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Abstract: Correlated binary data in 2 × 2 tables have been analyzed from both the frequentist and
Bayesian perspectives, but a fully Bayesian hierarchical model has not yet been proposed. This is
a commonly used model for correlated proportions when considering, for example, a diagnostic
test performance where subjects with negative results are tested a second time. We consider a new
hierarchical Bayesian model for the parameters resulting from a 2 × 2 table with a structural zero. We
investigate the performance of the hierarchical model via simulation. We then illustrate the usefulness
of the model by showing how a set of historical studies can be used to build a predictive distribution
for a new study that can be used as a prior distribution for both the risk ratio and marginal probability
of a positive test. We then show how the prior based on historical 2 × 2 tables can be used to power a
future study that accounts for pre-experimental uncertainty. High-quality prior information can lead
to better decision-making by improving precision in estimation and by providing realistic numbers
to power studies.

Keywords: meta-analytic prior; structural-zero; Bayesian

1. Introduction

In some experiment designs with a binary response, a second measurement is taken for
some subjects, but not all. For example, Toyota et al. (1999) [1] consider data on a screening
test for tuberculosis where only those testing disease-free on a first test are given a second
test. Johnson and May (1995) [2] consider a common problem in medical studies where
infected individuals are given a treatment and tested for improvement. In this situation,
only those patients where no improvement is observed advance to a second phase and
are again checked for improvement. Data from both of these examples lead to 2 × 2 tables
where one cell is fixed in advance to be 0. Table 1 shows a table of this form. In the table, the
cell counts are denoted nij to denote rows and columns with corresponding cell probability
pij. Subscripts i and j represent meeting the passing condition (=1) or not (=2) in the first
and second phases, respectively. The passing condition could be a positive or negative
test result (or framed as a failure or a success), depending on the problem context. In the
study by Johnson and May (1995) [2], it is those who test negative for improvement who
are passed to the next phase and administered yet another treatment. In contrast, some
experiments involve passing only those testing positive to the second phase. Regardless
of the framing, n11 represents the count of observations meeting the passing condition in
both phases, n12 represents those passing in the first phase but not meeting the passing
condition in the second, and n22 represents the count of individuals who do not pass in the
first phase and thus do not pass the second phase by default.

For a single table, the typical quantities of interest are the risk difference and risk ratio,
which are often parameterized in terms of the [1, 1] cell probability p11 and the marginal
probability τ = p11 + p12. The risk difference is defined to be d = τ − p11/τ, that is,
the difference between the probability of a negative response on the initial test and the
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conditional probability of a negative response on the second test given the initial negative
response. The risk ratio is RR = p11/τ2, the ratio of the probability of passing the second
phase conditional on passing the first phase with the probability of passing the first phase.

There has been considerable interest in various approaches to estimate and perform
hypothesis tests about the risk difference and risk ratio for a single 2 × 2 table with a
structural zero. An example from veterinary medicine originally by Agresti (2012) [3] and
recently analyzed by Lu et al. (2022) [4] tests a sample of calves for a primary pneumonia
infection and checked again for a secondary infection. Calves who tested negative for the
primary infection cannot develop the secondary infection, resulting in a natural structural
zero. Using this example as a motivation, Lu et al. (2022) [4] consider various confidence
interval procedures for the risk difference. Wang et al. (2024) [5] consider an exact interval
for the risk ratio and compare their new interval to both frequentist and Bayesian intervals.
They apply their new interval to the two-step tuberculosis data where only negative subjects
are tested twice.

Table 1. Data and parameters for 2 × 2 table with structural zero.

Phase II
Phase I + - Total

+ n11, p11 n12, p12 n1 = n11 + n12, τ = p11 + p12
- - n22, p22 n2 = n22, p2 = p22

Total n = n1 + n2, 1 = τ + p2

Though considerable work has been completed on estimating the parameters of the
model for a single population, less work has been completed when multiple sources of
information are available. Johnson and May (1995) [2] provide a frequentist approach to
combining multiple tables, and Tang and Jiang (2011) [6] extend the model for a frequentist
test of equality of risk ratios across tables, but to date, no Bayesian approach has looked
at multiple tables. A reasonable approach to combine 2 × 2 tables from multiple trials,
sites, etc., is to employ a Bayesian hierarchical model (Gelman et al.) [7]. The Bayesian
hierarchical model enables a straightforward way to account for heterogeneity between the
included studies and provides an operational approach to incorporate prior information
and estimate numerous quantities simultaneously. The pooling of information across
studies can provide more efficient estimation of all the study level risk ratios or risk
differences. Also, the hierarchical model can easily facilitate the ranking and selection of
sites by the effectiveness of a treatment or risk of infection.

