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Abstract: In the study of the spatial variability of soil chemical attributes, the process is considered
anisotropic when the spatial dependence structure differs in relation to the direction. Anisotropy is
a characteristic that influences the accuracy of the thematic maps that represent the spatial variability
of the phenomenon. Therefore, the linear anisotropic Gaussian spatial model is important for spatial
data that present anisotropy, and incorporating this as an intrinsic characteristic of the process that
describes the spatial dependence structure improves the accuracy of the spatial estimation of the
values of a georeferenced variable in unsampled locations. This work aimed at quantifying the
directional differences existing in the thematic map of georeferenced variables when incorporating
or not incorporating anisotropy into the spatial dependence structure through directional spatial
autocorrelation. For simulated data and soil chemical properties (carbon, calcium and potassium),
the Moran directional index was calculated, considering the predicted values at unsampled locations,
and taking into account estimated isotropic and anisotropic geostatistical models. The directional
spatial autocorrelation was effective in evidencing the directional difference between thematic maps
elaborated with estimated isotropic and anisotropic geostatistical models. This measure evidenced
the existence of an elliptical format of the subregions presented by thematic maps in the direction of
anisotropy that indicated a greater spatial continuity for greater distances between pairs of points.

Keywords: directional spatial autocorrelation; geostatistic; simulation

1. Introduction

Geostatistical modeling analyzes the relationship between the values of a georefer-
enced variable observed at different locations and also considers that each sample unit
carries information about its neighborhood. Thus, the representation of the spatial continu-
ity of a georeferenced variable in the study area is performed with geostatistical techniques
and information collected in a sample. One of the geostatistical methodologies consists in
the construction of directional semivariograms, which allows for a preliminary analysis of
the existence and type of anisotropy in the phenomenon studied [1].

In this context, the spatial dependence structure of a regionalized variable is said to be
isotropic when the spatial continuity presents similar behaviors for all directions. Therefore,
any function used to describe the spatial dependence structure, such as the semivariance
(γ(h)) and covariance (C(h)) functions, depends only on the modulus (h) of the vector
distance h between two locations, where h = ‖h‖ is the Euclidean distance [2–4].

Consequently, the estimated values of the parameters that define the spatial depen-
dence structure (practical range, nugget effect and sill) are similar in all directions. However,
if the spatial dependence structure differs in relation to the direction, then the process that
describes the spatial dependence structure is said to be anisotropic [5].
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If the presence of anisotropy is identified in the phenomenon studied, then this
characteristic is incorporated in the covariance structure, since the correct specification
of the spatial dependence structure can influence the spatial estimation of values of the
georeferenced variable in non-sampled locations, as well as its accuracy. For example,
when the spatial dependence structure is anisotropic, the spatial prediction assigns greater
kriging weights to the samples in the direction of greater spatial continuity, and both the
variance and the error of spatial prediction that are obtained in kriging are smaller when
the anisotropic model in the kriging rather than the isotropic model is considered [6,7].

Studies developed by Facas et al. [8] and Guedes et al. [5,9], in simulated and real data
sets (both with geometric anisotropy), showed relevant differences between the thematic
maps elaborated considering or not considering the presence of the anisotropy. The overall
difference between these thematic maps, ranging from pixel to pixel, varied from 5% to
35%, and this variation was influenced by the size and sampling design, as well as by the
anisotropy factor.

These authors also concluded that the main difference presented in these thematic
maps was the formation of elliptic subregions in the direction of anisotropy when an
anisotropic model was considered in the analysis of spatial variability. However, this
result was only observed through a visual analysis of these thematic maps as well as
omnidirectional measures (omnidirectional accuracy indices) to quantify a global difference
between the thematic maps. Thus, the objective of this work was to identify, in a quantitative
way, the directional difference that exists in the thematic maps when the anisotropy is
incorporated in the geostatistical model, using Moran’s directional spatial autocorrelation
index (I(d)).

