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Abstract: Vascular-related diseases pose significant public health challenges and are a leading cause
of mortality and disability. Understanding the complex structure of the vascular system and its
processes is crucial for addressing these issues. Recent advancements in medical imaging technology
have enabled the generation of high-resolution 3D images of vascular structures, leading to a diverse
array of methods for vascular extraction. While previous research has often assumed a normal
distribution of image data, this paper introduces a novel vessel extraction method that utilizes
the skew normal distribution for more accurate probability distribution modeling. The proposed
method begins with a preprocessing step to enhance vessel structures and reduce noise in Magnetic
Resonance Angiography (MRA) images. The skew normal distribution, known for its ability to model
skewed data, is then employed to characterize the intensity distribution of vessels. By estimating
the parameters of the skew normal distribution using the Expectation-Maximization (EM) algorithm,
the method effectively separates vessel pixels from the background and non-vessel regions. To
extract vessels, a thresholding technique is applied based on the estimated skew normal distribution
parameters. This segmentation process enables accurate vessel extraction, particularly in detecting
thin vessels and enhancing the delineation of vascular edges with low contrast. Experimental
evaluations on a diverse set of MRA images demonstrate the superior performance of the proposed
method compared to previous approaches in terms of accuracy and computational efficiency. The
presented vessel extraction method holds promise for improving the diagnosis and treatment of
vascular-related diseases. By leveraging the skew normal distribution, it provides accurate and
efficient vessel segmentation, contributing to the advancement of vascular imaging in the field of
medical image analysis.

Keywords: vessel extraction; EM algorithm; skew normal distribution; EM algorithm; MRA images

1. Introduction

Numerous individuals experience major cerebrovascular diseases. These illnesses,
specifically acute strokes, contribute significantly to mortality rates. Severe vascular condi-
tions such as carotid stenosis, aneurysms, and arterio-venous malformations (AVM) have
the potential to lead to strokes if not detected early on. This is where the visualization of
vessels in brain Magnetic Resonance Angiography (MRA) images becomes crucial. Sur-
geons heavily rely on these images to identify irregularities and plan surgeries. The vessels
act as important landmarks and roadmaps during surgical procedures, playing a vital role
in making critical decisions in the operating room. Nevertheless, analyzing these vessels
can pose a great challenge due to their intricate nature, various shapes, branching patterns,
varying densities, narrow diameters, and wide range of intensity.

There are three primary techniques used for MRA: time-of-flight (TOF) angiography,
phase contrast angiography (PCA), and contrast-enhanced MRA (CE-MRA) [1]. Both TOF
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and PCA are non-invasive techniques, while CE-MRA requires the injection of a contrast
agent, typically gadolinium. PCA offers excellent background suppression and can measure
flow velocity vectors for each voxel. On the other hand, although the TOF technique lacks
quantitative accuracy, it is widely adopted in clinical settings due to its speed and ability to
generate high-contrast images [2].

Unfortunately, MRA images frequently fail to meet expectations as they are plagued
by issues such as excessive noise, noticeable artifacts, low intensity, and the intricate nature
of the vascular structure. As a result, there is a growing need to create precise algorithms
for extracting vessels that can overcome these limitations [3]. The primary objective of
vessel extraction is to efficiently partition the image into separate components that delineate
the vessel and the background.

Vessel extraction techniques have been continuously evolving since 1985 [4]. Over the
years, researchers have explored various innovative approaches to address this challenging
problem. In-depth surveys and analyses on vessel extraction techniques and algorithms
have been conducted by esteemed experts like Kirbas and Quek [5]. Drawing inspiration
from mathematical morphology, Cline [6] proposed a unique technique that leverages
non-linear mathematical operators. In order to incorporate the concept of fuzziness, several
researchers [7–9] successfully implemented fuzzy connectivity-based techniques utilizing
fuzzy methods. Alternatively, Prinet et al. [10] adopted a geometric differential approach for
vessel segmentation, treating the MRA image as a hypersurface. Their approach involved
connecting crest points which represent the extreme points of curvature on the hypersurface
in order to obtain vessel centerlines.

To tackle the segmentation of curvilinear structures in medical images, researchers
have proposed a variety of methods to enhance precision and minimize similarities. One
such approach involves the utilization of multiscale filtering, wherein the image is con-
volved with Gaussian filters and the eigenvalues of the Hessian matrix are examined [11–13].
Krissian et al. [14] introduced a technique known as directional anisotropic diffusion, which
effectively reduces noise through the implementation of anisotropic diffusion. In a similar
vein, Caselles et al. [15] and Malladi et al. [16] employed propagating interfaces with a
curvature-dependent speed function to represent anatomical shapes, utilizing the level set
method (LSM). Lastly, a notable alternative formulated by Osher and Sethian [17] is based
on Hamilton–Jacobi principles. These diverse approaches collectively contribute to the
advancement of curvilinear structure segmentation in medical images.

