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Abstract: In this paper, we conducted an empirical investigation of the realized volatility of cryp-
tocurrencies using an econometric approach. This work’s two main characteristics are: (i) the realized
volatility to be forecast filters jumps, and (ii) the benefit of using various historical/implied volatility
indices from brokers as exogenous variables was explicitly considered. We feature a jump-robust
extension of the REGARCH-MIDAS-X model incorporating realized beta GARCH processes and
MIDAS filters with monthly, daily, and hourly components. First, we estimated six jump-robust
estimators of realized volatility for Bitcoin and Ethereum that were retained as the dependent variable.
Second, we inserted ten Bitcoin and Ethereum volatility indices gathered from various exchanges
as an exogenous variable, each at a time. Third, we explored their forecasting ability based on the
MSE and QLIKE statistics. Our sample spanned the period from May 2018 to January 2023. The main
result featured the best predictors among the volatility indices for Bitcoin and Ethereum derived from
30-day implied volatility. The significance of the findings could mostly be attributable to the ability
of our new model to incorporate financial and technological variables directly into the specification
of the Bitcoin and Ethereum volatility dynamics.

Keywords: realized volatility; jumps; Bitcoin; Ethereum; REGARCH-MIDAS-X; forecasting

1. Introduction

The intrinsic interest of resorting to high-frequency data is to observe the price forma-
tion process at the highest frequency available on the exchanges. From that trading signal,
options traders, in particular, can take underlying positions in the derivatives markets,
typically to hedge or speculate. Another critical characteristic of our work is that we used
volatility indices as potential explanatory variables. Be it historical or implied volatility,
practitioners indeed pay particular attention to these indices, which serve to gauge the
level of ‘fear’ in the markets in the spirit of the VIX (Amendola et al. [1]).

This paper contributes to the extant literature by modeling Bitcoin and Ethereum
based on the realized mixed-frequency GARCH model. We enriched the variance dynam-
ics, akin to the GARCH-MIDAS model of Engle et al. [2] and the realized GARCH model
of Hansen et al. [3]. Taken together, we implemented a dynamically complete REGARCH-
MIDAS-X for Bitcoin and Ethereum with blockchain factors and volatility indices. MIDAS
regressions indeed appear to be a particularly attractive approach to the researcher con-
fronted with data sampled at different frequencies, with the idea of parsimony in mind.
Whereas the mean reverting daily financial volatility is modeled as a GARCH process,
the MIDAS lag polynomials apply to monthly blockchain variables. Therefore, we were
able to uncover the short- and long-term components in modeling the volatility of Bitcoin
and Ethereum. In this paper, we employed a dataset of intra-daily jump-robust time series,
coupled with monthly data for digital variables. To the best of our knowledge, this is the
first paper to consider technological factors linked to the blockchain, in addition to volatility
indices, as potential drivers of Bitcoin and Ethereum. Consistent with the idea of agents
forming expectations of risk from information over varying time horizons, this econometric
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specification allows modeling a flexible two-component structure for Bitcoin and Ethereum.
The short-term component was computed from volatility indices’ series with daily returns,
whereas the long-run component was obtained from hashrates with monthly frequency.
Linking mean reverting unit daily volatility (through the GARCH process) with monthly
technological variables (through MIDAS polynomials) is expected to bring us a wealth of
insights. It was hypothesized that including technological variables and volatility indices
in the volatility model of Bitcoin and Ethereum will enhance the predictive ability.

There is a burgeoning literature on the REGARCH-MIDAS model. So far, we can
limit its writing and applications to just a few groups of authors. On the one hand,
Hansen et al. [3] modeled jointly stock returns and realized measures of their volatility
and coined it ‘Realized GARCH’ (REGARCH). Unlike the naive augmentation of GARCH
processes by a realized measure, the REGARCH model relates the observed realized
measure to the latent volatility via the measurement equation. Besides, such a model can
capture the dependency over the short term, which should improve the empirical fit (as
measured by the log-likelihood or information criteria) and be relevant for forecasting.
Applications of the realized GARCH include, to cite a few, Watanabe [4] to quantile forecasts
of financial returns, Tian and Hamori [5] for modeling interest rate volatility, Contino
and Gerlach [6] to Bayesian tail-risk forecasting, or Bonato [7] to agricultural commodity
markets. On the other hand, Borup and Jakobsen [8] retained the short-term dynamics
from such a realized GARCH and combined it with MIDAS filters to model the long-term
component. More specifically, Borup and Jakobsen [8] initiated the theoretical groundings
of the modeling with an illustration of the S&P500 Index and 20 individual stocks. Wu
and Xie [9] provided a broader empirical application of the REGARCH-MIDAS to five
international stock market indices: the S&P 500, the Nikkei 225, the FTSE 100, the DAX,
and the SSE Composite Index. The same group of authors completed their investigation
with forecasting exercises of implied volatility on the S&P500 (Wu et al. [10]) and of the
VIX (Wu et al. [11]). Wang et al. [12] took a particular interest in the REGARCH-MIDAS
model to predict the volatility of China’s New Energy Index comprising 50 companies.
Lu et al. [13] resorted to the same kind of modeling to predict the volatility of Chinese
agricultural futures markets (i.e., soybean meal, palm oil, corn, soybean oil, soybeans, white
sugar, cotton, rapeseed oil, wheat, and rubber).