2. Materials and Methods
2.1. Simulation Study

Four trials, each with 100 simulations, from the Monte Carlo experiment were per-
formed, where each simulated data set represents a set of stochastic process realizations
{Z(si), si ∈ S}, where si = (xi, yi)T is a vector that represents the i-th location in the study
area (i = 1, . . ., n), such that S ⊂ R2 and R2 is the two-dimensional Euclidean space [10].
This simulation study reproduces possible real data sets and improves the theoretical and
practical knowledge about the anisotropy.

For each simulated data set, an irregular sampling design with 100 points (n = 100)
was considered, with ordinates ranging from 0 to 1 on the X and Y and where each Z(si),
com i = 1, . . ., n, represents a georeferenced variable.

This georeferenced variable was expressed by the isotropic linear Gaussian spatial
model Z(si) = µ(si) + ε(si) [11], where the deterministic term (µ(si) = µ), ε(si) is the stochastic
term for i = 1,..., n, such that both depend on the spatial location in which is observed
Z(si), such that E[ε(si)] = 0 and the variation between points in space is determined by
a covariance function C(si, sj) = cov[ε(si), ε(sj)]. Also, we have assumed that Z = (Z(s1),
. . ., Z(sn))T has a Gaussian distribution n-variate, with vector mean equal to µ1, n × 1,
and the covariance matrix ∑ = [(σij)], n × n, with σij = C(si, sj), i, j = 1, . . ., n, with partic-
ular parametric form given by ∑ = ϕ1In + ϕ2R, where In is an identity matrix, n × n,
R = R(ϕ3) = [(rij)] is a symmetric matrix, n × n, with diagonal elements rii = 1 and
rij = ϕ2

−1σij for i 6= j = 1, . . ., n. Thus, the covariance function is the function associ-
ated with semivariance by γ(hij) = C(0) – C(hij) for many isotropic and stationary Gaussian
processes, where hij = ‖si – sj‖ is the value of Euclidian distance between the points si and
sj [4]. Moreover, this covariance matrix has the following parameters: ϕ3 is a function of
the range (a > 0), ϕ1 is the nugget effect and ϕ2 is the partial sill.

In the first trial, we are assuming that µ = 200, and an exponential function cor-
relation [12] composed of the following parameters that define the structure of spatial
dependence: ϕ1 = 0, ϕ2 = 1, and a = 0.6.

In the order trials (2◦, 3◦, and 4◦), this georeferenced variable was expressed by the
anisotropic linear Gaussian spatial model [9], with the following technical characteristics:
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the same correlation function and one change in the linear Gaussian spatial model described
above, where ‖Ahij‖ expresses the Euclidean distance between pairs of points in n sampled
locations in the semivariance function, i.e., γ(‖Ahij‖) = C(‖0‖) − C(‖Ahij‖), considering
a linear transformation at those locations expressed by the product matricial Ahij, with

hij = si − sj, where the transformation matrix is equal to A =

(
cosβ − senβ/Fa

senβ cosβ/Fa

)
, with β

as the highest spatial continuity angle in π radians (0 ≤ β ≤ π) defined in the azimuth
system and Fa =

αβ

αβ+
π
2

is the anisotropic ratio (Fa > 1), where αβ is the spatial dependency

distance (range) in the direction of higher spatial continuity (β) and αβ + π
2 is the spatial

dependency distance (range) in the direction of lower spatial continuity (β+ π
2 ) [5,7,9]. In

the order trials (2◦, 3◦ e 4◦), we are assuming that the angle of greater spatial continuity is
equal to 90◦ and the anisotropic ratio is (Fa = 2, 3, and 4). Moreover, the first trial (isotropic)
is a particular case of the anisotropic model (Fa = 1) [4].

For each simulation, the estimation of the anisotropic Gaussian space linear model was
carried out using the maximum likelihood method obtained by the following parameters:
mean (µ), nugget effect (ϕ1), partial sill (ϕ2), practical range (a) and anisotropic ratio
(Fa) [9,11].