The hierarchical model we propose here is similar in form to a random effects meta-
analysis. Several authors, primarily in pharmaceutical applications, have discussed meth-
ods for using historical data to derive priors for a new study by predicting the parameter
values based on a meta-analysis of historical studies. Sutton et al. (2007) [8] consider a
hybrid Bayesian-frequentist approach to power a future study using a meta-analysis of
historical studies to help determine the effect size. These priors are sometimes referred to
as meta-analytic predictive (MAP) priors. Neuenschwander et al. (2010) [9] provide an
early example. Weber et al. (2021) [10] provide a user-friendly R package to build MAP
priors based on historical studies for experiments with binomial, Poisson, and normally
distributed outcomes. These priors can be used as informative priors for new studies but
can also be used as part of a sample size determination procedure. Recent examples include
Du and Wang (2016) [11] and Qi et al. (2023) [12]. Yang et al. (2016) [13] and Fan et al.
(2024) [14] focus especially on the value of meta-analysis in the case where the focal event
is rare, such as the adverse effects of proposed interventions.

In this paper, we propose a hierarchical model for a series of 2 × 2 tables with a
structural zero. The main model we consider is a Bayesian version of Tang and Jiang
(2006) [6] where interest is in the risk ratio. The borrowing of strength across the studies
improves inferences about the individual study parameters while also allowing for a variety
of interesting statistical inference procedures. We apply the meta-analytic predictive prior
method of Neuenschwander et al. (2010) [9] to develop a simulation-based induced prior
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for the parameters of a new study. We illustrate how this prior can be used as a prior for
data analysis and to determine the sample size required for a future study that achieves the
desired power or probability of a successful trial. We propose an alternative hierarchical
model in Section 5 for the case where the risk difference is of interest.

2. Bayesian Model

In this section, we describe the hierarchical Bayesian model we will use for inference
for combining 2 × 2 tables with structural zeros. Suppose we observe data from K sites or
studies yielding 2 × 2 tables in the form of Table 1. We assume the parameters of the tables
are exchangeable. The hierarchical model we propose is the following. For each study, we
have count vector zi = (n11, n12, n22), and

zi ∼ trinomial(Ni, pi) (1)

where Ni is the sample size of the ith study and pi = (p11, p12, p22). For a single study, this
distribution has the likelihood

L(p11i, p12i | zi) ∝ pn11i
11i pn12i

12i (1 − p11i − p12i)
Ni−n11i−n12i (2)

We reparameterize model (1), similar to Tang and Jiang (2011) [6], in terms of the
nuisance parameter τi and risk ratio RRi. The risk ratio is defined on the positive real line
and τi is confined between 0 and min(1, 1/RRi). The resulting likelihood is

L(RRi, τi) ∝
K

∏
i=1

(RRiτ
2
i )

n11i (τi − RRiτ
2
i )

n12i (1 − τi)
Ni−n11i−n12i . (3)

In the most general case, we consider a hierarchical model on the log risk ratios and
model the τi’s with a hierarchical truncated beta distribution. For the risk ratios, we have

Ψi = log(RRi) ∼ N (µΨ, σ2
Ψ). (4)

Modeling these study-specific parameters with a normal distribution with shared
hyper-parameters allows for “borrowing” or “pooling” of strength when estimating each
of the study-level effects and can be particularly beneficial when the sample sizes are small.
In general, we would imagine little information would be available on the parameters µΨ
and σΨ. Reasonable weakly informative priors for the means would be µΨ ∼ N (0, ν2

Ψ),
where ν2

Ψ is a suitably chosen large number such as 100. Some controversy exists on what a
suitable “non-informative” prior for the variance parameter is in hierarchical models such
as the one we propose here. Historically, an inverse-gamma(ϵ, ϵ) with ϵ often chosen to be
0.001 has commonly been used. Gelman (2013) [7] has shown that this parameterization
has many weaknesses, especially in the case of a small number of strata. Gelman (2013) [7]
determined that the uniform distribution, half normal, and half t distributions as a prior
for the standard deviation all outperform the inverse gamma for the variance. We provide
code for both the cases of a uniform prior or a half-normal prior for the standard deviation
σΨ. That is, either σ ∼ Uniform(0, B) or σ ∼ HN (σ0), where B is the upper bound of the
uniform prior, and σ0 is the scale parameter of the half-normal.

