as evidenced by smaller pos-
terior standard deviations, narrower HPD intervals, and lower MSE and MAE compared
to the flat-normal prior. In the real-data application, the BRM with a G-prior also outper-
formed both Poisson and negative binomial regression models across several Bayesian
model selection criteria, including the LMPL, DIC, EAIC and EBIC variants. These results
highlight not only the methodological contribution but also the practical utility of the
proposed approach. Unlike earlier studies that focused primarily on frequentist estimation,
this work provides a Bayesian alternative that performs well even with modest sample sizes.
Although a full asymptotic analysis is beyond the scope of this paper, our empirical findings
align with the established theoretical advantages of G-priors in the literature [23,24]. Future
work could involve a detailed examination of the asymptotic properties and an extension
of the method to scenarios such as zero-inflated BRMs or the use of other informative prior
families to further enhance the model’s flexibility and performance.
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