Then, ordinary kriging was used in the spatial estimation of each simulated data set at
unsampled locations. In order to compare the differences in the spatial estimation when
considering the presence of geometric anisotropy in the application of the linear Gaussian
spatial model, kriging was used for each simulated data set with an estimated isotropic
linear Gaussian spatial model.

For each simulated data set, the directional comparison between the two maps using
the predicted values (one considering the isotropic model and the other considering the
anisotropic model) was made. The directional comparison for I(d) (Equation (1)), proposed
by Rosenberg [13] was measured. For this calculation, five distance classes (0.15, 0.30,
0.45, 0.60, and 0.75) and two directions (90◦ and 0◦) were considered. Each distance was
chosen to guarantee a relevant number of points pairs, greater than or equal to 40, for the
calculation of I(d) [13].

I(d) =
[

1
W(d)

]
∑n

l=1 l 6=k ∑n
k=1 k 6=l w′lk(d)(ml −m)(mk −m)√

∑n
l=1(ml −m)2

, (1)

where n is the number of unsampled points that were considered in the kriging; ml and mk
are the predicted values in the point sl and sk (l, k = 1, . . . , n); m is the mean of predicted
values for all points; W(d) = ∑n

l=1 l 6=k ∑n
k=1 k 6=l w′lk(d) is the sum of the elements of

a spatial weights matrix W′ (n× n) elaborated with the distance class d; and w′lk(d) = w′lk
is the element at the l-th row and k-th column of the weights matrix W′, expressed by:

w′lk = wlk cos2(αlk − θ), (2)

where wlk =

{
0, if dlk > d
1, if dlk ≤ d

, for which dlk is the Euclidean distance between points sl and

sk (l, k = 1, . . . , n and l 6= k); θ is the direction (in radians) of interest for the calculation of
the Moran directional index; and αlk is the angular direction (in radians) between points sl
and sk (i.e., between a line parallel to the X axis and the line formed by the points sl and sk),
such that 0 ≤ αlk < π and αlk = αkl, calculated by: αlk = atan

[
yk−yl
xk−xl

]
, if 0 < αlk < π/2;

αlk = atan
[

yk−yl
xk−xl

]
+ π, if π/2 < αlk < π; αlk = 0, if xk − xl = 0; and αlk = π/2, if

yk − yl = 0, where sl = (xl, yl)
T and sk = (xk, yk)

T are the coordinates of the points sl and
sk (l, k = 1, . . . , n and l 6= k), respectively.

Equation (2) demonstrates that Rosenberg [13] defined the Moran directional consider-
ing, in this index, the inclusion of a weight (or penalty) factor weights matrix W′, expressed
by cos2(αlk − θ), with l, k = 1, . . . , n and l 6= k. In this way, w′lk = wlk, if the direction
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between points sl and sk is equal to the direction of interest (i.e., αlk = θ). However, the
greater the distance between the direction of interest (θ) and the direction between points
sl and sk (αlk), the smaller the value of w′lk (relative to the value of wlk).

High values of I(d) indicate that there is a spatial autocorrelation of the georeferenced
variable [14]. Thus, the influence of distance class on the magnitude of the index can be
explained by the basic geostatistical concept that closer data look more like more distant
data [1]. Thus, the analysis of the variation of I(d) as a function of the distance class (d)
serves as an indication of the range of spatial dependence of the georeferenced variable for
a specific direction.

Also, the significance of this index was evaluated by the pseudo-significance test, with
a 5% probability [14].

2.2. Soil Chemical Property Study

The agricultural data were collected in a commercial area of grain production in
Cascavel, Paraná, Brazil (Figure 1), with a total area of 167.35 ha. The area is located at
approximately 24.95◦ of South and 53.57◦ of West, with a mean altitude of 650 m above sea
level. The soil is classified as typical Dystroferric Red Latosol, with a clayey texture. The
region’s climate is classified as mesothermal and super-humid temperate, climate type Cfa
(Köeppen classification system), and the mean annual temperature is 21 ◦C. The sampling
points were georeferenced and localized using a GNSS receiver (GeoExplorer, Trimble
Navigation Limited, Sunnyvale, CA, USA) in a Datum WGS84 coordinate reference system,
UTM (Universal Transverse Mercator) projection. The lattice plus close pairs sampling with
102 points was sampled [1,15]. This sampling consists of a regular grid, with a minimum
distance between points of 141 m; 19 points were randomly added in this regular grid, such
that the smallest distance between the points added and the point of this regular grid is
75 and 50 m (Figure 1).