In the exciting realm of vessel extraction, a breakthrough algorithm called the TFA
algorithm was proposed by Cai et al. [18]. This innovative approach, rooted in the concept
of tight frame, has been developed with the specific goal of achieving highly efficient and
effective vessel extraction. With its unique methodology and techniques, the TFA algorithm
has pushed the boundaries of vessel extraction, opening new possibilities and empowering
researchers and practitioners alike to delve deeper into this fascinating field.

Wilson presented distributions for the data, inspired by a physical model of blood flow,
utilized in a modified version of the expectation-maximization (EM) algorithm [19]. The
EM algorithm is a versatile iterative algorithm for maximum likelihood (ML) estimation
in incomplete-data problems. In numerous significant instances, the EM algorithm is
straightforward and computationally efficient. The EM algorithm has been suggested
in various specialized contexts for many years. The earliest citation for this algorithm
can be traced back to McKendrick’s 1927 paper [20]. Baum employed the algorithm in a
Markov model and established mathematical results in this scenario [21]. Orchard and
Woodbury were the first to observe the “missing information principle” [22]. The term
EM was coined by Dempster, Laird, and Rubin in 1977 [23]. Wang et al. conducted
a comprehensive thematic survey on medical image segmentation using deep learning
techniques [24]. Hesamian et al. presented deep learning techniques for medical image
segmentation [25]. Ghosh et al. explored and explained the intricacies of deep learning
techniques for image segmentation [26]. Na et al. [27] utilized the statistical modeling
and knowledge-based segmentation of a cerebral artery based on TOF-MRA and MR-T1.
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Yuan et al. [28] proposed an effective CNN and Transformer complementary network for
medical image segmentation. Trombini et al. [29] introduced a goal-driven unsupervised
image segmentation method combining graph-based processing and Markov random
fields. Qureshi et al. [30] provided a review of deep semantic-based methods for medical
image segmentation, highlighting the techniques, applications, and emerging trends in
the field. Dash et al. [31] presented a guidance image-based enhanced matched filter
with a modified thresholding approach for blood vessel extraction. Their method showed
promising results in extracting blood vessels from medical images, particularly in the
context of symmetry. Abdulsahib et al. [32] proposed an automated image segmentation
and feature extraction algorithm specifically designed for retinal blood vessels in fundus
images. Their algorithm demonstrated effective segmentation and extraction capabilities,
contributing to the analysis of retinal health. Bhatia et al. [33] introduced a retinal vessel
extraction method that utilized an assisted multi-channel feature map and U-net. This
technique showed potential in accurately extracting retinal vessels, aiding in the diagnosis
and monitoring of various retinal diseases. Qin et al. [34] focused on super-resolution
vessel extraction in X-ray coronary angiography. They proposed a robust PCA unrolling
network, which achieved accurate vessel extraction and enhanced visualization of coronary
arteries. Sun et al. [35] developed a scale-adaptive hybrid parametric tracker for 3D vessel
extraction. Their approach showed promising results in extracting vessels from medical
images, providing valuable information for clinical diagnoses and treatment planning.
Additionally, other relevant research works could be considered, such as the study by Sun
et al. [36], who proposed the LIVE-Net framework for comprehensive 3D vessel extraction
in CT angiography. Their approach demonstrated effectiveness in extracting vessels from
CT scans, enabling detailed analysis of vascular structures. Yang et al. [37] introduced a
contour attention network for accurately segmenting cerebrovascular structures in medical
images. This novel approach uses attention mechanisms to highlight important features,
improving segmentation precision. The paper offers valuable insights into the potential
of attention-based methods for medical image segmentation. Chen et al. [38] introduced
a novel approach for segmenting cerebrovascular structures in medical images using
a topology regularization adversarial model. Klepaczko [39] introduced a method for
segmenting cerebral blood vessels in contrast-enhanced MR images using deep learning
and synthetic training data.

In this paper, our proposed model presents a unique and innovative approach to
representing the distributions of vessels in MRA images. Instead of using conventional
normal distributions, we employ skew normal distributions. The parameters of these
distributions can be accurately estimated through the EM algorithm [23]. The skew normal
(SN) distribution, introduced by Azzalini [40], is specifically designed to handle skewed
data. Unlike the traditional normal distribution, the skew normal distribution family
includes a shape parameter that enables regulation of skewness. This added flexibility
is particularly valuable when dealing with real data that exhibit skewness. Pewsey [41]
addresses the issue of inference for Azzalini’s skew normal distribution. The author
discusses the challenges associated with parameter estimation and hypothesis testing
for this distribution, and proposes a solution based on the use of a modified likelihood
function. Considering the inherent asymmetry of vessel pixel intensities in MRA images,
it is evident that the skew normal distribution outperforms the normal distribution in
accurately modeling vessels.