To the best of our knowledge, only Hung et al. [14] previously studied jump-robust
estimators of realized volatility for Bitcoin (not Ethereum), the model with the tri-power
variation being the best performer. When comparing jump-robust estimators for the
MIB, DAX, CAC, and FTSE stock markets, Čuljak et al. [15] documented empirically the
superiority of the two time scale version. In comparison, this paper scrutinized up to six
jump-robust estimators of the realized volatility for Bitcoin and Ethereum. It is crucial
that the econometric analysis distinguishes between the continuous and jump components
of realized volatility based on the advances in the financial econometrics literature (see,
e.g., initially, Andersen et al. [16] or, more recently, Caporin [17]). Also, jumps are very
prevalent in the tick data of Bitcoin and Ethereum, as high as 25%, as previously detected by
Sanhaji and Chevallier [18]. Taken together, these two arguments offer a proper justification
to push the research effort one step further.

The main contribution to the literature on cryptocurrency markets is to propose a
hybrid frequency approach that collapses intra-daily, daily, and monthly data in the vein
of the High-Frequency Data-Based Projection-Driven GARCH by Chen et al. [19] and
Chen et al. [20]. We propose an innovative approach based on the REGARCH-MIDAS-X
tailored to jump-robust estimators of Bitcoin and Ethereum realized volatility combined
with each cryptocurrency’s hashrate (as the MIDAS filter) and up to ten historical/implied
volatility indices (as the explanatory ‘X’ factor). The research question deals with the jump-
robust high-frequency analysis of Bitcoin and Ethereum with the exogenous informational
content of volatility indices. The building blocks of REGARCH-MIDAS-X are gradually
explained in the paper. To the best of our knowledge, we are the first empirical attempt
at including digital (stemming from blockchain) and financial (stemming from options)
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variables as exogenous variables to explain Bitcoin and Ethereum returns in such a high-
frequency jump-robust GARCH-MIDAS framework. We considered models with one
explanatory variable at a time, over the six jump-robust estimators, and conducted as well
a multi-day-ahead forecasting exercise. Our sample spans from May 2018 to January 2023.

To provide a gist of the results, the performance of REGARCH-MIDAS-X depends on the
choice of explanatory variables. According to our experiments, the model with 30-day implied
volatility as an exogenous driver was the best choice. This result was stable for the six classes of
jump-robust estimators considered. Disentangling between the short-term GARCH volatility
and the long-term MIDAS filters also led to better out-of-sample predictive ability of Bitcoin
and Ethereum volatility. The intuition behind this finding is the information flows at different
frequencies and with various degrees of persistence (Adrian and Rosenberg [21]). Daily news is
short-lived on financial markets and can be deemed as ‘high-frequency’ (Calvet and Fisher [22]).
On the contrary, monthly changes in technological conditions appear at a lower frequency and
exhibit a longer-lasting impact. Our results are useful for selecting the appropriate drivers
of Bitcoin and Ethereum. The performance of REGARCH-MIDAS-X depends indeed on the
choice of the explanatory variables. The best specification was achieved by including 30-day
implied volatility series. We concluded that adding information from derivatives options to a
REGARCH-MIDAS-X model can improve the model’s forecasting performance. The findings
can have implications for hedging investment and risk management as well.

The remainder of the article is structured as follows. Section 2 outlines the various
classes of jump-robust estimators mobilized from high-frequency data for Bitcoin and
Ethereum. Section 3 lays out the building blocks of the REGARCH-MIDAS-X models.
Section 4 details the ten volatility indices retained for Bitcoin and Ethereum as explanatory
variables. Section 5 contains the results from the REGARCH-MIDAS-X estimates and the
associated forecasts. Section 6 concludes.

2. Jump-Robust Estimators of Realized Volatility for Bitcoin and Ethereum

The price series (in levels) of Bitcoin and Ethereum are shown in Figure 1 from
TradingView (see https://www.tradingview.com/chart/?symbol=CRYPTO%3ABTCUSD
(accessed on 14 August 2023) for BTC and https://www.tradingview.com/symbols/
ETHUSD/?exchange=CRYPTO (accessed on 14 August 2023) for ETH.). These under-
lying securities serve as the basis of our empirical application.

Figure 1. TradingView’s 5-year BTCUSD (top) and ETHUSD (bottom) charts.

The tick data with a 60 min frequency for Bitcoin and Ethereum were sourced from
CryptoData Download, more specifically by selecting the Bitfinex exchange, which is the
most-liquid for derivatives (see, e.g., Alexander et al. [23] and Alexander and Dakos [24],
Alexander and Heck [25]). The sample size is equal to 1709 observations from 15 May 2018
to 17 January 2023.

https://www.tradingview.com/chart/?symbol=CRYPTO%3ABTCUSD
https://www.tradingview.com/symbols/ETHUSD/?exchange=CRYPTO
https://www.tradingview.com/symbols/ETHUSD/?exchange=CRYPTO
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Sanhaji and Chevallier [18] documented that microstructure noise is present in Bitcoin and
Ethereum high-frequency data for up to 4 min. This is on par with previous studies on the
S&P500 documenting the presence of microstructure noise up to 5 min (see, e.g., Martens [26],
Huang et al. [27]). Therefore, we considered that our paper will not be plagued by microstructure
noise, given that we downloaded the data at a 60 min frequency (e.g., hourly data).