Figure 1. Area of study and locations of sampled points.

The sample data were obtained through a routine chemical analysis in the soil analysis
laboratory of COODETEC (Cooperativa Central de Pesquisa Agrícola) of representative
samples of each plot weighing approximately 500 g and collected at each demarcated
point (Figure 1). The following soil chemical properties with geometric anisotropy were
considered: carbon content (C) (g dm−3), calcium content (Ca) (cmolc dm−3) and potassium



Stats 2024, 7 69

content (K) (cmolc dm−3). The chemical analyses were performed using the Walkley–Black
method [16].

Descriptive and geostatistical analyses were performed for each soil chemical property
to verify the existence of directional trends and spatial dependence. Directional trends
represent a linear association between the respective values of the soil chemical properties
with the coordinates of the X or Y axis, and were assessed by Pearson’s linear correlation
coefficient (r(x), r(y)), in which values above 0.30 in a module indicate a directional
trend [17]. Spatial dependence was assessed by the spatial dependence index (SDI), being
classified as weak when SDI ≤ 9%, moderate when 9% < SDI ≤ 20% and strong when
SDI ≥ 20% [4,18]. Still, the directional comparison analyses described above were also
performed. For the calculation of (Equation (1)), five distance classes (150, 300, 450, 600 and
750 m) and two directions (the direction of greater spatial continuity (θ) and the direction
orthogonal to it) were considered.

Moreover, the global comparison between the two maps using the predicted values
(one considering the isotropic model and the other considering the anisotropic model) were
made. The measurements for global comparison were performed by the Global Accuracy
and the Kappa and Tau concordance indices [19,20].

2.3. Computational Resources

Simulated data sets, statistical and geostatistical analyses and the calculation of the
Moran directional index were made in the geoR package [21] of software R version 3.5.1 [22].

3. Results
3.1. Simulation Study

For the simulated data, the results obtained for the values of the Moran directional
index (I(d)) calculated for the estimated values of the georeferenced variable in unsampled
locations are presented in Table 1 and Figure 2. For the isotropic model (Fa = 1) and for
all distance classes, similar values of I(d) were observed in both directions considered (0◦

and 90◦) (Figure 2). In all directions, most of the simulations presented significant values
of I(d) (Table 1). In addition, as the distance class increased, there was a similar trend of
decreasing of the values of I(d) in both directions (Figure 2), as well as the percentage of
significant values of this index (Table 1).

Table 1. Percentage of simulations with significant values of the Moran directional index (I(d)) (with
5% significance by the pseudo-significance test) calculated for the predicted values considering the
estimated anisotropic model, in each distance class and direction; according to the anisotropic ratio
considered in the simulations.

Anisotropic Ratio (Fa) Direction (θ) Percentage

Distance Class (d)

0.15 0.30 0.45 0.60 0.75

Fa = 1 (isotropic) 0◦ 100 100 95 82 60
90◦ 100 100 92 83 56

Fa = 2
0◦ 100 99 82 57 37
90◦ 100 100 98 96 84

Fa = 3
0◦ 100 95 70 42 25
90◦ 100 100 100 99 95

Fa = 4
0◦ 100 90 59 39 19
90◦ 100 100 100 100 98
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Figure 2. Boxplot for the values of the Moran directional index (I(d)), calculated according to the
distance class (d) and the direction (θ), considering the predicted values of the simulations, for
different values of the anisotropic ratio (Fa) (◦ indicates discrepant points).