The model for the τ’s requires careful thought due to the restriction that they are
bounded by the minimum of 1 and 1/RRi. One common hierarchical model for probabilities
is to assume

ϕi = logit(τ) ∼ N (µϕ, σ2
ϕ). (5)

However, given the upper bound problem, we chose instead to remain on the prob-
ability scale. For this version of the hierarchical model, conditional on RRi, the τ’s are
assumed to have a truncated beta distribution,

τ|RRi ∼ beta(a, b)I(0, min(1, 1/RRi)) (6)
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We reparameterize the beta in terms of µτ = a
a+b and ρτ = a + b. The grand mean,

µτ , is assigned a beta(c, d) prior, and ρτ is given a gamma(e, f ) prior. The parameters of
these distributions are generally selected to be weakly informative. The joint posterior
distribution of all the parameters is the product of the likelihood in (3), the normal dis-
tributions for the log risk ratio in (4), the beta distributions for the τi’s, and the priors for
the parameters at the top of the hierarchy. There is no apparent closed form for any of the
parameters of this model. We use the software JAGS version 4.3.2 to perform inference.
The code is available at https://github.com/will-stamey1/metaanalytic_for_2by2s. An
alternative formulation of the hierarchical model that is more convenient for some scenarios
is provided in Section 5.

Meta Analytic-Based Prior

The hierarchical model described above can be used to perform inferences on the
parameters of interest but can also be used to determine a prior for a new study. Our
framework is similar to that of Sutton et al. (2007) [8], Neuenschwander et al. (2010) [9],
and Qi et al. (2023) [12]. As mentioned previously, we assume the parameters in the
different studies to be exchangeable. This calls for careful selection of the included studies.

To determine the meta-analytic prior, we augment the likelihood and priors of the
historical studies described above with a new study with yet-to-be-observed data treated
as missing. This new study with parameters RR∗ and τ∗ is incorporated into the MCMC
scheme. The model, based on the borrowed information from the historical studies, pro-
vides what are essentially prior-predictive distributions for both the study-level parameters
and the unobserved data of the new study.

In order to obtain the predictive distribution for the parameters of the new study, we
add the following trinomial distribution to the likelihood of the hierarchical model:

z∗ ∼ trinomial(N∗, p∗) (7)

where p∗ relates to parameters τ∗ and RR∗ following the reparameterization of the hierar-
chical model before.

The predictive distribution for the parameters can be used as a prior distribution for
the parameters of the new study. Weber et al. [10] use a mixture of parametric distributions
to approximate the prior with the R package RBesT. The Monte Carlo samples from the
meta-analysis can also be used as a numerical approximation to the prior. The prior
predictive distribution of the data for the new study can be used to simulate likely values
for the data in order to either power a new study or look at the probability of a successful
trial for a specific sample size.

3. Simulation Study

We conducted a simulation to investigate both the performance of the hierarchical
model and the impact of between-trial variability on the informativeness of the resulting
prior. We expand on the number of groups but use the data of Tang and Jiang (2011) [6] to
determine the parameter values for our first simulation. The dataset they examine is for a
two-phase treatment regimen in which a sample of patients first receives an initial treatment.
Those who do not show improvement then proceed to a follow-up treatment. The parameter
of interest is the risk ratio. Values less than 1 indicate that the second regimen leads to an
improvement. In the work of Tang and Jiang [6], the groups are based on the severity of
disease. This would likely violate the exchangeabilty assumption of our model, but the
example works as an illustration. They find the τs’ center approximately around 0.4 and
the risk ratios’ center approximately at 0.7. Therefore, for our simulation, we chose µτ = 0.4,
ρτ = 20, and µΨ = log(0.7). We also looked at the case where the risk ratio is centered above
one to make sure performance was not impacted in that case.

https://github.com/will-stamey1/metaanalytic_for_2by2s
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We are interested in the impact of the between-study variability of the risk ratios, so
we consider two values of σΨ, 0.075 and 0.15. Also of interest is the effect of the amount
of information. To observe this, we vary the number of studies (5, 25) and the number of
observations in each study. The sample sizes for each study are randomly generated from
either (50, 100) or (100, 200). For these 16 combinations, we generated 1000 datasets for
each combination. For each dataset, the values at the top of the hierarchy remain the same,
but, the study level τi’s and RRi’s vary. Therefore, for the simulation, we keep track of
the average posterior mean, standard deviation, and coverage of 95% intervals for µϕ, σϕ,
µτ , and ρτ . For the study-level parameters, we keep track of the total average bias for all
the τi’s and RRi and the overall coverage of the 95% intervals. The total average bias is
calculated as

