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Abstract

In Bayesian statistics, the prior distributions play a key role in the inference, and there are
procedures for finding prior distributions. An important problem is that these procedures
often lead to improper prior distributions that cannot be normalized to probability measures.
Such improper prior distributions lead to technical problems, in that certain calculations are
only fully justified in the literature for probability measures or perhaps for finite measures.
Recently, expectation measures were introduced as an alternative to probability measures
as a foundation for a theory of uncertainty. Using expectation theory and point processes,
it is possible to give a probabilistic interpretation of an improper prior distribution. This
will provide us with a rigid formalism for calculating posterior distributions in cases where
the prior distributions are not proper without relying on approximation arguments.

Keywords: Bayesian statistics; expectation measure; improper prior distribution; expected
value; point process; Poisson point process; s-finite measure; posterior distribution;
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1. Introduction
In Bayesian statistics, we usually use probability measures to quantify uncertainty.

These probability measures are defined as measures with total mass equal to 1. Before we do
any calculations, we need a prior distribution, so we need guidelines about how such prior
distributions should be assigned to a specific problem. A subjective Bayesian would have
consistency as the only limitation on how prior distributions are assigned. A significant
problem with this approach is that it is subjective, so that more or less any conclusion can be
reached by a suitable choice of prior distribution. On the contrary, an “objective” Bayesian
would advocate for specific methods for determining prior distributions in particular
situations. Although such methods may not be objective in any absolute sense, the aim
should be that the methods are intersubjective in the sense that different scientists would
get the same prior distribution if they agree that certain conditions are fulfilled.

Objective Bayesians have developed different methods for assigning prior distri-
butions, and a significant problem is that these methods often lead to improper prior
distributions, where the prior distributions are described by measures that have infinite
mass so that they cannot be normalized. Although posterior distributions can often be
calculated from such improper prior distributions by plugging into a formula, the formula
is not well justified in the usual probabilistic models of uncertainty. Handling and inter-
preting improper prior distributions is a significant problem in the Bayesian approach to
statistics [1], and this will be the primary focus of the present paper.
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In many textbooks, improper prior distributions are handled by the selection of a
“large” subset of the parameter space. If the parameter space is Θ and the improper prior
measure is µ, then one selects a subset Θ̃ ⊆ Θ, such that µ

(
Θ̃
)
< ∞. Then, the measure

restricted to Θ̃ is normalized, so that the normalized measure can be interpreted as a
probability measure. If Θ̃n is an increasing sequence of sets, such that Θ =

⋃∞
n=1 Θ̃n,

then the posterior based on the normalized version of the measure µ restricted to Θ̃n will
converge to the posterior based on µ. Hence, by selecting a sufficiently large subset Θ̃ of
the parameter space, we get a probabilistic inference that approximately gives the right
result. Akaike and many others have advocated this approach to handling improper prior
distributions [2]. See [3] for a more recent exposition regarding the approximation of
improper priors by probability measures.

Inference based on restriction of the parameter space is problematic for two reasons.
The first reason is that the subset Θ̃ should, in principle, be chosen before any observation
has been made, and if µ is improper and µ

(
Θ̃
)
< ∞, there will exist observations for which

the posterior based on Θ̃ is very different from the posterior based on the whole parameter
space Θ. The second reason is that if Θ̃ is chosen with a finite measure, it will often conflict
with how we justify the use of the prior measure µ. If, for instance, µ is determined as a
Haar measure on a non-compact group, then the restriction of µ to a set of finite measure
will, in general, not be a Haar measure.

1.1. Expectation Theory

In a recent paper, expectation theory was presented as an alternative to the Kolmogorov
style of probability theory [4]. Our main result is that with expectation measures at our
disposal, we can handle improper prior distributions without restricting to a subset of the
parameter space. No approximation argument is required as long as we condition on an
event of positive finite measure. Approximation may be relevant if we condition on an
event of measure 0, but this problem is related to using continuous measures and not to the
prior distribution being improper.

In [4], it was shortly mentioned that expectation theory allows us to give a probabilistic
interpretation for improper prior distributions and conditioning based on such measures.
Here, we will provide a more detailed exposition on this problem. Some results in [4] will
be generalized from discrete measures to s-finite measures.

The basic objects for describing uncertainty in expectation theory are s-finite measures
rather than probability measures that are the fundamental objects in Kolmogorov-style
probability theory. These measures can be interpreted as expectation measures of specific
point processes. This gives a probabilistic interpretation of expectation theory, so there is
no dichotomy between probability theory and expectation theory, but the focus is slightly
different in expectation theory. Expectation theory and Kolmogorov-style probability theory
are two theories that both quantify uncertainty, and each of the two theories comes with a
set of basic concepts, as illustrated in Table 1.

Recently, M. Albert and S. Mellick have proved that if a group is locally compact,
second-countable, unimodular, non-discrete, and non-compact, then any free-probability-
measure-preserving action of the group can be realized by an invariant point process [5,6].
As we will see in this paper, the idea of interpreting measures that are not probability
measures via point processes can be used for any s-finite measure without reference to a
group structure. Since the methods and results of M. Albert and S. Mellick are so closely
related to the present work, we will briefly mention how Haar measures are relevant for
determining prior distributions in Section 2.7.
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Table 1. Fundamental concepts in Kolmogov-style probability theory and the corresponding funda-
mental concepts in expectation theory.