Since Sanhaji and Chevallier [18] already documented the properties of ‘naive’ Real-
ized Volatility (RV) for Bitcoin and Ethereum, we focused instead in this article on extending
the realm of investigation to the class of jump-robust estimators of RV. More specifically,
we considered six jump-robust estimators for Bitcoin and Ethereum:

1. MedRV;
2. MinRV;
3. Realized MultiPower Variation;
4. Realized QuadPower Variation;
5. Realized Semi-Variance Downside;
6. Realized Semi-Variance Upside.

These can be viewed in Figure 2. These series will be specified iteratively as the
dependent variable in REGARCH-MIDAS-X. The corresponding descriptive statistics can
be found in Table A1 of Appendix A.

We borrowed the notations from Andersen et al. [28] in the theoretical exposition. Con-
sider the univariate logarithmic price process {ln(pt)}0≤t≤1 of an asset. The price process
is observed at the N + 1 discrete points in time 0 ≤ t0 < t1 < · · · < tN ≤ 1 over a given
period, which we refer to as a trading day. The corresponding returns and time intervals
are denoted ∆ln(pi) = ln(pti )− ln(pti−1) and ∆ti = ti − ti−1, i = 1, . . . , N. For simplicity,
assume equally spaced sampling, i.e., ∆t = ti − ti−1 = 1/N, for all i = 1, . . . , N. With re-
gard to asymptotics, the time increments between successive return observations, defining
the sampling scheme, uniformly shrink towards zero as N increases.

Next, consider the classic jump-diffusive representation:

dln(pt) = µtdt + σtdBt + dJt (1)

where µ is a locally bounded and predictable process and σ is a càdlàg and bounded
away from zero almost surely. In order to properly disentangle the continuous and jump
components, Bt stands for the standard Brownian motion (or Wiener process). J denotes a
finite activity jump process, and dJt is either zero (no jump) or a real number indicating
the occurrence and size of a jump at time t. Notice that our strategy naturally discards
the RV estimator, which would estimate the total quadratic variation of the observed
semimartingale, including the contribution from the cumulative squared jumps.

In this paper, we really needed to estimate the Integrated Variance (IV), defined as
IV =

∫ 1
0 σ2

udu. To achieve this task, we started with the first two MinRV and MedRV
estimators of integrated variance:

MinRVN =
π

π − 2

(
N

N − 1

) N−1

∑
i=1

min(|∆ln(pi)|, |∆ln(pi+1)|)2

MedRVN =
π

6− 4
√

3 + π

(
N

N − 2

) N−1

∑
i=2

med(|∆ln(pi−1)|, |∆ln(pi)|, |∆ln(pi+1)|)2

(2)

The scaling factors ensure that every summand on the right-hand side of the equa-
tion provides an unbiased estimate of the underlying spot variance if the corresponding
returns block is i.i.d. Gaussian. The interest behind the MinRV and MedRV estimators
stems from the min/med operators fully eliminating returns contaminated by a large
jump. Andersen et al. [28] demonstrated that the MinRV and MedRV estimators are indeed
consistent for the IV.
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Figure 2. Jump-robust estimators for Bitcoin and Ethereum from 15 May 2018 to the present. Note: For
Bitcoin, rmedrvarbit is the MedRV estimator, rminrvarbit the MinRV estimator, rmpvarbit the RMPV
estimator, rqpvarbit the RQPV estimator, rsvardownbit the RSV-down estimator, and rsvarupbit the
RSV-up estimator. The corresponding estimators are indexed by eth for Ethereum.

Third, Andersen et al. [28] generalized the class of Realized MultiPower Variation
(RMPV) statistics, defined via the cumulative sum of m products of adjacent absolute
returns raised to the (r/m)′th order, where m is a positive integer and r a positive real
number, usually an integer. Hence, the cumulative power of the adjacent products equals
r. In the numerical implementation of RMPV, the window size of return blocks was set
equal to 2 by default. Similarly, the power of the variation was set equal to 2 by default.
These statistics provide consistent estimators for the corresponding integrated power of
the volatility:
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RMPVN(m; r) = dm,r

(
N

N −m + 1

)
(N)r/2−1

N−m+1

∑
i=1

|∆ln(pi)|
r
m ∏|∆ln(pi+m−1)|

r
m P→

∫ 1

0
σr

udu (3)

where dm,r is a known constant dependent only on m and r, while
(

N
N−m+1

)
is a finite-

sample-correction factor. If the adjacent returns are i.i.d. Gaussian, each summand in
the equation delivers an unbiased estimate of the power of spot volatility. The sum,
therefore, provides a (converging) Riemann approximation to the integrated power of the
volatility process. In this context, RMPV effectively generalizes the entire first generation
of estimators in the realized volatility literature.