In this way, under the presence of isotropy the results indicate that the pairs of
unsampled locations considered in kriging presented the same degree of spatial similarity
in both directions (0◦ and 90◦). Thus, in the 0◦ and 90◦ directions there was a similar
description of the spatial continuity of the variable georeferenced in the thematic map.

For all other anisotropic ratios considered in the simulations (Fa = {2, 3, 4}), the higher
the distance class, the higher the decay rate and percentage of significant values of I(d) in
the 0◦ direction compared with the 90◦ direction (Figure 2 and Table 1).

Even in the largest distance class (d = 0.75), the 90◦ direction presented the higher
values of I(d), as well as the higher percentage of I(d) significant values. These relevant
differences occurred in almost all the simulations with the largest values of the anisotropic
ratio (Fa = {3, 4}).

These results suggest that the 90◦ direction presented spatially similar predicted values
within a radius of distance between their respective locations equal to 0.75, while in the
0◦ direction, the distance radius separating pairs of predicted values that are considered
similar is less than 0.60.
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3.2. Soil Chemical Property Study

For the soybean crop, the difference between maximum and minimum samples
(Table 2) indicated that each soil chemical property is classified from medium to very
high level [23]. According to Pimentel Gomes [24], the sample values of carbon content (C),
calcium content (Ca) and potassium content (K) presented medium (10% ≤ CV ≤ 20%),
high (20% ≤ CV ≤ 30%) and very high (CV > 30%) dispersion in relation to their corre-
sponding average, respectively (Table 2). In addition, the soil chemical properties, when
associated with the x and y coordinates, presented the estimated value of Pearson’s linear
correlation coefficient as lower than 0.30 (r(x), r(y)) (Table 2). This result suggests an ab-
sence of a linear trend of these properties with the X and Y axes [17]. However, as for some
properties the p-value is lower than 0.05 (Table 2), the linear correlation can be considered
statistically significant, and thus the coordinate x has a significant linear association with
the carbon content (C) and calcium content (Ca), while the y coordinate has a significant
linear association with the potassium content (K) (regardless of the correlation coefficient
value) (Table 2).

Table 2. Descriptive statistics of the soil chemical properties and Pearson’s linear correlation coeffi-
cient between the soil chemical properties and the x and y coordinates (r(x) and r(y)).

Statistic Carbon (C) Calcium (Ca) Potassium (K)

Average 29.42 5.39 0.30
Minimum 22.40 2.25 0.10

Median 29.33 5.32 0.26
Maximum 45.22 8.76 0.67

Coefficient of variation (CV) (%) 12.67 25.18 45.04

r(x) 0.23 0.22 0.18
Confidence interval (x) [0.037; 0.406] [0.029; 0.399] [−0.013; 0.363]

p-value 0.019 * 0.024 * 0.067 ns

r(y) −0.11 0.03 −0.26
Confidence interval (y) [−0.303; 0.081] [−0.164; 0.224] [−0.437; −0.075]

p-value 0.247 ns 0.756 ns 0.006 *

r(x), r(y): Pearson’s linear correlation coefficient between the soil chemical properties and the x and y coordinates;
*: significant p-value; ns: p-value not significant.

According to the Postplot graph (Figure 3), the soil chemical attributes presented
discrepant points that are located in the central region of the study area for carbon and
calcium contents (Figure 3a,b), whereas for the potassium content, these are located in the
southern region of the study area (Figure 3c).

In addition, for each soil chemical property, the Postplot graph showed the formation
of clusters of sample points with similar values, mainly with a higher concentration of
points in the 90◦ direction (Figure 3). This result indicates that the soil chemical prop-
erties presented a directional tendency regarding spatial continuity, that is, geometric
anisotropy [5].

Table 3 presents the results of the univariate geostatistical analysis with the linear
anisotropic Gaussian spatial model estimates by maximum likelihood-ML, which describes
the dependence structure of the soil chemical properties in the study area. For all soil
chemical properties, the cross-validation criteria, Akaike information (AIC) and Bayesian
information (BIC) showed that the covariance function described by the Gaussian model
was the best fit [25,26].
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Figure 3. Postplot graph spatial representation of the locations sampled in the study area, classified
into equal amplitude for the (a) carbon content (C), (b) calcium content (Ca) and (c) potassium
content (K).