Average Percent Bias =
1

B · K

B

∑
1

K

∑
i=1

(
τ̂i − τi

τi

)
× 100 (8)

and

Average Percent Bias =
1

B · K

B

∑
1

K

∑
i=1

(
R̂Ri − RRi

RRi

)
× 100 (9)

where τ̂1i is the posterior mean of τi, and R̂Ri is the posterior mean for RRi.
The models converged successfully, with simulation runs consistently showing Gelman–

Rubin statistics equal too or extremely close to 1 for all parameters. In Table 2, we provide
the bias, confidence interval width, and coverage of 95% intervals for the parameters at
the highest level of the risk ratio. In all cases, the coverage is at or above nominal, and
the intervals become more narrow as both the sample size and number of studies increase.
The estimate for the between-trial standard deviation exhibits substantial bias for most
parameter and sample size combinations. We considered both the half-normal and uniform
priors for the standard deviation, and in both cases, the posterior mean was significantly
higher than the true value. However, the coverage was still nominal and the bias did lessen
as the number of studies increased.

Table 2. Simulation results for µln(RR) and σln(RR).

µln(RR) σln(RR)

σ K N RR % Bias CI Len. Covrg. % Bias CI Len. Covrg.
0.075 5 ∼unif(100, 200) 0.7 6.779 0.751 0.997 245.446 0.745 0.976
0.075 5 ∼unif(50, 100) 0.7 13.136 0.986 0.994 336.613 0.841 0.968
0.075 25 ∼unif(100, 200) 0.7 1.85 0.209 0.961 42.579 0.242 0.98
0.075 25 ∼unif(50, 100) 0.7 3.873 0.3 0.977 99.01 0.351 0.969
0.15 5 ∼unif(100, 200) 0.7 6.082 0.806 0.99 95.032 0.766 0.963
0.15 5 ∼unif(50, 100) 0.7 14.55 1.014 0.988 131.355 0.849 0.988
0.15 25 ∼unif(100, 200) 0.7 0.866 0.237 0.954 5.859 0.284 0.97
0.15 25 ∼unif(50, 100) 0.7 2.465 0.317 0.957 21.12 0.384 0.975

0.075 5 ∼unif(100, 200) 1.2 2.147 0.693 0.997 217.951 0.706 0.977
0.075 5 ∼unif(50, 100) 1.2 −1.746 0.918 0.995 306.185 0.813 0.971
0.075 25 ∼unif(100, 200) 1.2 2.047 0.192 0.968 30.963 0.218 0.982
0.075 25 ∼unif(50, 100) 1.2 5.965 0.271 0.974 74.625 0.302 0.978
0.15 5 ∼unif(100, 200) 1.2 1.285 0.761 0.994 85.275 0.741 0.97
0.15 5 ∼unif(50, 100) 1.2 −5.67 0.961 0.994 121.687 0.825 0.965
0.15 25 ∼unif(100, 200) 1.2 −0.573 0.228 0.953 6.104 0.265 0.968
0.15 25 ∼unif(50, 100) 1.2 1.593 0.297 0.958 15.18 0.345 0.98

Table 3 provides the same results for the model for the marginal probability. Again,
coverage for both of the parameters was at or above nominal, and the bias decreased as the
sample size and number of studies increased.
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Table 4 provides results for the study-level parameters. These parameters changed
with each dataset, which is why we looked at the overall bias using Equations (8) and (9)
and the combined coverage. As can be seen, at the study level, the parameters are well
estimated with only moderate biases in the case of only five studies and smaller sample
sizes. The other combinations have relatively low bias and good coverage.

Finally, Table 5 provides the average of the predicted distributions for the parameters
of the new studies. As can be seen, the predictive distributions are centered approximately
at the mean of the population distribution, and the 95% interval widths decrease for
the larger study and sample size cases demonstrating that the method would provide
reasonable prior distributions based on these historical studies.

Table 3. Simulation results for µτ and ρτ .

µp ρτ

σ K N RR % Bias CI Len. Covrg. % Bias CI Len. Covrg.
0.075 5 ∼unif(100, 200) 0.7 2.577 0.249 0.985 −13.426 38.308 0.981
0.075 5 ∼unif(50, 100) 0.7 3.873 0.262 0.989 −15.567 38.684 0.982
0.075 25 ∼unif(100, 200) 0.7 0.472 0.095 0.959 0.23 23.548 0.966
0.075 25 ∼unif(50, 100) 0.7 0.242 0.099 0.973 2.852 26.574 0.97
0.15 5 ∼unif(100, 200) 0.7 2.746 0.251 0.991 −15.013 37.598 0.969
0.15 5 ∼unif(50, 100) 0.7 4.193 0.259 0.985 −13.742 39.473 0.989
0.15 25 ∼unif(100, 200) 0.7 0.689 0.095 0.954 0.157 23.599 0.965
0.15 25 ∼unif(50, 100) 0.7 0.881 0.1 0.961 1.495 26.311 0.972