Fourth, it is, therefore, immediate to derive the Realized QuadPower Variation as:

RQPVN = RMPVN(4; 2) (4)

In the presence of a finite activity jump process, the additional benefit of the Quad-
Power measure is to allow an associated asymptotic mixed normal limit theory.

Last, but not least, we considered two additional jump-robust estimators originating
from Barndorff-Nielsen et al. [29]. We now follow the notations from Bollerslev et al. [30],
who assumed that high-frequency intraday prices pt, pt+1/n, . . . , pt+1 are observed at n + 1
equally spaced times over the trading day [t, t + 1]. Furthermore, Bollerslev et al. [30]
denoted the natural logarithmic discrete-time return over the ith time-interval on day t + 1
by rt+i/n = pt+i/n − pt+(i−1)/n.

According to these latest notations, the fifth Realized Downside Semi-Variance (RSV-
down) and sixth Realized Upside Semi-Variance (RSV-up) estimators decompose the total
realized variation into separate components associated with the positive and negative
high-frequency returns:

RSV− up =
n

∑
i=1

r2
t−1+i/n1{rt−1+i/n>0} ,

, RSV− down =
n

∑
i=1

r2
t−1+i/n1{rt−1+i/n<0}

(5)

For practical applications, think of RSV-down as a new source of information that
focuses on squared negative jumps. Conversely, RSV-up may be of particular interest to
investors with short positions in the market (hence, a fall in price can lead to a positive
return and, hence, is desirable), such as hedge funds. Moreover, it is possible to show that:

RSV− up→ 1
2

∫ t

t−1
σ2

s ds + ∑
t−1≤τ≤t

J2
τ1(Jτ>0),

RSV− down→ 1
2

∫ t

t−1
σ2

s ds + ∑
t−1≤τ≤t

J2
τ1(Jτ<0),

(6)

such that the separately defined positive and negative semi-variance measures converge to
one-half of the integrated variance plus the sum of squared positive and negative jumps,
respectively. These limiting results imply that the difference between the semi-variances
removes the variation due to the continuous component and, thus, only reflects the variation
stemming from jumps. Bollerslev et al. [30] referred to this ‘good’ minus ‘bad’ realized
volatility measure as the signed jump variation.

In the next section, we consider how to plug these six jump-robust estimators of
realized volatility for Bitcoin and Ethereum, which we display in Figure 2, as the dependent
variable into the REGARCH-MIDAS-X model.

3. Building Blocks of the Realized GARCH-Mixed Data Sampling-X Model

For methodological purposes, we detail the econometric methodology and the various
estimation tasks step-by-step.
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3.1. Objectives of the Model

Looking at the evolution of the prices of any asset, a good understanding of the evolu-
tion of the associated volatility is essential. GARCH processes (Engle [31], Bollerslev [32])
allow the extraction of information about the current level of volatility. Nevertheless,
the current level of volatility based on the squared returns can appear as poor information
when this volatility changes rapidly to a new level. Thus, a GARCH process is slow at
catching these changes.

If the assets are known by their daily prices, the GARCH models give information
on the volatility of these daily prices. The recent availability of high-frequency data
(second, minutes, etc.) has caused researchers to introduce new measures of volatility
called realized measures of volatility, which were introduced into the GARCH modeling.
Thus, Hansen et al. [3] introduced the Realized GARCH (REGARCH) model in 2011. These
REGARCH models have provided an advantageous structure for the joint modeling of
stock returns and realized volatility measures.

According to Andersen et al. [33], the exploitation of granular information in high-
frequency data by considering realized measures constitutes a much stronger signal of
latent volatility than squared returns. However, with this approach, we do not capture
the existence of the dependence structure characterized by a positive and slowly de-
caying autocorrelation function or a persistence parameter close to unity (the famous
‘integrated’ GARCH effect). A multiplicative decomposition of the conditional variance
into a short-term and a long-term component has been developed to capture the evident
high persistence.

In 2019, Borup and Jakobsen [8] modeled the short-term component via a first-order
REGARCH model and the long-term component via, for instance, a MIxed-DAta Sampling
(MIDAS) structure. In this long-term component, several MIDAS variables can be taken
into account. Typically, they could be macro variables like global financial stress indexes,
some economic policy uncertainty indexes known at a monthly frequency, or financial
variables like the monthly realized volatility computed through the daily realized variances.

In this paper, we aimed to understand better the evolution of Bitcoin and Ethereum
price swings observed within a day. Thus, we investigated the volatility of these crypto
assets by looking simultaneously at the evolution of their latent volatility based on daily
returns with long- and short-term components, as well as their jump-robust realized
volatility based on high-frequency data (60 min). With the perspective of a long-term
forecasting horizon, we are interested in detecting the drivers behind these cryptocurrency
assets by considering the existence of persistence in their volatility.

We proceed with a brief exposition of the REGARCH-MIDAS-X model to answer these
different expectations. A full-fledged version can be found in Borup and Jakobsen [8].

3.2. Some Notations

Let (rt)t denote a time series of returns, (xt)t a time series of realized measures, and Ft
a filtration so that (rt, xt) is adapted to Ft. We define the conditional mean µt = E[rt|Ft−1]
and the conditional variance σ2

t = E[(rt − µt)2|Ft−1]. We now introduce the specific model-
ing for rt introducing several time scales that we used in terms of low and high frequencies.