Table 3. Estimated values of parameters obtained for anisotropic Gaussian spatial model and
similarity measures in the comparison of spatial estimation between anisotropic and isotropic models.

Soil Chemical
Property

^
µ

^
ϕ1

^
ϕ2

^
ϕ1+

^
ϕ2

^
ϕ3

^
Fa

^
a ˆSDI

Carbon (C) 29.443 9.027 4.497 13.524 86.425 6.078 149.575 5.80%
Calcium (Ca) 5.388 1.401 0.390 1.791 101.671 4.550 175.962 7.86%
Potassium (K) 0.292 0.015 0.003 0.018 214.878 3.754 371.890 17.70%

Estimated values of mean (µ̂), nugget effect (ϕ̂1), partial sill (ϕ̂2), anisotropic ratio
(
F̂a
)
, practical

range (â), where ϕ̂3 is a function of practical range, and spatial dependence index ( ˆSDI = MFK ∗
(ϕ̂1/(ϕ̂1 + ϕ̂2))∗min

{
1;
( â

0.5∗MD

)}
100, where, MFK: model fato and MD: maximum distance [21].

The estimated covariance matrix (Σ) is expressed according to Equations (3)–(5),
respectively, considering the attributes C, Ca and K.

^
Σ = 9.027In + 4.497e−(‖Âhij‖/86.425)2

with ‖Âhij‖ = h∗ij =
(

u2
ij + v2

ij/6.078
)

, (3)

^
Σ = 1.401In + 0.39e−(‖Âhij‖/101.671)2

with ‖Âhij‖ = h∗ij =
(

u2
ij + v2

ij/4.55
)

, (4)

^
Σ = 0.015In + 0.003e−(‖Âhij‖/214.878)2

with ‖Âhij‖ = h∗ij =
(

u2
ij + v2

ij/3.754
)

, (5)

where I is an identity matrix, n × n, with n = 102; ‖Âhij‖ is the value of Euclidian distance

between the points si = (xi, yi)
T and sj =

(
xj, yj

)T
[20], considering a linear transformation

matrix A, 2 × 2 [27]; where hij = si − sj, u =
[(

yi − yj

)
sin 90◦

]
+
[(

xi − xj
)

cos 90◦
]
,

vij =
[(

yi − yj

)
cos 90◦

]
−
[(

xi − xj
)

sin 90◦
]
, such that 90◦ is a direction of higher spatial

continuity.
The estimated values of the practical range and the spatial dependence index (SDI)

indicated the existence of spatial dependence for all soil chemical properties, with a radius
of spatial dependence from 149.57 to 371.89 m, and spatial dependence classified as weak
for the soil carbon and calcium contents (SDI ≤ 9%) and moderate for the soil potassium
content (9% < SDI ≤ 20%) [4,18].

For all the soil chemical properties, the presence of geometric anisotropy in the 90◦

direction was observed, and the estimated value of the anisotropic ratio indicated a spatial
dependence radius of 3.754 to 6.078 times greater in the 90◦ direction than in its orthogonal
direction (0◦).

Figure 4 presents the thematic maps of soil chemical properties generated by krig-
ing, also considering anisotropic and isotropic models. The thematic maps generated by
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the anisotropic model presented subregions with an elliptical format, whereas the same
subregions presented a more circular format in the maps generated by the isotropic model.

Figure 4. Thematic map of soil chemical property, with the isotropic (“bottom panel”) and anisotropic
(“top panel”) model.

Comparing the thematic maps of soil chemical attributes considering the isotropic
and anisotropic model, an estimated ÔA value of less than 85% was found, as well as K̂
and T̂ of less than 67%, which indicates that the maps are not similar, that is, that the maps
prepared considering both models are not similar in terms of the distribution of attribute
content in the area under study (ÔA < 0.85 e K̂, T̂ < 0.67; [19,20]) (Table 4).
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Table 4. Estimated values of global comparison measures between thematic maps considering
estimated anisotropic and isotropic models for the soil chemical properties.