This method is highly proficient at segmenting twisted, convoluted, and occluded
structures, providing an exceptional ability to trace the intricate branching of various
layers, spanning from delicate to substantial formations. Moreover, it excels at extracting
vessels that closely resemble the background in terms of intensity. When compared to
the approaches in [18,19] based on real-life 2D MRA images, our method demonstrates
superior performance in achieving precise vessel segmentation.

This paper is structured as follows:
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• In Section 2, we introduce the preliminary concepts of the skew normal distribution
and the EM algorithm.

• The presented segmentation algorithm is presented in Section 3.
• Section 4 includes the testing of the presented method on different real 2D MRA

images. We provide a comparison with two representative algorithms from different
segmentation approaches: the K-means clustering method, EMS algorithm, TFA
algorithm, and Wilson methods.

• Discussion and conclusion are given in Section 5.

2. EM Algorithm

In this section, the EM algorithm is briefly discussed. The EM algorithm is a very
general iterative algorithm for ML estimation in incomplete-data problems. Suppose that
we have a model for the complete random variables data Y = (Yobs, Ymis) with associ-
ated probability distribution f (Y|θ) indexed by unknown parameters θ, where Yobs and
Ymis denote the observed part of Y and the missing values, respectively. Consider the
likelihood function

L(θ|Y) =
∫

f (Yobs, Ymis|θ)dYmis. (1)

The goal is to maximize likelihood function with respect to θ for estimating unknown
parameters θ. If the likelihood function is differentiable and unimodal, maximum of (1) can
be found by solving the following equation

S(θ|Yobs) =
∂l(θ|Yobs)

∂θ
, (2)

where l(θ|Yobs) = logL(θ|Yobs) is the log likelihood function. When the exact solution of (2)
cannot be found, iterative methods can be applied. One of the iterative methods is the
Newlon–Raphson algorithm. The Newlon–Raphson algorithm requires second derivatives
to be calculated or approximated. The EM algorithm is a simple iterative algorithm for
maximum likelihood estimation in incomplete-data problems. The EM algorithm does
not require second derivatives; thus, this algorithm is simple, both conceptually and
computationally. Each iteration of EM consists of an E step (expectation step) and an M
step (maximization step). The E-step of EM finds the expected log likelihood if θ were θ(t):

Q
(

θ|θ(t)
)
=
∫

l(θ|Y) f
(

Ymis

∣∣∣Yobs, θ = θ(t)
)

dYobs. (3)

The M step of EM determines θ(t+1) by maximizing expected log likelihood (3):

Q
(

θ(t+1)|θ(t)
)
= Q

(
θ|θ(t)

)
f or all θ.

For more discussion, consider the complete random variables data Y = (Yobs, Ymis).
The associated probability distribution f (Y|θ) can be written as follows:

f (Y|θ) = f (Yobs, Ymis|θ) = f (Yobs|θ) f (Ymis|Yobs, θ), (4)

where f (Yobs|θ) and f (Ymis|Yobs, θ) are the densities of the observed data and the missing
data given the observed data. The log likelihood that corresponds to (4) is

l(θ|Y) = l(θ|Yobs, Ymis) = l(θ|Yobs) + ln f (Ymis|Yobs, θ).

To estimate unknown parameter θ, we maximize l(θ|Y) with respect to θ for fixed
Yobs; this task can be difficult to carry out directly. Hence, write

l(θ|Yobs) = l(θ|Y)− ln f (Ymis|Yobs, θ), (5)
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where l(θ|Yobs) is to be maximized, l(θ|Y) is relatively easy to maximize. The expectation
of both sides of (5) over the data Ymis is

l(θ|Yobs) = Q
(

θ
∣∣∣θ(t))− H

(
θ
∣∣∣θ(t)),

where θ(t) is a current estimate of θ and

H
(

θ|θ(t)
)
=
∫

ln f (Ymis|Yobs, θ) f
(

Ymis|Yobs, θ = θ(t)
)

dYmis.

Using Jensen’s inequality gives H
(

θ|θ(t)
)
≤ H

(
θ(t)|θ(t)

)
. Therefore, we have

H
(

θ(t+1)|θ(t)
)
− H

(
θ(t)|θ(t)

)
≤ 0. (6)

By the M-step EM algorithm, it shows that

Q
(

θ(t+1)|θ(t)
)
− Q

(
θ(t)|θ(t)

)
> 0. (7)

According to inequalities (6) and (7), the difference

l
(

θ(t+1)|Yobs

)
− l
(

θ(t)|Yobs

)
=[

Q
(

θ(t+1)|θ(t)
)
− Q

(
θ(t)|θ(t)

)]
−
[

H
(

θ(t+1)|θ(t)
)
− H

(
θ(t)|θ(t)

)]
is positive. This proves the following theorem.