We define the daily returns ri,t = 100× (ln(pi,t)− ln(pi−1,t)), where pt is the price
of the asset. In the MIDAS framework, it is convenient to introduce two time scales:
here, t = {1, · · · , T} denotes the monthly frequency and i = {1, · · · , Nt} the number
of days within a month t, (Typically, m = 22 to amount to the number of days traded
within a month. m can be formulated either via keeping it locally constant or else based
on a local moving window. Engle et al. [2] documented that the difference between the
two is negligible.) We assumed that the conditional mean µt corresponds to a zero-beta
portfolio (Black [34]):

ri,t = µt + εi,t, (7)

with
εi,t = σi,t.zi,t =

√
hi,tgt.zi,t. (8)
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The innovation zi,t is assumed to be i.i.d. with mean zero and variance one (The
innovation zi,t ∼ tν(0, 1) is an i.i.d random variable from a Student’s t distribution with
ν degrees of freedom, as fat-tailed distributions are found adequate to describe financial
data (Kuester et al. [35]).); hi,t and gt denote the short- and long-term components of the
conditional variance, respectively.

The short-term component hi,t varies at the daily frequency and follows a unit variance
GARCH(1,1) process. We used a logarithmic specification, which automatically ensures a
positive variance:

log hi,t = (1− α− β) + β log hi−1,t + α

(
ε2

i−1,t

gt

)
(9)

where α > 0, β ≥ 0, and α + β < 1.
The specification of the long-term (secular, low-frequency) volatility component builds

on a long tradition, dating back to Merton [36] and Schwert [37], of measuring long-run
volatility by realized volatility over a monthly horizon. What is new here is that gt is
specified by smoothing historical realized volatilities in the spirit of MIDAS filtering,
instead. Accordingly, the long-term component gt is regressed on a set of variables, varies
at the monthly frequency, and is given by:

log gt = m + θ
K

∑
k=1

ϕk(ω1, ω2)Xt−k + z
K

∑
k=1

ϕk(ω1, ω2)Volt−k (10)

where m > 0 and K is the number of periods over which the variables are smooth. Xt−k
denotes the MIDAS variable at the monthly frequency. θ assigns the importance of the
MIDAS variable. z is the parameter accounting for the statistical significance of the volatility
index Volt−k inserted one at a time as an exogenous explanatory variable in our REGARCH-
MIDAS-X experiments.

The parameter ϕk(ω1, ω2) depicts a selected weighting scheme. This procedure al-
lowed us to estimate optimally the number of lags for both the daily and monthly returns
within MIDAS. It can produce various lag structures for past returns, monotonically increas-
ing/decreasing, hump-shapes, etc. Ghysels et al. [38] documented that the beta function is
a better choice than the exponential Almon for high-frequency models. In our setting, we,
therefore, introduced:

ϕk(ω1, ω2) =

(
k

K + 1

)ω1−1( 1− k
K + 1

)ω2−1

K

∑
j=1

(
j

K + 1

)ω1−1( 1− j
K + 1

)ω2−1 . (11)

By construction, the weights ϕk(ω1, ω2) ≥ 0, k = {1, · · · , K}, sum to one. Practically,
we imposed ω1 = 1, which implies that the weights are monotonically declining.

We now introduce the realized measure of volatility xi,t, inside the measurement
equation, which provides a framework for the joint modeling of returns and volatility based
on high-frequency data. Specifically, this paper features jump-robust estimators (sampled
at an hourly frequency to avoid microstructure noise; see, e.g., Hansen and Lunde [39])
of Bitcoin and Ethereum instead of the naive RV, as recalled in Section 2 (see Sanhaji and
Chevallier [18] for a further reference).

Unlike the naive augmentation of GARCH processes by realized measures, the RE-
GARCH model relates the observed realized measure to the latent volatility via the mea-
surement equation. According to Hansen et al. [3], including the realized measure in the
model and the fact that xi,t has an ARMA representation motivate its name. In what follows,
t denotes the daily frequency and i is the hourly frequency:

log xi,t = ξ + φ log hi,t + ν(zi,t) + ui,t. (12)
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The sequence ui,t was assumed to be i.i.d. with mean zero and variance σ2
u , zt and ut

being mutually independent. Equation (12) is natural when xi,t is a consistent estimator of
the integrated variance. The innovation is captured by ν(zi,t) + ui,t.

ν(z) is called the leverage function. This function captures the dependence between
returns and future volatility, and we used the functional form constructed on Hermite
polynomials, i.e.,:

ν(z) = ν1z + ν2(z2 − 1) + ν3(z3 − 3z) + ν4(z4 − 6z2 + 3) + . . . (13)

The choice of Hermite polynomials is retained here, permitting a simple quadratic
form, ensuring E[ν(z)] = 0 with E[zt] = 0 and Var[zt] = 1 for any distribution. This form
generates an asymmetric response in volatility to returns shocks, permitting mapping out
how positive and negative shocks to the price affect future volatility. The parameter φ
reflects how much the daily volatility occurs during trading hours. The parameters ν1 and
ν2 (for instance) show how a shock in the price impacts volatility. For that, we can use the
impact curve defined as δ(z) = E[log ht+1|zt = z]− E[log ht+1]. So, 100δ(z) measures the
percentage impact on volatility as a function of a return shock: δ(z) = γν(z).