Soil Chemical Property Overall Accuracy (ÔA) Kappa (K̂) Tau (T̂)

Carbon 0.51 0.31 0.38
Calcium 0.58 0.38 0.47

Potassium 0.48 0.32 0.36

The similarity measures describe differences in spatial estimation globally, that is, in
all directions. Conversely, Table 5 presents the values of the directional Moran I (I(d)),
calculated for the predicted values by kriging, considering or not considering the pres-
ence of anisotropy in the carbon, calcium and potassium contents in the soil. Thus, for
each soil chemical property and a direction of interest, I(d) describes whether or not
there are directional differences between thematic maps elaborated with anisotropic and
isotropic models.

Table 5. Estimated value of Moran’s directional spatial autocorrelation index with the pre-
dicted values calculated by kriging, considering anisotropic and isotropic models, for the soil
chemical properties.

d θ

Carbon (C) Calcium (Ca) Potassium (K)

Isotropic
Model

Anisotropic
Model

Isotropic
Model

Anisotropic
Model

Isotropic
Model

Anisotropic
Model

150
0◦ 0.896 * 0.538 * 0.531 * 0.607 * 0.963 * 0.838 *

90◦ 0.942 * 0.838 * 0.629 * 0.864 * 0.972 * 0.945 *

300
0◦ 0.657 * 0.257 * 0.168 * 0.248 * 0.869 * 0.538 *

90◦ 0.781 * 0.591 * 0.320 * 0.605 * 0.899 * 0.799 *

450
0◦ 0.346 * 0.091 * 0.061 * 0.093 * 0.715 * 0.275 *

90◦ 0.537 * 0.404 * 0.192 * 0.404 * 0.784 * 0.621 *

600
0◦ 0.121 * −0.042 0.040 * 0.042 * 0.542 * 0.186 *

90◦ 0.327 * 0.267 * 0.136 * 0.277 * 0.661 * 0.498 *

750
0◦ 0.008 −0.096 * 0.029 * 0.023 * 0.359 * 0.147 *

90◦ 0.168 * 0.158 * 0.089 * 0.180 * 0.526 * 0.390 *

Distance class (d); direction (θ); and *: significant values of Moran’s directional spatial autocorrelation index, at
5% probability (p-value < 0.05) by the pseudo-significance test.

For all soil chemical attributes and geostatistical models (anisotropic and isotropic),
almost all of the estimated values of I(d) are significant at 5% probability (Table 5). Also, for
all distance classes, higher values of I(d) were obtained in the direction of greater spatial
continuity (90◦) compared to the estimated values of I(d) in the 0◦ direction (Table 5).

Indeed, the estimated values of I(d) showed that, in the 90◦ direction, there was spatial
autocorrelation between points spaced at 750 m, and, in the 0◦ direction, there was a weak
spatial correlation from 450 m for the carbon and calcium content in the soil, with estimated
values of I(d) closer to zero (Table 5).

These results indicate that the presence of anisotropy in the carbon, calcium and
potassium contents influenced the shape of the subregions (showing a greater spatial
continuity towards the anisotropic direction), even though the spatial prediction was
performed with the isotropic model.

Moreover, there was a greater difference between the estimated values of I(d) for the
0◦ and 90◦ directions in the spatial prediction performed with the anisotropic model, with
higher values of I(d) in the 90◦ direction (Table 5). Thus, from the distance class of 450 m,
the estimated values of I(d) in the 90◦ direction were greater than 1.65 to 7.83 times at the
estimated values of I(d) in the 0◦ direction (Table 5).
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Therefore, the thematic maps elaborated with the anisotropic model presented a greater
spatial continuity in the 90◦ direction compared with those elaborated with the isotropic
model, evidencing the existence of directional differences between thematic maps elabo-
rated when considering or not considering the anisotropy in the geostatistical model.