Probability Theory Expectation Theory

Probability Expected value
Outcome Instance
Sample space Multiset monad
P-value E-Value
Probability measure Expectation measure
Binomial distribution Poisson distribution
Density Intensity
Bernoulli random variable Count variable
Empirical distribution Empirical measure
KL-divergence Information divergence
Uniform distribution Poisson point process

It is possible to define a monad for point processes [7]. The monad defined in [7] is
also related to the observation that the Giry monad is distributive over the multiset monad,
as discussed in [8]. These results from category theory provide the underlying structure
that allows for the results presented in this paper.

1.2. Terminology and Notation

In principle, there is no dichotomy between expectation theory and Kolmogorov-style
probability theory, but in practice, we have to make some modifications to the terminology
in order to avoid confusion.

In standard probability theory, a probability measure lives in either the sample
space [9] (p. 292), [10] (Section 1.3), [11] (p. 22), the outcome space [12] (p. 10), [13]
(Sec. 1.1), the space of elementary events [14] (p. 5), the sample description space [15] (p. 7),
or the possibility space [16] (p. 3). In this paper, we will use the term outcome space, and the
elements of the outcome space will be called outcomes, points, or letters. The word sample
will be used informally about the result of sampling. Sampling can often be modeled by a
point process where the result is a multiset, i.e., a set of points in the outcome space each
with a weight indicating the number of observations of that point. The result of a point
process will be called an instance of the point process, and the elements of the instance will
often be called points. We avoid the term sample space, because it may make it less clear
whether a sample leads to a point in outcome space or whether it leads to a multiset over
the outcome space.

If µ is a probability measure, then the conditional probability measure given a mea-
surable set A is denoted as µ(· | A). In the standard approach to probability theory, the
conditional probability measure may be viewed as a restriction of the original probability
measure to a subset. In many expositions, the measure µ restricted to a measurable set A is
denoted as µ |A [17] (Sec. 3) or µ|A [18] (p. 3). In expectation theory, the restricted measure
µ |A and the conditional measure µ(· | A) are two related but distinct measures, which
should not be confused. For this reason, we will denote the restricted measure as µ∩A.

A measure with a total mass of 1 is usually called a probability measure. We will
deviate from this terminology and use the alternative term normalized measure for a measure
with total mass 1 [12] (p. 10). We will reserve the word probability measure to situations
where the weights of a normalized measure are used to quantify uncertainty, and it is
known that precisely one observation will be made, and one can decide which event the
observation belongs to in a system of mutually exclusive events that cover the whole
outcome space. Similarly, we will talk about an expectation measure if our interpretation
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of its values is given in terms of expected values of some random variables, or if it is the
expectation measure of a point process.

If a measure is used to quantify our prior knowledge about a parameter before ob-
servation, we will call it a prior distribution. Following [19], we use the term proper prior
when the measure is normalized, and in other cases, we say that the prior distribution is
improper. Note that many statisticians only use the term improper prior when the measure
has infinite total mass [20] (Chap. 8.2 Improper prior).

1.3. Organization of the Paper

In order to make this paper more self-contained, there is some slight overlap between
this paper and [4], but the reader should consult [4] if the reader is interested in a more
complete motivation for basing a theory of uncertainty on expectation measures rather
than probability measures.

In Section 2, we provide a brief introduction to expectation theory and related topics
concerning point processes. We also discuss statistical models and some methods for
calculating prior distributions. There are many other ways to get prior distributions, and
this is not an attempt to cover this topic. We just provide enough background material to
present some examples of statistical models with prior distribution.

Section 3 contains the main contribution of this paper. We provide a probabilistic
interpretation of improper priors based on point processes. The interpretation allows for
the calculation of posterior distributions without relying on any approximation arguments.

We end the paper with a short discussion.

2. Methods
Here, we will introduce the concepts and results needed in the subsequent sections.

For motivation and more details, we refer to the literature.

2.1. Observations and Expectations

In statistics, data are often given in terms of frequency tables. To each entry, the table
gives the observed frequency of that entry. An example of such a frequency table is Table 2.

Table 2. Frequencies of eyes in 68 independent throws with a six-sided die.

Number of Eyes Frequency

One eye 10
Two eyes 15

Three eyes 15
Four eyes 7
Five eyes 8
Six eyes 13

A frequency table can be identified with a multiset, i.e., a set where each point has
a multiplicity. To relate such multisets to Kolmogorov-style probability theory, we will
represent them as measures. Let (B,F ) denote a measurable space. Observations in (B,F )

will be represented as finite or countable sums of Dirac measures.

Example 1. The frequencies in Table 2 can be represented by the measure

10δ1 + 15δ2 + 15δ3 + 7δ4 + 8δ5 + 13δ6. (1)

A finite or countable sum of Dirac measures will be called an observation measure.
One can define kernels with expectation measures as outcomes, and such kernels can
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be composed in the same way as Markov kernels can be composed. The category of
finite expectation measures was studied in [4], and this category may serve as a model of
descriptive statistics.

2.2. Expectations as s-Finite Measures

Before making any observations, there will be uncertainty about what the observations
will be. The uncertainty will be quantified in terms of an expectation measure, which is
a measure µ on an outcome space (B,F ), such that for B ∈ F the value µ(B) is the
expected value of the number of observations in B. If we would allow all measures as
expectation measures, we would get into technical problems. For instance, Tonelli’s theorem
does not hold for arbitrary measures, and kernels based on arbitrary measures cannot be
composed. For this reason, we should look for a well-behaved category that can handle
both normalized measures and observation measures.