To sum up, Equation (7) is labeled as the ‘return equation’, Equation (9) as the ‘GARCH
equation’, Equation (10) as the ‘long-term’ equation, Equation (11) as the ‘weighting
scheme’, and Equation (12) as the ‘measurement equation’. In this multiplicative frame-
work, the ‘GARCH equation’ drives the dynamics of latent volatility. The ‘measurement
equation’ is the true innovation in REGARCH and makes the model dynamically complete.
It links the ex post realized measure with the ex ante conditional variance. It facilitates
a simple modeling of the dependence between returns and future volatility. Of course,
discrepancies between the two measures can be observed in ui,t. On the one hand, the con-
ditional variance refers to close-to-close market intervals (e.g., daily returns). On the other
hand, the realized measure is computed from open-to-close market intervals (in our setting,
hourly sampling frequency). That is why both proportional ξ and exponential φ correction
parameters are included.

Taken together, Equations (7)–(12) form the realized mixed-frequency GARCH model
for time-varying conditional variance, which we propose to tailor to jump-robust estimators
of Bitcoin and Ethereum (with volatility indices as exogenous variables) as an original
application of this paper.

3.3. Estimation Practicalities

In the tables of results, the parameter space will be synthetically reproduced as
Θ = {α, β, z, m, θ, ω2} with distributional assumptions zi,t ∼ tν(0, 1) and ui,t ∼ N (0, σ2

u).
zi,t and ui,t were assumed to be mutually and serially independent. Hansen et al. [40]
further detailed the decomposition of the conditional density, leading to two contributions
to the log-likelihood function. Empirically, the model is estimated by the Quasi-Maximum
Likelihood Estimator (QMLE).

The asymptotic analysis of the quasi-maximum likelihood estimator for the GARCH
MIDAS model can be found in Wang and Ghysels [41]. They provided a rigorous analysis
of the maximum likelihood estimator of the GARCH-MIDAS model, so that it admits
covariance stationary or strictly stationary ergodic solutions or satisfies β-mixing properties.
Besides, they documented that the QMLE is unbiased and the asymptotic standard errors
are valid in the presence of exogenous explanatory variables.

For the realized GARCH, Hansen et al. [3] and Hansen and Huang [42] detailed the
regularity conditions that justify the QMLE’s inference. They noticed that the mathematical
structure of the log-likelihood function for the realized GARCH is similar to the structure
analyzed in Straumann et al. [43], who adopted a stochastic recurrence approach to analyze
the QMLE properties for a broad class of GARCH models. Besides, they relied on their
proof of previous works by Jensen and Rahbek [44] and Jensen and Rahbek [45], document-
ing that the QMLE is consistent with a Gaussian limit distribution regardless of the process
being stationary or non-stationary. Regarding the theoretical properties of the log-linear
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specification in the realized GARCH, Hansen et al. [3] provided closed-form expressions for
the first and second derivatives of the log-likelihood function that enable the computation
of robust standard errors (An attractive feature of the log-linear representation is that it con-
veniently preserves the ARMA structure that characterizes the GARCH equation. Another
advantage of using a logarithmic form is that it automatically ensures a positive variance.
Hansen et al. [3] presented additional evidence in favor of the log-linear specification in
Section 5.5 of their paper.).

Based on previous works by Han and Kristensen [46], Han [47], and Francq et al. [48],
Borup and Jakobsen [8] further documented the log-likelihood function of
REGARCH-MIDAS:

L(r, x; Θ) =
N

∑
i=1

T

∑
t=1

{
−1

2

[
log 2π + log hi,t + z2

i,t

]
− 1

2

[
log 2π + log σ2

u +
u2

i,t

σ2
u

]}
(14)

In Equation (14), the joint log-likelihood is split into a sum of univariate models,
whose likelihood can be maximized separately. The factorization of the likelihood is
possible because:

1. All observables are tied to their individual latent volatility process (e.g., xi,t is tied
directly to the conditional volatility hi,t);

2. The innovations zi,t and ui,t are taken to be independent in the formulation of the
likelihood function.

Borup and Jakobsen [8] proceeded to calculate the score functions as a martingale
difference sequence, which defines the first-order conditions for the maximum-likelihood
estimator and facilitates the direct computation of standard errors for the coefficients.
Specifically, for the long-run component, the derivatives for REGARCH-MIDAS can be
found in Equation (A.41) of their Supplementary Appendix. To check the validity of the
asymptotic distribution of the estimators, Borup and Jakobsen [8] followed the paramet-
ric bootstrapping technique by Paparoditis and Politis [49]. The in-sample distribution
of the estimated parameters for REGARCH-MIDAS aligns with a normal distribution.
The authors concluded that the QMLE approach and associated inferences are valid.