0.075 5 ∼unif(100, 200) 1.2 4.216 0.262 0.992 −13.78 39.039 0.981
0.075 5 ∼unif(50, 100) 1.2 5.477 0.281 0.986 −15.86 39.649 0.994
0.075 25 ∼unif(100, 200) 1.2 1.042 0.103 0.948 0.83 24.897 0.965
0.075 25 ∼unif(50, 100) 1.2 2.055 0.116 0.957 2.36 28.298 0.979
0.15 5 ∼unif(100, 200) 1.2 3.641 0.264 0.99 −15.294 38.536 0.982
0.15 5 ∼unif(50, 100) 1.2 5.686 0.282 0.984 −16.821 39.31 0.989
0.15 25 ∼unif(100, 200) 1.2 0.554 0.104 0.963 0.268 25.368 0.973
0.15 25 ∼unif(50, 100) 1.2 1.257 0.117 0.965 1.031 28.325 0.971

Table 4. Simulation results for study-level parameters.

RRi τ

σ K N RR % Bias CI Len. Covrg. % Bias CI Len. Covrg.
0.075 5 ∼unif(100, 200) 0.7 0.857 0.543 0.978 0.43 0.145 0.956
0.075 5 ∼unif(50, 100) 0.7 2.13 0.77 0.98 1.193 0.199 0.96
0.075 25 ∼unif(100, 200) 0.7 0.39 0.321 0.975 0.794 0.137 0.952
0.075 25 ∼unif(50, 100) 0.7 0.641 0.461 0.988 1.543 0.185 0.953
0.15 5 ∼unif(100, 200) 0.7 1.554 0.562 0.962 0.222 0.145 0.957
0.15 5 ∼unif(50, 100) 0.7 2.303 0.776 0.972 1.167 0.2 0.961
0.15 25 ∼unif(100, 200) 0.7 1.602 0.397 0.941 0.874 0.139 0.949
0.15 25 ∼unif(50, 100) 0.7 2.231 0.516 0.962 1.551 0.187 0.951

0.075 5 ∼unif(100, 200) 1.2 3.496 0.866 0.98 0.436 0.138 0.957
0.075 5 ∼unif(50, 100) 1.2 5.438 1.243 0.976 0.46 0.191 0.96
0.075 25 ∼unif(100, 200) 1.2 1.327 0.507 0.972 0.709 0.127 0.952
0.075 25 ∼unif(50, 100) 1.2 2.721 0.709 0.982 1.456 0.174 0.958
0.15 5 ∼unif(100, 200) 1.2 3.339 0.925 0.962 0.345 0.139 0.953
0.15 5 ∼unif(50, 100) 1.2 5.322 1.295 0.967 0.817 0.192 0.956
0.15 25 ∼unif(100, 200) 1.2 1.561 0.656 0.944 1.107 0.132 0.951
0.15 25 ∼unif(50, 100) 1.2 2.821 0.827 0.955 1.738 0.177 0.95
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Table 5. Simulation results for new study parameters.

RR∗ τ∗

σ K N RR Mean CI Length Mean CI Length
0.075 5 ∼unif(100, 200) 0.7 0.745 1.22 0.41 0.595
0.075 5 ∼unif(100, 200) 1.2 1.3 1.981 0.417 0.605
0.075 5 ∼unif(50, 100) 0.7 0.765 1.591 0.415 0.61
0.075 5 ∼unif(50, 100) 1.2 1.35 2.635 0.422 0.621
0.075 25 ∼unif(100, 200) 0.7 0.703 0.402 0.402 0.453
0.075 25 ∼unif(100, 200) 1.2 1.216 0.642 0.404 0.456
0.075 25 ∼unif(50, 100) 0.7 0.706 0.576 0.401 0.454
0.075 25 ∼unif(50, 100) 1.2 1.235 0.892 0.408 0.462
0.15 5 ∼unif(100, 200) 0.7 0.76 1.363 0.411 0.6
0.15 5 ∼unif(100, 200) 1.2 1.324 2.277 0.415 0.609
0.15 5 ∼unif(50, 100) 0.7 0.77 1.658 0.417 0.604
0.15 5 ∼unif(50, 100) 1.2 1.363 2.851 0.423 0.625
0.15 25 ∼unif(100, 200) 0.7 0.713 0.552 0.403 0.454
0.15 25 ∼unif(100, 200) 1.2 1.223 0.944 0.402 0.458
0.15 25 ∼unif(50, 100) 0.7 0.716 0.678 0.404 0.457
0.15 25 ∼unif(50, 100) 1.2 1.237 1.112 0.405 0.465