The set of normalized measures on (B,F ) will be denoted M1
+(B,F ) or M1

+(B) for
short. Like Rényi, we are more interested in kernels than in measures [21–23]. A measurable
mapping A → M1

+(B, ) is called a Markov kernel, and an important property of Markov
kernels is that they can be composed. Let a → µa and b → νb denote Markov kernels from
A to B and from B to D, respectively. The two Markov kernels can be composed by

(µ ⊙ ν)a(D) =
∫
B

νb(D)dµab. (2)

With this compostion, the measurable spaces and Markov kernels form a category that Law-
vere was the first to study [24]. From the point of view of category theory, the composition
is related to the fact that the functor M1

+ is part of a monad [4,25].
A kernel a → µa is said to be a sub-Markov kernel if ∥µa∥ ≤ 1 for all a ∈ A [26]

(Def.1, ii’). Sub-Markov kernels can be composed in just the same way as Markov kernels.
Thus, the measurable spaces and sub-Markov kernels form a category with the category of
Markov kernels as a sub-category.

A kernel µ : X → Y is said to be s-finite if there exists a countable set of sub-Markov
kernels µi, such that µx = ∑∞

i=1 µi. Such s-finite kernels can be composed, resulting in an
s-finite kernel [27]. To see that, let νx = ∑∞

j=1 νx,j be a s-finite kernel from X to Y and let
µy = ∑∞

i=1 µy,i be a s-finite kernel from X to Y. Then

µ ⊙ ν =

(
∞

∑
i=1

µi

)
⊙
(

∞

∑
j=1

νj

)

=
∞

∑
i=1

∞

∑
j=1

µi ⊙ νj,

(3)

which is clearly an s-finite kernel. With this composition, we get a category of s-finite
kernels, and the category of Markov kernels is a sub-category.

Many textbooks on probability theory or general measure theory focus on σ-finite
measures. The problem is that the composition of σ-finite kernels may lead to s-finite kernels
that are not σ-finite. In recent years, s-finite measures have gained increasing attention
among people studying denotational semantics for probabilistic programming [23,27–29].

2.3. Point Processes

We will define a point process with points in the measurable space (B,G). In the
literature on point processes, B will be a d-dimensional Euclidean space, but we will not
make such a restriction. Let (Ω,F , P) denote a probability space. A transition kernel
ω → µω from (Ω,F ) to M+(B,G) is called a point process if
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• For all ω ∈ Ω, the function µω(·) : G → R0,+ is a s-finite measure.
• For all bounded sets B ∈ G, the random variable ω → µω(B) : Ω → R0,+ is a

count variable.

In the literature, it is often assumed that that µω(·) : G → R0,+ is locally finite rather
than s-finite, but we will make no such restriction. For further details about point processes,
see [30] or [31] (Chapter 3).

The interpretation is that if the outcome is ω, then µω is a measure that counts how
many points there are in various subsets of B, i.e., µω(B) is the number of points in the set
B ∈ G. Each measure µω will be called an instance of the point process. We note that under
weak topological conditions, an instance of a point process is the same as an empirical
measure. In the literature on point processes, one is often interested in simple point processes,
where µω(B) = 0 when B is a singleton. However, point processes that are not simple are
also crucial for the problems that will be discussed in this paper.

The definition of a point process follows the general structure of probability theory,
where everything is based on a single underlying probability space. This will ensure
consistency, but often this probability space has to be quite large if several point processes
or many random variables are considered simultaneously.

The measure µ is called the expectation measure of the process ω → µω if for any B ∈ S
we have

µ(B) =
∫

Ω
µω(B)dPω. (4)

The term intensity measure is sometimes used instead of expectation measure. For simple
point processes, expectation measures are often expressed in terms of the Radon–Nikodym
derivative with respect to an underlying measure. In such cases, the term intensity measure
is appropriate. However, we also consider point processes that are not simple, so we prefer
the term expectation measure.

The expectation measure gives the mean value of the number of points in the set B.
Different point processes may have the same expectation measure. A one-point process is a
process that outputs precisely one point with probability 1. For a one-point process, the
expectation measure of the process is simply a probability measure on B. Thus, probability
measures can be identified with one-point processes.

2.4. Poisson Distributions and Poisson Point Processes

For λ ∈ [0, ∞), the Poisson distribution Po(λ) is the probability distribution on N0

with point probabilities:

Po(j, λ) =
λj

j!
exp(−λ). (5)

For λ = ∞, we define Po(∞) as the normalized measure concentrated on ∞.
It was proven in [32] (Thm. 3.6) that for any s-finite measure on B, there exists a point

process ω → µω, such that

• For all B ∈ S , the random variable ω → µω(B) is Poisson distributed with a mean
value µ(B).

• If B1 and B2 ∈ S are disjoint, then the random variables ω → µω(B1) and ω → µω(B2)

are independent.

Such a process is called a Poisson point process with expectation measure µ, and we
will denote it by Po(µ). All results regarding an s-finite measure µ can now be translated
into results regarding the Poisson process Po(µ). We call this the Poisson interpretation of
the measure.
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Example 2 (Temporal Poisson process). Let m∩R+
denote the Lebesgue measure restricted to

the interval [0, ∞]. Then, Po
(
m∩R+

)
is a homogeneous Poisson process with intensity 1. This is

normally considered a temporal model, where the elements in R+ are considered as times where
certain events happen.