In terms of estimation ‘tricks’, we initialized the conditional variance process log h0,0 = 0
to be equal to its unconditional mean. To initialize the long-term component log gt, we set
the past values of log xi,t equal to log x1,1 for the length of the backwards-looking horizon
in the MIDAS filter. To avoid the issues of inferior local maxima during the estimation, we
considered a grid of starting values by perturbation. Given this perturbation, the numerical
optimization was stable. Currently, the estimation of MIDAS filters is eased by several licensed
(e.g., Matlab, Eviews) or GNU (R CRAN, Octave, Gretl) software, with resources flagged on
Eric Ghysel’s website (http://eghysels.web.unc.edu/ (accessed on 13 January 2023) (Onno
Kleen and Daniel Borup also will provide their respective codes upon request to them.).

3.4. Selecting the Mixed Data Sampling Filter: Cryptocurrency Hashrates

Since the seminal contribution by Ghysels et al. [50], the appeal of MIxed DAta Sam-
pling (MIDAS) has been immediate to all macroeconomists (Ghysels et al. [38] defined
the MIDAS regressions as “a simple, parsimonious, and flexible class of time series models that
allow the left-hand and right-hand variables of time series regressions to be sampled at different
frequencies”.). It offers, indeed, the possibility to contrast the frequency available in financial
markets (typically, daily or intraday) with that available for macroeconomic variables (e.g.,
quarterly or monthly). By using the highest frequency available for each series, the econo-
metrician is, therefore, not losing any information, as he/she would have in the case where
he/she had harmonized all the series (say, to monthly frequency) to obtain a balanced
sample. Initial applications of this technique include, to cite a few, Ghysels et al. [51], who
found a significantly positive relation between the conditional mean and the conditional
variance of the aggregate stock market return, or Ghysels et al. [52], who considered various
MIDAS regressions to predict volatility. A survey can be found in Ghysels et al. [38].

http://eghysels.web.unc.edu/
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MIDAS consists of two additive components, one interpreted as a short-run (tran-
sitory) component estimated with daily return data and a second one identified as the
long-run (secular trend) component obtained from macroeconomic monthly data. Alterna-
tively, the short-term part could reflect the day traders’ investment horizon. In contrast,
the long-term component could relate to pension funds or other types of investors with
longer-term maturities in mind. Katsiampa [53] documented that Bitcoin volatility can
indeed be decomposed into short- and long-term components. Once again, we observed
the ability of the component models to capture complex dynamics via a parsimonious
parameter structure.

Regarding the long-term MIDAS macro component serving as a proxy of the business
cycle, the monthly industrial production is typically selected by studies on the S&P 500 in-
dex (see, e.g., Engle et al. [2] or Conrad and Loch [54]). In this paper, we opted for a more
‘digital’ MIDAS filter by selecting the hashrate, which shows the historical measure of the
processing power on a given blockchain network. For instance, Bitcoin’s market price and
total hashrate tend to go hand in hand (see, e.g., Fantazzini and Kolodin [55], Marthinsen
and Gordon [56], and Kubal and Kristoufek [57]), as is visible to the interested reader in
Figure A1 of Appendix A. Bitcoin’s monthly hashrate was sourced from Nasdaq Data Link.
Ethereum’s hashrate was sourced from Etherscan. Both variables are displayed in Figure 3.
The ‘digital’ MIDAS filter was transformed to a logarithmic first difference.

Figure 3. Nasdaq Data Link’s monthly hashrate for Bitcoin from 31 January 2009 to the present (left)
and Etherscan’s Ethereum hashrate from 30 July 2015 to the present (right).

4. Volatility Indices for Bitcoin and Ethereum: The ‘X’ Factor

This section details the (10×) Bitcoin and Ethereum volatility indices that will be
used as the ‘X’ in the REGARCH-MIDAS-X model in the subsequent estimation and
prediction steps.

4.1. Historical Volatility Indices

Compass Financial Technologies proposes a wide array of Crypto Volatility Target
Indices. Two of them are of particular interest to us in this paper. On the one hand,
we have the Compass Crypto Volatility Index Bitcoin 20% (CVTBTC20), computed from
Kaiko’s historical tick-by-tick trade data, whose annualized historical volatility target
algorithm is set at 20%. On the other hand, we find the Compass Crypto Volatility Target
Index Ethereum 20% (CVTETH20), which exhibits similarly an annualized volatility target
of 20% by functioning on rolling windows (Compass FT’s methodology is available at
https://www.compassft.com/wp-content/uploads/CCVT$_$Methodology.pdf (accessed
on 13 August 2023)). Both Bitcoin- and Ethereum-based indices from Compass FT are
available from 4 February 2016 onwards. The Compass BTC and ETH Target Volatility
Indices are shown in Figure 4.

https://www.compassft.com/wp-content/uploads/CCVT$_$Methodology.pdf
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Figure 4. Compass FT’s CVTBTC20 and CVTETH20 from 4 February 2016 to the present.

Next, Bitcoinity has created a Bitcoin Price Volatility Index from various exchanges.
We chose Bitfinex as one of the most-liquid crypto exchanges, especially for derivatives.
The index is computed as the standard deviation from all market trades, in logarithmic
form, with a moving average smoothing. Bitcoinity’s index has been computed since
10 March 2013. It is shown in Figure 5.

Figure 5. Bitcoinity’s Bitcoin Price Volatility Index from 10 March 2013 to the present.