4. Sample Size Determination

We now illustrate how the prior distribution generated from the historical studies can
be used to power a future study. Without loss of generality, we assume the hypothesis of
interest is:

H0 : RR∗ = 1

Ha : RR∗ < 1

The sample size determination procedure we consider here is simulation-based and
follows from [15], which has been modified to use with MAP priors by, for example, Qi et al.
(2023) [12]. The method allows for distinct priors for two different parts of the procedure.
The design prior is necessarily informative and is used to predict what future data will
look like. The design prior can be constructed from historical data or expert opinion. It
is important to note that the design prior is similar to “design parameters” in frequentist
sample size determination and should match study goals. For instance, for a frequentist
sample size determination, the study is powered for a particular effect size of interest that
matches, for instance, regulatory requirements or effects observed in previous studies. In
contrast, the design prior specifies a distribution of that parameter on which the probability
of detection is conditioned. This results in a probability of rejection/success, etc., given the
parameter is distributed in the manner specified by the design prior.

At the design stage, design priors can account for uncertainty regarding both nuisance
parameters and primary parameters, or just in the nuisance parameters. That is, a prior can
be assigned to the nuisance parameter(s) to account for pre-experimental uncertainty while
a fixed value is assigned to the parameter of interest in the manner of frequentist sample-
size planning. The fixed value is usually set at some practically significant threshold. When
a design prior is used for the focal parameter, the resulting rejection rate is often referred
to as “assurance” or “Bayesian assurance” instead of power; see, for example, Pan and
Bannerjee (2023) [16]. The algorithm we propose is provided below.

1. Using historical studies, fit the meta-analysis model and determine the design priors
for the current study parameters.

2. Sample values from RR∗ and τ∗. A different value for RR∗ is drawn if interest is in
assurance and is fixed at a particular value for power.

3. For a sample of size n*, simulate new study data based on RR* and p*.
4. Analyze the data (with either non-informative priors or using the informative prior)

and determine posterior probability RR∗ < 1.
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5. Repeat steps 2–4 a large number of times and calculate power (or assurance for
random RR*) by computing the proportion of datasets where the null is rejected.

6. Repeat steps 2–5 with different sample sizes to obtain the desired power/probability
of a successful trial.

As an example, to formulate a design prior, we simulated 25 datasets of size n = 30
each. For this example, the global risk ratio was assumed to be 0.55, and the mean of the
marginal probabilities was assumed to be 0.4. Suppose we seek a power of 0.8, Type I error
probability of 0.05, and want to find the sample size to detect a risk ratio of 0.55. At the
design stage, considering both the risk ratio and the marginal probability as fixed yields
sample sizes similar to Tang et al. (2006) [17]. The fully Bayesian approach allows for the
incorporation of uncertainty at the design stage. Figure 1 provides the powers/assurance
for three cases. The first is where the risk ratio is assumed as fixed at 0.55 and the marginal
probability at 0.366. The second replaces the fixed value of π1+ with the induced prior
from the predictive distribution based on the hierarchical model. Not surprisingly, this
uncertainty at the design stage leads to a larger required sample size. Finally, we replaced
the fixed value of the risk ratio with the predictive distribution to allow for uncertainty
in both parameters. The resulting probability is no longer “power” because it is not a
probability of rejection for a specific value. This quantity is commonly called assurance,
and depending on the amount of variability in the design prior for the parameter of interest,
the assurance might not converge to one as the sample size increases.

Figure 1. Rejection rates across sample sizes. The “Assurance” condition uses design priors on both
RR and τ, while “Power” uses fixed values for each, and “Power w/Nuisance Prior” uses a fixed
value for RR, the focal parameter, with a design prior on the nuisance parameter τ.

To achieve a power/assurance of 0.8, we require approximately 140 observations if
both parameters are assumed fixed at the design stage. If uncertainty in τ is accounted
for at the design stage with the prior from the previous studies, then a sample size of
approximately 180 observations is required. If the historical studies are used to provide
informative priors for both parameters at the design stage, a sample of approximately 330
observations is required to obtain an assurance of 0.8.