Example 3 (Spatio-temporal Poisson process). If Po(µ) is a Poisson point process with points
in space, then Po

(
µ × m∩[0,1]

)
can be viewed as a spatio-temporal point process, where any points

of the spatial process are created at a random time in [0, 1]. This process has the process Po(µ) as its
marginal distribution.

Formally, one may consider the spatio-temporal Poisson process Po
(

µ × m∩[0,∞]

)
where

points continue to be created. An instance of such a process would have infinitely many points, so it
cannot be simulated. A simulation of a spatio-temporal process can be found in Figure 1.

Figure 1. Simulation for some point processes. The black points are points in an instance of a Poisson
point process on [0, 1] distributed according to a uniform distribution. The red point are point in an
instance of a spatio-temporal process, where one has assigned a random time in [0, 1] to each of the
black points. The green triangles illustrate a continuation of the same process from time 1 to time 3.
One cannot simulate the whole spatio-temporal with time in [0, ∞] because the expected number of
points is infinite.

2.5. Measures and Kernels Associated with Statistical Models

Let (B,G) be a measurable space that represents the possible outcomes. Further, let
(Θ,F ) be a measurable space that represents possible values of a parameter of a statistical
model. A statistical model is given by a Markov kernel θ → Pθ that assigns a probability
measure Pθ on (B,G) to each parameter θ ∈ Θ [33]. The goal of the statistician is to make
an inference on the unobserved value of θ based on an observed value b ∈ B.

Assume that our prior knowledge about the parameter θ is given by the measure µ

on (Θ,F ). This leads to a joint measure on (Θ ×B, σ(F × G)). Following [26], the joint
measure will denote µ × Pθ . For A ∈ F and B ∈ G, we have a measurable function from
A → R, which is given by θ → Pθ(B). The joint measure µ × Pθ is defined by

(µ × Pθ)(A × B) =
∫

A
Pθ(B)dµθ. (6)

Let ν denote the marginal measure of µ × Pθ on B, i.e., ν is the restriction of µ × Pθ to the
sub-algebra of σ(F × G) consisting of sets of the form {θ} × B. If ν is a σ-finite measure,
then there exists a Markov kernel Qb from B to Θ, such that

(µ × Pθ)(A × B) =
∫

B
Qb(A)dνb, (7)

and we will write µ × Pθ = Qa × ν for short. Remark that, at this level, the existence of the
Markov kernel a → Qa is a purely formal construction.
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In information theory, a Markov kernel (Pa)a∈A is called an information channel with
input alphabet A and output alphabet B [34] (Chapter 8). In the branch of information theory
called channel coding, the input letters are controlled by the sender (Alice), but unknown
to the receiver (Bob). The goal of Bob is to make an inference about the letter a ∈ A sent by
Alice based on the letter b ∈ B received by Bob.

A Markov kernel can be used to model sequences of observations in B in two ways. In
statistics, a sequence of length n is modeled by (

⊗n
i=1 Pθ)θ∈Θ, which gives a Markov kernel

from Θ to Bn. In channel coding, a sequence of length n is modeled by (
⊗n

i=1 Pai )an
1∈Θn . In

channel coding, we get a Markov kernel from An to Bn.

2.6. Minimax Redundancy and Jeffreys’ Prior

Prior distributions play a major role in Bayesian statistics. We will provide exam-
ples of how prior distributions are calculated using ideas from information theory. The
information-theoretic approach to calculating prior distributions will also lead to a mo-
tivation using Jeffreys’ prior. The examples we discuss in this section will be used in
subsequent sections. A detailed discussion about different methods for the calculation of
prior distributions is beyond the topic of this article. We will refer to [35] for a review of the
subject, including a long list of references.

One method for calculating a prior distribution for a statistical model θ → Pθ is to
consider the model as an information channel. Here, we will only mention some of the basic
ideas briefly. The reader may consult [36] or [37] for a more detailed exposition. Assume for
simplicity that B is a finite set. If data is distributed according to Pθ , then the code that will
give the shortest mean code-length uses a code-word of length proportional to − log(Pθ(b))
when the letter b is encoded. Optimal coding requires that θ is known. If θ is not known
and the data is coded as if the distribution was given by the probability measure P, then
the code-length of the code-word corresponding to the letter b is − log(P(b)). If the letter
is b, the redundancy of coding as if the distribution was given by P when it is actually Pθ is
defined as the difference in code-length., i.e.,

log
(

Pθ(b)
P(b)

)
. (8)

The mean value of the redundancy (8) is given by the Kullback–Leibler divergence is
defined by

D(Pθ∥P) =
∫

ln
(

dPθ

dP

)
dPθ . (9)

The Kullback–Leibler divergence quantifies redundancy, i.e., the mean number of bits one
can save by coding according to the true distribution Pθ rather than coding as if the data
were distributed according to P. The minimax redundancy is given by

min
P

max
θ

D(Pθ∥P) (10)

where the minimum in Equation (10) takes over all probability measures P on B. Coding
according to the distribution P that minimizes the maximal redundancy is optimal, in the
sense that it leads to the shortest description of data compared with what could have been
achieved knowing the true distribution Pθ .