Theorem 1. Every EM algorithm increases l(θ|Yobs) at each iteration, that is,

l
(

θ(t+1)|Yobs

)
≥ l
(
θt|Yobs

)
,

with equality if and only if
Q
(

θ(t+1)|θ(t)
)
= Q

(
θ(t)|θ(t)

)
.

3. Skew Normal Distribution

The skew normal distribution is a probability distribution that is commonly used in
statistics and probabilistic modeling. It is an extension of the normal distribution, which
is often referred to as the bell curve. However, unlike the normal distribution, the skew
normal distribution allows for asymmetric and skewed data.

The skew normal distribution is characterized by three parameters: location, scale,
and shape. The location parameter determines the center or location of the distribution,
similar to the mean in the normal distribution. The scale parameter controls the spread or
standard deviation of the distribution. Lastly, the shape parameter governs the skewness,
determining whether the distribution is positively or negatively skewed.

One of the key advantages of the skew normal distribution is its flexibility in modeling
a wide range of data with different skewness properties. It can handle data that exhibit
departure from symmetry or have a long tail on one side. This makes it particularly useful
in various fields such as finance, economics, and epidemiology, where skewed data are
frequently observed.

The skew normal distribution has been widely studied and has several properties that
make it appealing for statistical analysis. It has well-defined moments, allows for easy
estimation of parameters, and can be used in various inferential procedures, including
hypothesis testing and estimation of confidence intervals.
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Overall, the skew normal distribution provides a valuable tool for modeling and
analyzing data with skewed characteristics. Its ability to capture asymmetric behavior
helps to better understand and interpret real-world phenomena.

A random variable Z is said to be skew normal with parameter λ, denoted by
Z ∼ SN(λ), if its density is given by

p(z, λ) = 2ϕ(z)Φ(λz),

where ϕ and Φ are the standard normal density and distribution, respectively, and z and λ
are real numbers. The parameter λ controls skewness, where positive (negative) values
denote positive (negative) skewness. Figure 1 shows the skew normal distribution for
several values of λ. The SN class has some basic properties:

1. The SN(0) density is the N(0, 1) density;
2. If Z ∼ SN(λ) then −Z ∼ SN(−λ);
3. As → ±∞ , SN(λ) tends to the half-normal density;
4. log log p(z; λ) is a concave function of z.
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The corresponding distribution function of skew normal is

Φ(z; λ) = 2
∫ z

−∞

∫ λt

−∞
ϕ(t)ϕ(u)dudt. (8)

We recall the function T(h, a) introduced by Owen [42], where

T(h, a) =
1√
2π

∫ a

0

exp
[
− 1

2 h2(1 + x2)
]

1 + x2 dx.

Therefore, Equation (8) can be written by

Φ(z; λ) = Φ(z)− 2T(z; λ).

By using the properties of Owens function, we obtain the following important results:

1. 1 − Φ(z; λ) = Φ(z;−λ);
2. Φ(z; 1) = Φ(z)2;
3. Φ(z; λ) + Φ(z;−λ) = 2Φ(z).
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The moment generating function of the Z is given by

M(t) = 2exp
(

t2

2

)
Φ(δt),

where δ = λ√
1+λ2 . Hence, the first two moments are obtained as follows:

E(Z) = bδ, V(Z) = 1 − (bδ)2,

where b =
√

2
π .

For more on skew normal distribution and its application, interested readers are
referred to Azzalini and Valle [43], Uyen et al. [44], and Shakil et al. [45], among others.

4. New Vessel Extraction Method

MRA is a medical imaging technique that allows for visualization and evaluation of
blood vessels in the body using magnetic resonance imaging (MRI) technology. It provides
detailed information about the structure, function, and blood flow patterns within the
vascular system.

In MRA images, it is essential to accurately extract and analyze the vascular informa-
tion to aid in the diagnosis and treatment of various diseases. However, traditional image
analysis methods often assume a symmetric and Gaussian distribution of intensity values,
which might not be suitable for MRA images due to the presence of subtle or prominent
signal variations.

That is where skew normal distribution comes into play. The skew normal distribution
is a statistical model that allows for the representation of asymmetric data and can capture
the skewness or asymmetry in the intensity values of MRA images. It extends the traditional
normal distribution by introducing an additional shape parameter, which controls the
degree of skewness in the distribution.

By utilizing the skew normal distribution, researchers and medical professionals can
better model and understand the intensity variations in MRA images, enabling more
accurate segmentation, enhancement, and detection of blood vessels. This can contribute to
improved diagnosis, treatment planning, and monitoring of vascular diseases.