4. Discussion

The simulations with Fa 6= 1 showed that the 90◦ direction is the direction with the
highest directional spatial autocorrelation, which indicates the higher similar estimated
points density in this direction [13,28,29]. Thus, under the presence of anisotropy, there
was a significant difference between the direction that defines the presence of geometric
anisotropy and its orthogonal direction, in relation to the spatial continuity of the estimated
values of the georeferenced variable in unsampled locations.

There was an inverse trend between the values of the distance classes and I(d). How-
ever, the value of the coefficient in the largest distance class is often unreliable due to
the few pairs of points in this class [13]. In this way, the same problem that occurs with
the directional semivariogram, when compared with the omnidirectional semivariogram,
in relation to the existence of a smaller number of pairs of points at each distance [8],
also occurs when we compare the calculation of directional and omnidirectional spatial
autocorrelation [29]. It may not be possible to analyze the directional spatial correlation
for some data sets with a smaller sample size. The directional spatial autocorrelation
could be calculated for various classes of distances/directions and the results are plotted in
a diagram known as a Windrose, which is a complementary method for identifying the
anisotropy [29].

Considering the soil chemical property study, the analyses indicated relevant differ-
ences in the thematic maps, when considering the incorporation or not of the geometric
anisotropy, mainly in the direction of greater spatial continuity (90◦). These differences
and the shape of the subregions were also observed in thematic maps generated in studies
conducted by Guedes et al. [5], even with data collected in another sampling design, and
occur because it is assumed that the ellipsoid representing the anisotropy of the estimated
property is centered on each node to be estimated [30].

A low value of the similarity measures (ÔA < 0.85 e K̂, T̂ < 0.67; [19,20] was obtained
for each soil chemical property (Table 4). According to Richetti et al. [31], this low simi-
larity represents a relevant difference between the generated maps, when the geometric
anisotropy was or was not incorporated, in relation to the percentage of the area classified
in each class. Thus, this result shows that the incorporation of the anisotropy, when it exists,
alters the spatial distribution of these soil chemical properties in the study area.

As reported by Guedes et al. [9], these relevant differences in the spatial estimation
of georeferenced variables presented by the similarity measures are justified by the high
estimated values of the anisotropic ratio factor, since the values of the anisotropy factor
were higher than 2.

These results corroborate other results obtained in the literature for simulated and real
data, from the point of view of a traditional anisotropy analysis (modeling, visual analysis
of the thematic map) [5,7–9]. But the main contribution of this article to research already
carried out on anisotropy is the possibility of using directional spatial autocorrelation as
a metric to highlight the existence of directional differences in the thematic maps regarding
the subregions format, elaborated when considering or not considering the anisotropy in
the geostatistical model.

Furthermore, the linear anisotropic Gaussian spatial model is important and suitable
for the simulated and real data of this work, because when the data present anisotropy,
it must be incorporated as an intrinsic characteristic of the process that describes the
spatial dependency structure in order to improve the accuracy of the spatial estimation of
the values of a georeferenced variable in unsampled locations [9], and this results in the
generation of maps that describe with greater accuracy the spatial variability of the variable
throughout the area under study [5,7].
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5. Conclusions

Under the presence of geometric anisotropy, the Moran directional index evidenced
the existence of directional differences in the thematic maps regarding the subregions
format, elaborated when considering or not considering the anisotropy in the geostatistical
model. In addition, the higher the anisotropy factor, the lower the decay rate of the
Moran directional index values, indicating a greater grouping of similar values, that is,
a greater spatial continuity of the georeferenced variable, in the direction that defines the
geometric anisotropy. It was possible to use the Moran directional index as a measure of
directional comparison between the thematic maps, with or without the anisotropy in the
geostatistical analysis.

The results obtained allow us to conclude that improving the use of geostatistics
applied to sustainable Precision Agriculture can provide important information for better
use of the soil, as it allows for an increase in soybean productivity without affecting the
environment with unnecessary applications of inputs in agricultural areas.
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