5. Example Walkthrough

In this section, we walk through a single example illustrating how to estimate param-
eters and develop a prior for 2 × 2 tables with structural zeros. Suppose an investigator
wants to conduct a new experiment investigating the relative effect of two treatments for
a disease. The first treatment is fairly unobtrusive and can be taken at home while the
second involves a more intensive and costly inpatient care regime at a clinic. Because of this
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difference, the unobtrusive treatment is attempted first for each patient, and the inpatient
care regime is only tested on the patients for whom the first treatment is deemed ineffective.

The investigator wants to estimate the risk ratio of these two treatments, i.e., the ratio
of the probability of failure of the inpatient care regime (given the first treatment was
unsuccessful) to the probability of failure of the first treatment. The investigator seeks
to derive an informed prior for the new experiment from historic information. Eight
prior studies have already been conducted in different cities and at different times. Since
the nature of disease can vary based on location (due to economic differences) and time
(due to shocks), the risk ratio is expected to vary across these experiments. However, the
phenomenon being studied is the same, so we should expect that the risk ratios from the
different experiments are related, and we would want to borrow information across the
trials. A hierarchical model-based prior can be used to synthesize the historic information
in a principled way.

We generate a dataset of 8 2 × 2 tables with sample sizes randomly generated between
200 and 300 participants. The true mean of the risk ratios is 0.5, indicating that the second
treatment (administered after failure of the first) fails to improve the patients half as often
as the first. The individual experiments’ log risk ratios are generated around this mean
with a standard deviation of 0.3 (we transform the risk ratios using the log in order to
realistically use the normal distribution). We generate the parameter τ with a centrality
parameter 0.4 and a value of ρ of 20. We place relatively diffuse priors on the hierarchical
parameters of the log risk ratio.

Using the R functions available on the GitHub page, we perform the analysis with the
following function:

history <- make_history(
# History Data: ###########
data = counts_data
# Prior Parameters: #######
prior_lnRRmu_mu = log(1), prior_lnRRmu_tau = 1/100,
prior_lnRRtau_lo = 0, prior_lnRRtau_hi = 1,
prior_p1mu_alpha = 1, prior_p1mu_beta = 1,
prior_p1rho_alpha = 1, prior_p1rho_beta = 1)

Here, counts_data holds a data frame of counts where each row is a single experiment
and each column is the counts of a possible outcome, corresponding to the cells in Table 1.

> counts_data
n11 n12 n22

1 4 53 179
2 38 104 157
3 5 50 148
4 22 77 123
5 29 102 167
6 22 76 167
7 17 98 154
8 56 96 118

This history object can be submitted to the hm2x2prior function, which can then
return samples from the MCMC analysis of both the model parameters for the observed
data and prior distributions of the new study parameters: rate-ratio RR∗ and τ∗.

The approximate distributions of the hierarchical model priors from the MCMC
samples are shown in Figure 2. Optionally, a package like RBesT can be used to produce a
parametric approximation of the resulting prior for ease of use with the new experiment.
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Figure 2. MCMC samples of hierarchical model prior distributions from 8 historic experiments.

6. Alternative Model

The hierarchical model described in Section 2 is convenient if interest is in the risk ratio.
There are other inferential targets of interest for this model. If interest is the risk difference,
the conditional probability p11/τ, or in homogeneity across tables, the parameterization
of Johnson and May (1995) [2] might be preferred. We provide an alternative hierarchical
model for these other circumstances and provide an example of how it can be used. The
JAGS code for this model is found on the same github site as the earlier model.

At the first level, we assume the same data model as before,

zi ∼ trinomial(Ni, pi) (10)

We reparameterize the model in terms of the marginal probability τi = p11i + p12i and
the conditional probability αi =

p11i
p11i+p12i

. This parameterization has the benefit that both
parameters have support [0, 1]. The resulting likelihood is

L(α, τ) ∝ ∏ α
n11i
i (1 − αi)

n12i τ
n11i+n12i
i (1 − τi)

Ni−n11i−n12i

Since both αi and τi are defined on [0, 1], we assume normal models on the logits of
these parameters,

ϕi = logit(τi) ∼ N (µϕ, σ2
ϕ) (11)

and
γi = logit(αi) ∼ N (µγ, σ2

γ). (12)

We assume the following priors for the top level of the hierarchy,

µϕ ∼ N (0, 10) (13)

σϕ ∼ U (0, 2) (14)

µγ ∼ N (0, 10) (15)

σγ ∼ U (0, 2). (16)

As mentioned previously, there are several options for priors on the between-trial
standard deviation, with the uniform being one option along with half-normal and half-t
distributions. The result of the analysis was that the strata level parameters were not
sensitive to changes in the upper bound on the uniform between 1 and 10 and were similar
to using a half-normal as well. Because there are only three groups, for large values of
the upper bound on the uniform, there was some sensitivity on µϕ and µγ. However, it is
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well-known that σϕ or σγ exceeding two on the log-odds scale implies extreme differences
in the probabilities between the strata, that is, probabilities for some groups close to 0 and
others close to 1, which is unlikely in this case.