The capacity of the channel θ → Pθ is the maximal transmission rate, which is the
maximal mutual information between input and output [34] (Chap. 8). According to
the Gallager–Ryabko Theorem [38], the maximal transmission rate equals the minimax
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redundancy. If P∗ is the distribution that achieves the minimum in Equation (10), then a
capacity-achieving input distribution is the same as a probability measure Q, such that

P∗ =
∫

Θ
Pθ dQθ. (11)

The input distribution Q is the optimal prior distribution if we want to minimize the
maximal redundancy.

Example 4 (The binary erasure channel). The binary erasure channel has an input alphabet
A = {a, b} and an output alphabet B = {a, b, e}. A Markov kernel x → Px is given by

Pa(a) = α,

Pa(b) = 0,

Pa(e) = 1 − α,

Pb(a) = 0,

Pb(b) = α,

Pb(e) = 1 − α.

(12)

The output letter e represents an erasure of the input letter. The capacity achieving input distribution
is the uniform distribution on the input alphabet A. See [34] (Subsec. 8.1.5) for a detailed discussion
of the binary erasure channel.

Example 5 (The binomial model). The binomial distributions p → b(n, p) form a statistical
model with point probabilities (n

x)px(1 − p)n−x. In this case, there is no unique capacity-achieving
distribution if the parameter space is Θ = [0, 1]. If we restrict the parameter space to the set of
possible maximum likelihood estimates {0, 1/n, 2/n, . . . , 1}, there is a unique capacity-achieving
distribution that can be used as a prior distribution on Θ. For small values of n, the exact optimal
distribution can be calculated. If, for instance n = 2, the optimal distribution on {0, 1/2, 1} is
{8/17, 1/17, 8/17}. In general, no closed formula for the capacity-achieving distribution exists, but it
can be approximated using an iterative algorithm (see [36] (Sec. 5.2) and [39]).

Kullback–Leibler divergence given by Equation (9) equals the Rényi divergence of
order 1. If we use the Rényi divergence of order ∞ [40] (Thm. 6)

D∞(Pθ∥P) = ln sup
B

Pθ(B)
P(B)

(13)

instead of Kullback–Leibler divergence, then we get the regret, which reveals how many bits
can be saved by coding with respect to P rather than coding according the model Q for the
data that is least favorable without any assumption on how the data sequence is generated.
From a statistical perspective, an analysis based on regret rather than redundancy is
more conservative.
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Example 6 (The binomial model). The distribution that achieves minimax regret can be calculated
as the normalized maximum likelihood (NML) distribution. It has point probabilities

PNML(X = 0) =
P0(X = 0)

P0(X = 0) + P1/2(X = 1) + P1(X = 2)
=

4
9

,

PNML(X = 1) =
P1/2(X = 1)

P0(X = 0) + P1/2(X = 1) + P1(X = 2)
=

1
9

,

PNML(X = 2) =
P1(X = 2)

P0(X = 0) + P1/2(X = 1) + P1(X = 2)
=

4
9

.

(14)

This corresponds to the prior (3/10, 4/10, 3/10) on the parameters {0, 1/2, 1} ⊆ [0, 1].

As demonstrated in Examples 5 and 6, finding a prior using minimax redundancy or
minimax regret will, in general, lead to different results, but for long data sequences, the
distributions that achieve minimax redundancy and minimax regret, respectively, can both
be approximated by Jeffreys’ prior [37] (Sec. 8.2). Thus, Jeffreys’ prior can be used as an
approximation of the prior that is optimal in the sense of achieving minimax redundancy
or minimax regret.

Let (Pθ)θ∈Θ denote a statistical model and assume that dPθ
dP0

(x) = f (x, θ) for some

dominating measure P0. Assume further that Θ is an open subset of Rd, and that θ → f (x, θ)

is twice differentiable. Note that this excludes statistical models where Θ is a discrete set.
The Fisher information matrix is given by

[I(θ)]i,j = −E

[
∂2

∂θi∂θj
ln( f (X; θ))|θ

]
. (15)

Jeffreys’ prior is defined as the distribution on Θ with density

(det(I(θ)))1/2. (16)

One should note that there are other reasons for choosing Jeffreys’ prior than the ones
based on information theory. For instance, except for a constant factor, Jeffreys’ prior does
not depend on parametrization [41,42].

Example 7 (The binomial model). For the binomial model, we have

− d2

dp2 ln
((

n
x

)
px(1 − p)n−x

)
=

x
p2 +

n − x

(1 − p)2 . (17)

The Fisher information equals the mean value of (17):

I(p) =
np
p2 +

n − np

(1 − p)2 =
n

p(1 − p)
. (18)

Jeffreys’ prior has density proportional to

1

(p(1 − p))1/2
. (19)

In this case, Jeffreys’ prior has finite mass so that it can be normalized. The normalized Jeffreys’ prior
is a beta distribution with parameters (1/2, 1/2). The posterior distribution of p, if x successes and
n − x failures have been observed, is a beta distribution with parameters (x + 1/2, n − x + 1/2).
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Example 8 (The exponential model). For λ > 0, the exponential distribution Expo(λ)
has density:

exp
(
− x

λ

)
λ

, x > 0. (20)

We have

− d2

dλ2 ln

(
exp

(
− x

λ

)
λ

)
= − 2

λ2
exp

(
− x

λ

)
λ

=
2x
λ3 − 1

λ2 .