In summary, the application of skew normal in MRA images offers a valuable tool to
address the asymmetry and intensity variations present in vascular structures, ultimately
enhancing the analysis and interpretation of these crucial medical images.

Initially, we can assume that the distribution of each of our three selected classes is
Gaussian, based on the physical properties of the brain tissues. However, in MRA data-
sets with large fields of view, accurately fitting a parametric distribution to the artery
class is challenging due to insufficient support. To address this, Wilson introduced a
modification to the three Gaussian class assumption. According to Wilson’s modification,
the entire dataset now consists of two Gaussian classes and a third class with a uniform
distribution that spans across all data intensities. It is important to note that real data may
not exhibit symmetry, and to account for this, we modify the Gaussian distribution to a
skew normal distribution.

Letting class zero be the vessel class, its distribution as a uniform density is given by

f0(x) =
1

Imax
,

where Imax = max
{

xij
∣∣xij are intensities of the gray MRA image

}
. The other two classes

k = 1, 2, are defined by skew normal distributions with location parameter µk, scale
parameter σk, and skewness parameter λk such that

fk(x) = 2ϕ
(

x|µk, σ2
k

)
Φ

(
λk

x − µk
σk

)
,
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where ϕ(x|µ, σ2) = 1√
2π

exp
(

−(x−µ)2

2σ2

)
, Φ
(

λ
x−µ

σ

)
=
∫ λ

x−µ
σ

−∞ ϕ(t|µ, σ2)dt. Hence,

fk(x) =

√
2
π

exp

(
−
(
x − µk)

2

2σ2
k

) ∫ λk
x−µk

σk

−∞

1√
2π

exp
(
−1

2
t2
)

dt, k = 1, 2.

Thus, the mixture distribution is defined by

f (x) =
ω0

Imax
+ ∑2

k=1 ωk fk(x), (9)

where ωk, (k = 0, 1, 2) are the weight of each class i in the mixture model such that ω0 +
ω1 + ω2 = 1.

4.1. Vessel Extraction Mask

To estimate the unknown parameters µk, σk, λk, ωk (k = 1, 2), the EM algorithm is
used. The EM algorithm aims to maximize the likelihood of the distribution in order to
provide estimates. To use the final parameter estimates to segment, the pixel ij belongs to
the vessel class if

ω0

Imax
≥ 2ωkϕ

(
x
∣∣∣µk, σ2

k

)
Φ

(
λk

x − µk
σk

)
, k = 1, 2. (10)

We construct the mask M as follows:

Mij =

{
1, i f the pixel ij is a vessel pixel,
0, otherwise,

(11)

where Mij denotes the ij-th value of mask M.

4.2. Estimating of Parameters by EM Algorithm

In this section, we want to estimate unknown parameters of

θ = (θ1, θ2, . . . , θ9) = (ω0, ω1, ω2, µ1, µ2, σ1, σ2, λ1, λ2)

by EM algorithm. Consider the set of independent image pixel data Yobs = (X1, X2, . . . , Xn),
with mixture density function (9), where n is the number of pixels of given image. We define for
each data Xi a set of missing components Zi = (Z0i, Z1i, Z2i), i = 1, 2, . . . , n, whose values are

Zki =

{
1, i f the pixel Xi belong to class k,
0, otherwise,

And Z0i + Z1i + Z2i = 1. Thus, Ymis = (Z1, Z2, . . . , Zn) and we can rewrite mixture
distribution as

fX(xi) = (ω0 f0(xi))
z0i (ω1 f1(xi))

z1i (ω2 f2(xi))
z2i .

Now, we have completed data Y = (Yobs, Ymis). If L(Y, θ) is a likelihood function, then
we compute the log likelihood function as follows:

l(Y, θ) = ∑n
i=1 z0i{logω0 + log f0(xi)}

+∑n
i=1 z1i{logω1 + log f1(xi)}

+∑n
i=1 z2i{logω2 + log f2(xi)}.
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So, we have

Q(Yobs; θ) = E(l(Y, θ)|Yobs)

= ∑n
i=1 E(z0i|Yobs){logω0 + log f0(xi)}

+∑n
i=1 E(z1i|Yobs){logω1 + log f1(xi)}

+∑n
i=1 E(z2i|Yobs){logω2 + log f2(xi)},

where
E(zki|Yobs) = Ẑk

= ωk fk(xi)
f (xi)

.

Therefore, we can write Q(Yobs; θ) as

Q(Yobs; θ) = ∑n
i=1{ẑ0ilogω0 + ẑ1ilogω1 + ẑ2ilogω2}

+∑n
i=1{ẑ0ilog f0(xi) + ẑ1ilog f1(xi) + ẑ2ilog f2(xi)}.