The risk difference for the ith study is δi = τi − αi. It might be of interest to test that
the conditional and marginal probabilities are equal but still allow for heterogeneity across
strata. That is, the difference in each stratum is zero; thus, τi = αi. This simplifies the data
model to the following likelihood:

L(τ) ∝ ∏ τ
2n11i
i ((1 − τi)τi)

n12i (1 − τi)
Ni−n11i−n12i

For this reduced model, only a hierarchical model for the τi is required, and it is the
same as described above.

Finally, an intermediate model would be where the risk differences are equal across
strata but still have baseline heterogeneity. That is, αi = τi − δ where δ is the common risk
difference. In this case, after replacing each αi with τi − δ, the likelihood is

L(δ, τ) ∝ ∏(τi − δ)n11i (1 − τi + δ)n12i τ
n1i+n2i
i (1 − τi)

Ni−n11i−n12i

This model requires a prior for δ. For the multinomial probabilities above to be
bounded between zero and one, we require

max(τi)− 1 ≤ δ ≤ min(τi) (17)

thus, we give δ a beta[A,B](a, b) prior where A = max(τ)− 1, B = min(τi), and a and b can
be chosen to reflect expert opinion about the location of δ. In the absence of information,
setting a = b = 1 yields a uniform prior over the support.

For a specific dataset, the best-fitting model can be determined by comparing the
Deviance Information Criterion numbers. As an example, we consider data found in
Johnson and May (1995) [2]. The data is displayed in Table 6. In this example, patients
are stratified by the severity of the disease, and an initial treatment is administered. After
one week, patients who demonstrate improvement are discharged, while patients who
do not show improvement are given a second phase and evaluated again one week later.
The resulting data are provided in Table 5. We fit the models described above using
the JAGS software using two chains with a 5000 iteration burn-in and inferences based
on 25,000 iterations. Convergence was monitored via the Gelman–Rubin statistic and
graphically with the history plots. No indication of a lack of convergence was noted. The
DIC for the model where the marginal and conditional probabilities are equal is 69.41, the
DIC for the intermediate model with equal δ across strata was found to be 66.93, while the
DIC for the most general model was found to be 69.30. Thus, the DIC indicates that the
model where the differences between the conditional and marginal probabilities are equal
across strata is the best fitting.

Table 6. Data for two-phase treatment stratified by severity of disease.

Phase II
Phase I No Imp Imp Total

Mild
No Imp 46 83 129
Imp 176 176
Total 46 259 305
Moderate
No Imp 16 37 53
Imp 91 91
Total 16 128 141
Severe
No Imp 6 21 27
Imp 43 43
Total 6 64 70
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7. Discussion

Numerous frequentist and Bayesian procedures have been proposed for estimating
parameters in a correlated 2 × 2 table with a structural zero. The Bayesian hierarchical
model we propose extends previous work in that it is the first Bayesian model to consider
estimation in the context of multiple tables. Further, it provides tools to use this set of tables
for use in future studies. These tools use the informative priors derived from historical data
to assist with analysis and estimation or serve as design priors in sample size planning.

The simulation study illustrated that, as the sample sizes and number of studies in-
creased, all parameters were well estimated, except the between-study standard deviation,
which was overestimated. Though the overestimation diminishes as numbers of studies
increase, it does not appear to go away. Adding an informative prior does improve estima-
tion. However, even with this overestimation of the variance, the study-level parameters
are very well estimated, so unless interest centers on the between-study standard deviation,
we still recommend the relatively diffuse priors we used in the paper.

We are interested in expanding the applicability and deepening the effectiveness of this
toolkit. One avenue for future research is the broadening of the model scope, i.e., bringing
this approach to related but different table settings. Some examples are settings with the
comparison of multiple second-stage treatments, or settings with K tests/treatments rather
than just two.

Another route for future research involves the incorporation of covariates into the use
of the hierarchical model prior for both estimation and sample size planning. In settings
where the focal parameters are related to the covariate mix of a given sub-population, the
prior could adapt to the covariate mix of the new experiment population, weighting the
experiments in the experiment history more heavily, which are more similar. This would
result in a more effective use of the available information.
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