(21)

Hence, the Fisher information is given by

I(λ) = λ−2, (22)

and Jeffreys’ prior has density λ−1. In this case, Jeffreys’ prior is improper, and it cannot be
normalized. This is related to the fact that the statistical model has infinite channel capacity. Jeffreys’
prior is also optimal in an information-theoretic sense without relying on any approximation
argument involving long sequences [43,44].

With this prior measure, the joint measure has density exp(−x/λ)
λ2 , x, λ > 0. The marginal

measure of X is ∫ ∞

0

exp(−x/λ)

λ2 dλ =
1
x

. (23)

The conditional distribution of the parameter Λ, given X = x, is an inverse gamma distribution
with density x exp(−x/λ)

λ2 , shape parameter 1, and scale parameter x.

Example 9 (The Poisson model). For the Poisson model X ∼ Po(λ), λ ∈ [0, ∞] with P(j) =
λj

j! exp(−λ), we have

− d2

dλ2 ln
(

λj

j!
exp(−λ)

)
=

j
λ2 . (24)

Therefore, the Fisher information equals

I(λ) =
1
λ

. (25)

Therefore, Jeffreys’ prior has density λ−1/2 on [0, ∞], which cannot be normalized.
The marginal measure on X is Γ(j+1/2)

j! . The conditional distribution of the parameter as a
random variable Λ given X = j has the following density:

λj−1/2

Γ(j + 1/2)
exp(−λ) (26)

where the parameter Λ is gamma distributed with scale parameter 1 and shape parameter j + 1/2.

2.7. Haar Measures

Many statistical models have symmetries, and these can be useful in determining
prior distributions. Let (Pθ)θ∈Θ denote a statistical model with outcome space B. Let G be
a group that acts on both Θ and B via Φg : Θ → θ and Ψg : B → B. The group action is
said to be covariant if

Ψg(Pθ) = PΦg(θ). (27)

The notion of covariance was introduced by A. Holevo in the context of quantum infor-
mation theory [45]. Group actions on statistical models have also been discussed in the
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statistical literature (see [33] (p. 1241)) and references in that paper), but the idea is less
used and developed in statistics than in quantum information theory. Equation (27) can be
expressed in terms of the following commutative diagram

Θ
Φg−−−−→ Θ

P
y P

y
M+(B)

M+(Ψg)−−−−−→ M+(B)

(28)

If a group has a covariant action on a statistical model, then, one may argue, the prior
should be invariant under the action of the group.

Theorem 1 (Existence of Haar measures [46,47]). Let (G, ·) denote a locally compact group.
Then, there exists a measure µ that is invariant under left actions, i.e., for any measurable set
A ⊆ G and any g ∈ G we have µ(g · A) = µ(A). The measure µ is unique except for a
multiplicative constant.

A left invariant measure is called a left Haar measure. The left Haar measure is finite if,
and only if, the group is compact. A locally compact group also has a right Haar measure
that may be different from the left Haar measures, but if the group acts on a set X from the
left, we are mainly interested in the left Haar measures. On abelian groups, discrete groups,
and compact groups, all left Haar measures are also right Haar measures. For such groups,
we do not need to distinguish between left Haar measures and right Haar measures and
just talk about Haar measures [48].

If a group has a left action on the parameter space, and the action is transitive, then
the action induces a measure on the parameter space, which is invariant under actions of
the group. This measure will be the uniquely determined left invariant measure, except for
a multiplicative constant.

Example 10 (Binary erasure channel). For the binary erasure channel, there is a symmetry
between the letters a and b, and this symmetry holds both for the input alphabet A = {a, b} and for
the output alphabet B = {a, b, e}. Measures that put equal weight on a and b are the only measures
on A that are invariant under the symmetry. The symmetry does not depend on whether we use
minimax redundancy or minimax regret as a criterion for selecting the prior, so these and many other
criteria for selecting a prior all lead to the same prior except perhaps for a multiplicative constant.

If the outcome space is discrete and the parameter space is continuous, then a covariant
action of a symmetry group cannot be transitive on the parameter space.

Example 11 (The Binomial model). In the binomial model, there is a symmetry between success
and failure corresponding to the mapping p → 1− p in the parameter space. The prior distributions
in Examples 5–7 are all symmetric, but the action of the symmetry group is not transitive, so
symmetry alone does not determine the prior.

Example 12 (The exponential model). For the exponential model λ → Expo(λ), the group of
positive numbers with multiplication (R+, ·) has a covariant action on the statistical model via
scaling x → s · x. A measure with density λ−1 with respect to the Lebesgue measure is a Haar
measure on (R+, ·). Therefore, Jeffreys’ prior must be proportional to the Haar measure.

If a group is locally compact and σ-compact, then any left Haar measure is s-finite, and
there exists a Poisson point process with the Haar measure as the expectation measure. This
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gives a probabilistic interpretation that will allow for a much wider use of Haar measures
in probability theory.

3. Results
Many textbooks handle improper prior distributions by restricting the parameter

space. In this section, we will utilize expectation theory to provide a more satisfactory
approach to handling improper prior distributions.

3.1. Normalization and Conditioning for Expectation Measures

Empirical measures can be added, restrictions can be taken, and induced measures
can be found. Using the same formulas, these operations can be performed on expec-
tation measures, but we are not only interested in the formulas but also in probabilistic
interpretations.