Now, we can maximize Q(Yobs; θ) with respect to θ. For the parameters of ωk, we must
take constraint ω0 + ω1 + ω2 = 1. This is performed by using Lagrange multiplier α and
maximizing the

Q(Yobs; θ)− α(ω0 + ω1 + ω2 − 1). (12)

Setting the derivatives of (12) with respect to ωk equal to zero, we obtain

∂[Q(Yobs ;θ)−α(ω0+ω1+ω2−1)]
∂ω0

∣∣∣ω̂0 = ∑n
i=1

ẑ0i
ω̂0

− α = 0 ⇒ ω̂0 = ∑n
i=1 ẑ0i

α

∂[Q(Yobs ;θ)−α(ω0+ω1+ω2−1)]
∂ω1

∣∣∣ω̂1 = ∑n
i=1

ẑ1i
ω̂1

− α = 0 ⇒ ω̂1 = ∑n
i=1 ẑ1i

α

∂[Q(Yobs ;θ)−α(ω0+ω1+ω2−1)]
∂ω2

∣∣∣ω̂2 = ∑n
i=1

ẑ2i
ω̂2

− α = 0 ⇒ ω̂2 = ∑n
i=1 ẑ2i

α .

Since ω0 + ω1 + ω2 = 1, we have

ω̂0 + ω̂1 + ω̂2 = 1
α [∑

n
i=1 ẑ0i + ∑n

i=1 ẑ1i + ∑n
i=1 ẑ2i]

= 1
α

[
∑n

i=1 (̂z0i + ẑ1i + ẑ2i)
]

= 1
α (∑

n
i=1 1)

= n
α

= 1

Therefore, we can write α = n and

ω̂k =
1
n ∑n

i=1 Ẑki. (13)

Now, for estimating of µ̂k, σ̂k and λ̂k, we assume that

ℓk = ∑n
i=1 ẑkilog fk(xi)

= ∑n
i=1 ẑki

{
log 2√

2π
− 1

2 logσ2
k − 1

2σ2
k
(xi − µk)

2 + logΦ
(

λk
xi−µk

σk

)}
,
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and solve these equations with Newton–Raphson method:

Sµk

(
θ̂
)
= ∂ℓk

∂µk

∣∣∣θ̂ = 0,

Sσ2
k

(
θ̂
)
= ∂ℓk

∂σ2
k

∣∣∣∣θ̂ = 0 ,

Sλk

(
θ̂
)
= ∂ℓk

∂λk

∣∣∣θ̂ = 0 .

Finally, in t + 1-th step of this method, the updated equations for the distribution
parameters become

µ̂
(t+1)
k =

∑n
i=1 xi ẑ

(t)
ki − λ̂

(t)
k σ̂

(t)
k ∑n

i=1 ẑ(t)ki

ϕ

(
λ̂
(t)
k

xi−µ̂
(t)
k

σ̂
(t)
k

)

Φ

(
λ̂
(t)
k

xi−µ̂
(t)
k

σ̂
(t)
k

)

∑n
i=1 ẑ(t)ki

(14)

(
σ
(t+1)
k

)2
=

∑n
i=1 ẑ(t)ki

(
xi − µ̂

(t)
k

)2

∑n
i=1 ẑ(t)ki + λ̂

(t)
k ∑n

i=1 ẑ(t)ki

(
xi−µ̂

(t)
k

σ̂
(t)
k

) ϕ

(
λ̂k

xi−µ̂
(t)
k

σ̂
(t)
k

)

Φ

(
λ̂
(t)
k

xi−µ̂
(t)
k

σ̂
(t)
k

)


(15)

Remark 1. We can use Newton–Raphson method to find the root of the function Sλk (θ). We
will have

λ̂
(t+1)
k = λ̂

(t)
k −

S
λ̂
(t)
k
(θ)

S′
λ̂
(t)
k

(θ)
(16)

where

S′
λ̂k
(θ) = −∑n

i=1 ẑki

(
xi − µ̂k

σ̂k

)λ
(

xi−µ̂k
σ̂k

)2
Φ
(

λ̂k
xi−µ̂k

σ̂k

)
ϕ
(

λ̂k
xi−µ̂k

σ̂k

)
+
(

xi−µ̂k
σ̂k

)
ϕ2
(

λ̂k
xi−µ̂k

σ̂k

)
[
Φ
(

λ̂k
xi−µ̂k

σ̂k

)]2

.

4.3. Initialization of the Parameters

Also, in order to initialize two location parameters µ1, µ2, two scale parameters σ1, σ2,
and two skewness parameters λ1, λ2 in the iteration process, we initialize µ1, µ2 as the

intensity values at each of the peaks of the data histogram, σ2
k =

(
µk−Imin

2

)2
, λ1 = λ2 = 0,

and ω0 = 0.04, ω1 = 0.5, ω2 = 0.46, where Imin is the intensity corresponding to the
minimum histogram frequency between the two peaks (Algorithm 1).

Algorithm 1. The presented algorithm

1. Input given image.
2. Initialize the parameters of ω0, ω1, ω2, µ1, µ2, σ1, σ2, λ1, λ2.

3. While
∣∣∣Q(Yobs; θ̂(t+1)

)
− Q

(
Yobs; θ̂(t)

)∣∣∣ < ϵ,

(a) Compute ẑki =
ωk fk(xi)

f (xi)
.

(b) Compute ω̂
(t+1)
0 , ω̂

(t+1)
1 and ω̂

(t+1)
2 by Equation (13).

(c) Update µ
(t+1)
1 , µ

(t+1)
2 , σ

(t+1)
1 , σ

(t+1)
2 , λ

(t+1)
1 , λ

(t+1)
2 by Equations (14)–(16).

4. Construct vessel extraction mask by Equations (10) and (11).
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5. Numerical Examples

In this section, we test the presented method on three different TOF-MRA Circle of
Willis Inverted MIP images. The tests have been performed on a laptop with core i7, 2 GHz
processor, and 4 GB RAM. We compare our results with the K-means clustering method [46],
expectation maximization segmentation [47] (EMS), the dual-tree complex wavelet tight
frame algorithm [18] (TFA), and the Wilson method [19]; also, we take ϵ = 10−6.

The blood vessels contain regions with high and low intensities, containing some thin
vessels with intensities as low as the intensity of the background. Intersections of partial
structures even increase the difficulty of the segmentation [18]. Validation and evaluation
are essential for medical image analysis. But the automation of these processes is still not
sufficient. There is still no satisfying way to assess whether one algorithm produces more
accurate segmentations than another. The most common way to compare segmentation
results is visual comparison. Of course, there is no single method that is best everywhere.
There is no ground truth for MRA images, so we can only compare the results qualitatively.
A qualitative comparison among different approaches can only be conducted by direct
observation of figures. Table 1 shows the parameters estimation of the Wilson and presented
models. The speed of applying programs is less than five seconds.

Table 1. Estimation parameters of Wilson model and proposed model.

Example Method ω0 ω1 ω2 µ1 µ2 σ2
1 σ2

2

1 Wilson
Proposed method

0.4189
0.2818

0.2592
0.4388

0.3288
0.2795

15.8541
17.06848

42.3461
46.8288

102.8609
100.07

237.2980
173.7886

2 Wilson
Proposed method

0.3869
0.312

0.4731
0.2428

0.1400
0.4451

23.1723
23

33.9808
30

0.1426
0.16

28.1638
106.96

3 Wilson
Proposed method

0.3137
0.2169

0.0931
0.2011

0.5923
0.5820

19.3591
19.14

43.8482
49.99

188.6965
89

397.5523
283

Example 1. Based on this example, several algorithms were applied to extract vessels from a
512 × 512 TOF-MRA Circle of Willis image of the carotid vascular system. The results were
compared and analyzed.

The K-means clustering method (Figure 2b) did not perform well in vessel detection, as it failed
to detect most of the vessels.

The TFA algorithm (Figure 2d) also had some limitations as it failed to extract certain vessels
from the image.

On the other hand, the EMS algorithm (Figure 2c), Wilson method (Figure 2e), and the
presented method (Figure 2f) showed comparable results.

However, the presented method had an advantage over the other algorithms as it managed to
avoid some artifacts, improving the quality of the extracted vessels.

In summary, the K-means clustering method and TFA algorithm had unsatisfactory results in
vessel extraction, while the EMS algorithm, Wilson method, and the presented method showed better
performance overall, with the presented method demonstrating the ability to avoid artifacts. We see
that fine vessels could be detected when the presented method is employed. Our method approach is
indeed helpful in finding the edges of the vascular system with low contrast.

Example 2. In this example, a 512 × 512 TOF-MRA Circle of Willis coronal image of the carotid
vascular system is taken into consideration. Various methods, including K-means, EMS, TFA,
Wilson, and the presented method, are used for vessel extraction.

The K-means clustering method (Figure 3b) fails to detect most of the vessels in the image. The
EMS algorithm (Figure 3c) also produces unsatisfactory results. Both K-means and EMS methods
do not provide acceptable vessel extraction.
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The TFA algorithm (Figure 3d) is unable to detect some vessels, particularly the long ones, as
evident when comparing the right parts of the given image (Figure 3a) with Figure 3d.

The Wilson method (Figure 3e) is also found to have poor results, creating artifacts in the left
part of the image.