The norm of a (positive) measure ν is defined by ∥ν∥ = ν(A), and the normalized
measure ν/∥ν∥ has an interpretation as a probability measure, which is equivalent to a
one-point process.

The following proposition gives a probabilistic interpretation of restriction for expecta-
tion measures via the same operations applied to empirical measures. A simple calculation
proves the proposition.

Proposition 1. Let (Ω,F , P) be a probability space. Let ω → µω denote a point process with
expectation measure µ and with points in B. Let B be a subset of B. Then

µ∩B =
∫

µω∩B dPω. (29)

Normalized measures are usually called probability measures, and the next theorem
gives a probabilistic interpretation of the normalized measure µ/∥µ∥ by specifying an
event that has probability equal to µ/∥µ∥.

Theorem 2 ([4] (Thm. 10)). Let B be a measurable subset of B. Let µ be a non-trivial finite
measure on B. If P denotes a probability measure on Ω and ω → µω is a Poisson point process with
expectation measure µ, then

µ(B)
∥µ∥ =

∫
Ω

µω(B)
∥µω∥

dP(ω|0 < ∥µω∥ < ∞). (30)

Proposition 1 holds for all point processes, but in Theorem 2, it is required that the
point process is a Poisson point process. An example of a point process where Equation (30)
does not hold can be found in [4] (Ex. 5).

Theorem 2 states that µ(B)/∥µ∥ is the probability of observing a point in B, which has
an interpretation that involves two steps.

1. Observe a multiset of points as an instance of a point process.
2. Select a random point from the observed multiset.

By replacing the point process Po(µ) by a spatio-temporal point process we can replace
this two-step interpretation by a one-step interpretation. The one-step interpretation will
be formulated as a theorem that has a much simpler proof than the proof of Theorem 2
given in [4], and the proof of the new theorem will not rely on the proof of Theorem 2.

Consider the point process Po(µ) on B. From this process, we construct a spatio-
temporal process. To each point in an instance of the point process Po(µ), we randomly
select a number in [0, 1] according to a uniform distribution. The number selected for a
specific point is considered as the time at which the point is created. This gives the process
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Po
(

µ × m∩[0,1]

)
. Instead of choosing a random point from the instance of the original point

process Po(µ), we choose the first point in the spatio-temporal point process.
For the process Po

(
µ × m∩[0,1]

)
, there is a risk that no point is created before time

α = 1. To avoid this problem, we replace the process Po
(

µ × m∩[0,1]

)
by the process

Po
(

µ × m∩[0,∞]

)
with points in B× [0, ∞]. Let T be the time at which the first point is

created. Then, T is a stopping time. The distribution of the point created at time T will
be µ/∥µ∥.

We can summarize this result in the following theorem:

Theorem 3. Let B be a measurable subset of B. Let µ be a non-trivial finite measure on B. Let
P denote a probability measure on Ω and let ω → νω be a spatio-temporal Poisson process with
expectation measure µ × m∩R+

on B×R+. For an instance νω of the process, let (bω, tω) denote
the point (b, t) in the instance, for which t has the smallest value. Then

µ(B)
∥µ∥ = P(bω ∈ B). (31)

Proof. Let S denote the waiting time until the first point in B has been observed, and let
T denote the waiting time until the first point in ∁B has been observed. The S has an
exponential distribution with mean µ(B)−1, and T has an exponential distribution with
mean µ

(
∁B
)−1. We have

P(bω ∈ B) = P(S < T)

=
∫ ∞

0

(∫ ∞

s
exp

(
−tµ

(
∁B
))

µ
(
∁B
)

dt
)

exp(−sµ(B))µ(B)ds

=
∫ ∞

0
exp

(
−sµ

(
∁B
))

exp(−sµ(B))µ(B)ds

= µ(B)
∫ ∞

0
exp

(
−s
(
µ(B) + µ

(
∁B
)))

ds

=
µ(B)

µ(B) + µ
(
∁B
) ,

(32)

which proves the theorem because µ(B) + µ
(
∁B
)
= ∥µ∥.

A simulation illustrating the theorem is given in Figure 2.

Figure 2. Simulation of a spatio-temporal based on a measure proportional to the beta distribution
with α = 1/2 and β = 1/2. A red circle marks the first point in the instance. The process is stopped at
time equal to 3, but it could have been stopped at any time after the first point has been observed.
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3.2. Conditioning for Improrer Prior Measures

Here, we shall look at how the results of Section 3.1 will allow us to give an exact
interpretation of conditional probabilities with respect to an improper prior distribution. First,
we note that the Poisson interpretation of normalized expectation measures carries over to
conditional measures.

Theorem 4. Let B be a measurable subset of B. Let µ be an s-finite measure on B. Let P
denote a probability measure on Ω and let ω → νω be a spatio-temporal Poisson process with
expectation measure µ × m∩R+

on B×R+. Assume that A is a measurable subset of B such that
0 < µ(A) < ∞. For an instance νω of the process let (bω, tω) denote the point (b, t) ∈ A in the
instance for which t has the smallest value. Then

µ(B|A) = P(bω ∈ B). (33)

Proof. A conditional measure is the normalization of an expectation measure restricted to
a subset.