On the other hand, the presented method (Figure 3f) demonstrates acceptable results. It
successfully extracts vessels while avoiding artifacts near the boundaries and maintaining the
smoothness of the vessel boundary. Our method proves particularly effective in detecting thin
vessels, essential for identifying pathological lesions and enhancing the delineation of vascular edges
with low contrast.

Furthermore, Figure 4b shows the histogram plots of the given data, vessel, and non-vessel
distributions for the second example, illustrating the outcomes of applying the presented algorithm.
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Overall, the K-means, EMS, TFA, and Wilson methods exhibit limitations and unsatisfactory
results in vessel extraction, whereas the presented method proves to be effective and successful in
this regard.

Example 3. In this example, a 512 × 512 TOF-MRA Circle of Willis coronal image of the carotid
vascular system was analyzed using different algorithms for vessel extraction. The image, obtained
from http://www.mr-tip.com, is shown in Figure 5a.

Figure 4b displays the result of vessel extraction using the K-means clustering method, which
fails to capture most of the vessels.

The TFA algorithm, shown in Figure 4d, incorrectly identifies regions of the background as
vessels due to their intensity similarity, leading to inaccurate segmentation. We see that the K-means
clustering and TFA algorithm methods cannot detect many pixels that should be on the boundary of
the vessels, especially those on the tips of the thin vessels. Therefore, both the K-means clustering
method and TFA algorithm produce unsatisfactory results.

On the other hand, the EMS algorithm, Wilson method, and the presented method produce
similar results, as depicted in Figure 5c,e,f, respectively. However, the presented method manages
to avoid some artifacts, improving the quality of the extracted vessels. Our method is able to
extract smoother boundaries than the Wilson method and, in particular, it avoids some artifacts near
the boundary.

In conclusion, among the algorithms tested, the presented method appears to be the most
effective in extracting vessels accurately while minimizing artifacts.

http://www.mr-tip.com
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6. Discussion and Conclusions

This paper evaluates different methods for vessel extraction in brain images, focusing
specifically on TOF-MRA Circle of Willis images. The performance of various algorithms,
including K-means clustering, expectation maximization segmentation (EMS), dual-tree
complex wavelet tight frame algorithm (TFA), and the Wilson method, is compared against
a newly proposed method. The evaluation criteria include accurate vessel extraction,
artifact avoidance, and smooth boundary production.

The tests were conducted on a laptop with a core i7, 2GHz processor, and 4GB RAM.
The comparison reveals that the K-means clustering method and TFA algorithm yield
unsatisfactory results in vessel extraction, while the EMS algorithm, Wilson method, and
the proposed method demonstrate better performance. In particular, the proposed method
shows an advantage in avoiding artifacts and improving the quality of the extracted vessels.

This work emphasizes the challenges in validating and evaluating medical image
analysis algorithms, highlighting the lack of a satisfying way to assess algorithm accuracy.
Visual comparison remains the most common method for evaluating segmentation results
due to the absence of a ground truth for MRA images.
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Furthermore, this study provides detailed insights into specific examples, demon-
strating how the proposed method outperforms other algorithms in vessel extraction,
particularly in detecting fine vessels with low contrast. The results of each example are
visually presented, showcasing the effectiveness of the presented method compared to
other algorithms.

This article introduces a new approach for vessel extraction using the skew normal dis-
tribution and EM algorithm, highlighting the precision of the method in extracting vessels
with smooth boundaries while eliminating artifacts. It includes a comprehensive analysis
of the EM algorithm and the skew normal distribution, acknowledging the importance
of starting values in the EM algorithm and the potential of the generalized skew normal
distribution for future research.

Additionally, the estimation parameters of the proposed model are compared with
those of the Wilson model, demonstrating the superior performance of the proposed
method in accurately capturing the characteristics of vessel data.

In conclusion, this paper introduces a new and innovative approach for extracting
vessels in brain images using the skew normal distribution and EM algorithm. The method
demonstrates remarkable precision in extracting vessels with smooth boundaries and
eliminating artifacts. Extensive testing on real MRA images confirms the effectiveness of
the approach.

Histogram plots are included to visually represent the data distributions, providing a
clear representation of the data distributions for brain MRA images. The comprehensive
analysis of the EM algorithm and the skew normal distribution highlights the importance
of starting values and suggests the potential of the generalized skew normal distribution
for future research.

Furthermore, a comparison of the estimation parameters between the proposed model
and the Wilson model illustrates the improved performance of the presented method in
accurately capturing the characteristics of the vessel data.

In summary, the proposed method offers both efficiency and accuracy in vessel ex-
traction from brain images. The combination of the skew normal distribution and the EM
algorithm allows for precise parameter estimation, resulting in superior vessel segmen-
tation results. Future research can explore the potential of the generalized skew normal
distribution and further improve the Proposed method’s performance.
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