µ(B|A) =
µ(B ∩ A)

µ(A)
=

µ∩A(B)
∥µ∩A∥

. (34)

The corollary is proved by applying Theorem 2 to the measure µ∩A.

Theorem 4 is illustrated in Figure 3.

Figure 3. Simulation of a spatio-temporal process based on an un-normalized measure with density
proportional to x−1/2. We condition on x ≤ (indicated by the red line), which has finite measure. A
red circle marks the first point in the instance below the red line. The process was stopped at time
equal to 3, but it could have been stopped at any time after the marked point had been observed.
Note that if we do not restrict to x ≤ 1, then the marked point is not the first point. Only values of
x ≤ 4 were included in this simulation, but all points with x > 1 are irrelevant, for which point we
should mark as the first point satisfying x ≤ 1.
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With this result at hand, we get an interpretation of posterior distributions calculated
based on improper prior distributions.

Example 13 (The binary erasure channel). Consider the binary erasure channel discussed in
Example 4. The prior measure µ gives the expected number of input letters from the alphabet
A = {a, b}. We run a spatio-temporal Poisson process on A. This will give a stream of input letters
at a rate of ∥µ∥ per time unit. Using the Markov kernel x → Px, we get a spatio-temporal process
on A×B.

For any instance of this process, we look at the first output letter that equals e. For this first
instance, we look at the corresponding input letter. The probability of the input letter a is 1/2, and,
similarly, the probability of the input letter b is 1/2. Thus, the conditional probability distribution
over input letters, given the output letter e, equals the probability that an instance with output letter
e has a certain input letter.

Example 14 (The binomial model). In this example, the parameter space is the [0, 1]. If we
fix the number n of output letters generated by a single value of the parameter and calculate the
prior distribution that maximizes the transmission rate or, equivalently, minimizes the maximal
redundancy, then the prior is concentrated on a finite subset of the parameter space. The prior will
have a finite total mass, and it can be normalized to a probability measure. If the measure is not
normalized, we will get a probabilistic interpretation by running a spatio-temporal process in exactly
the same way as in the previous example.

If we use Jeffreys’ prior, which is a good approximation to the case where n is large, then it is
still possible to normalize the prior measure. Normalizing the measure corresponds to selecting the
first point in a point process. The posterior distribution of the parameter given the output letters
equals the distribution of the parameter, given that the first point (input value of the parameter) in
the spatio-temporal process leads to these output letters.

Example 15 (The Poisson model). For this model, Jeffreys’ prior cannot be normalized. An in-
stance of the point process with Jeffreys’ prior as expectation measure has infinitely many points with
probability 1. The same is true for the joint distribution of Λ and X. Therefore, the corresponding
spatio-temporal process has no first point. This may appear as a problem, but if the joint distribution
is restricted to X = j then the measure is finite and an instance of the corresponding spatio-temporal
process will have a first point. The distribution of this first point will be the conditional distribution
of Λ given X = j, i.e., a gamma distribution with scale parameter 1 and shape parameter j + 1/2.

In Example 15 one may object that it is not realistic to observe an instance of a point
process with infinitely many points. For instance, a computer simulation will never be able
to output infinitely many points. Although it is not possible to observe infinitely many
points, this is irrelevant for our result because we are only interested in what happens
under the condition X = j. What happens outside this event is irrelevant.

Example 16 (The exponential model). It is not possible to normalize Jeffreys’ prior for the family
of exponential distributions. Therefore, one cannot run the corresponding spatio-temporal process
and take the first point because in any small time interval, there will be infinitely many points. If,
instead, we have a certain interval for the output variable with finite mass, then we can take the
first point in the process that lies in this interval. The conditional distribution of the parameter is a
mixture of conditional distributions given the numbers in the interval weighted and normalized
according to density 1

x on the interval.
If the interval is short, then the conditional distribution given any point in the interval will

be approximately constant, and conditioning on the interval will be approximately the same as
conditioning on a point.
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In the exponential model, one has to use some approximation argument if one has to
condition with respect to the random variable having an exact value rather than being an
element of an interval. This problem has nothing to do with the prior being proper or not.
We will run into this problem for any continuous model, even if the parameter space is a
finite set.

4. Discussion
We have applied expectation theory to give a probabilistic interpretation of improper

prior distributions via the Poisson interpretation. This led to a probabilistic interpretation
of conditioning with respect to improper prior distributions. With a probabilistic interpre-
tation of improper prior measures and conditioning in place, one should go through all the
arguments in favor of using specific methods for calculating prior distributions. We have
briefly discussed Haar measures and Jeffreys’ prior, but a careful review of all the methods
is needed, which is beyond the scope of this paper.

In this paper, a statistical model was identified with a Markov kernel, as is usually
done in statistics. From the point of view of expectation theory, it would be more natural to
identify statistical models as s-finite kernels rather than Markov kernels. This would not
make much of a difference regarding the handling of improper distributions with respect
to conditioning. The idea of basing statistics on more general kernels than Markov kernels
has also been promoted recently by Taraldsen et al. [49].

In [50,51], it was proven that for one-dimensional exponential families, minimax
redundancy is finite if, and only if, minimax regret is finite. It was also demonstrated that
a similar result does not hold for three-dimensional exponential families. There are still
no results that relate the finiteness of minimax redundancy or minimax regret with the
finiteness of Jeffreys’ prior, and there are still a lot of open questions regarding improper
prior distributions.
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