Regarding Ethereum, Volmex Labs Finance calculates the Ethereum Volatility Index
(ETHV) to track Ethereum’s expected historical volatility over the next 30 days. This token
has been available on several exchanges like CoinGecko since 28 June 2021. It is reproduced
in Figure 6.
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Figure 6. Volmex Labs Finance’s ETHV from 28 June 2021 to the present.

4.2. Implied Volatility Indices

Alexander and Imeraj [58] constructed their own Bitcoin VIX, by following the same
methodology as the original CBOE’s VIX. The index is calculated using 30-day Bitcoin
options data from the broker Deribit. Their index is now registered on Cryptocompare
under the BVIN (Bitcoin Volatility Index) ticker. This volatility index is available from
1 December 2020 onwards. It is reproduced in Figure 7.

Figure 7. The Bitcoin Volatility Index (BVIN) from 1 December 2020 to the present.

Next, Triple3 Partners have proposed both the BitVol (Bitcoin Volatility) and EthVol
(Ethereum Volatility) indices measured from 30-day implied volatility on at-the-money op-
tions for BTC and ETH, respectively (the T3Index documentation is available at https://t3
index.com/wp-content/uploads/2022/06/Bit-Vol-process$_$guide-Jan-2019-2022$_$03$_
$22-06$_$02$_$32-UTC.pdf (accessed on 13 August 2023)). These volatility indices are
available from 8 January 2019 onwards for BTC and from 15 April 2020 onwards for ETH.
They are reproduced in Figure 8.

https://t3index.com/wp-content/uploads/2022/06/Bit-Vol-process$_$guide-Jan-2019-2022$_$03$_$22-06$_$02$_$32-UTC.pdf
https://t3index.com/wp-content/uploads/2022/06/Bit-Vol-process$_$guide-Jan-2019-2022$_$03$_$22-06$_$02$_$32-UTC.pdf
https://t3index.com/wp-content/uploads/2022/06/Bit-Vol-process$_$guide-Jan-2019-2022$_$03$_$22-06$_$02$_$32-UTC.pdf
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Figure 8. Triple3 Partners’ BitVol and EthVol from 8 January 2019 to the present.

As a broker, Deribit also proposes its own custom BTC and ETH Volatility Indices
(DVOLBTC and DVOLETH, respectively). Their methodology also hinges on a 30-day
implied volatility from options (the Deribit documentation is available at https://insights.
deribit.com/industry/demystifying-dvol-futures/ (accessed on 13 August 2023)). The
Deribit Volatility Indices are available from 26 March 2023 onwards. The Deribit Volatility
Indices are visible in Figure 9.

Figure 9. Deribit’s DVOLBTC and DVOLETH from 26 March 2023 to the present.

4.3. Aggregate Cryptocurrency Volatility Indices

The Crypto Volatility Index (CVI) is advertised as ‘the VIX of Crypto’ by CVI Finance.
As for the original VIX, the goal is to estimate the 30-day implied volatility based on
the Black–Scholes options pricing model tailored for Bitcoin and Ethereum options (the
CVI documentation is available at https://docs.cvi.finance/cvi-index/index-calculation
(accessed on 13 August 2023)). The CVI is available on Investing.com from 31 March 2019
onwards. It is pictured in Figure 10.

There used to be another competitor for the VIX of the whole cryptocurrency market,
also known as the VCRIX computed by Kim et al. [59]. However, the VCRIX has been

https://insights.deribit.com/industry/demystifying-dvol-futures/
https://insights.deribit.com/industry/demystifying-dvol-futures/
https://docs.cvi.finance/cvi-index/index-calculation
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discontinued since the acquisition of the Royalton CRIX by the S&P Global Indices. There-
fore, we cannot consider the VCRIX in further empirical research (the interested reader can
verify that the VCRIX ends on 14 December 2022 at http://data.thecrix.de/data/vcrix.csv
(accessed on 13 August 2023)).

The interested reader can find descriptive statistics on these (10×) volatility indices in
Table A2 of Appendix A.

Figure 10. CVI Finance’s Crypto Volatility Index from 31 March 2019 to the present.

5. Empirical Results

Given the high persistence of volatility, previous literature developed a multiplica-
tive decomposition of the conditional variance into short- and long-term components
(Engle and Rangel [60] and Conrad and Kleen [61]). Engle et al. [2] first developed the
MIDAS with GARCH effects (To be precise, Engle and Rangel [60] introduced earlier an
exponential spline-GARCH as a convenient nonnegative parameterization. The spline-
GARCH model formulates the low-frequency volatility in a nonparametric manner so that
the long-run variance is time-varying.). This technique combines the works of Engle [31]
and Bollerslev [32] on Generalized Autoregressive Heteroskedasticity with mixed data
sampling regressions (Ghysels et al. [50] and Ghysels et al. [38]). The GARCH-MIDAS
model modifies the dynamics of low-frequency volatility to be stochastic in the spirit of
MIDAS filtering so that it can directly incorporate data sampled at a lower frequency (e.g.,
monthly data) than the asset returns (typically, computed on a daily or intraday basis).
This combination relates to a long tradition of volatility models with multiple components
linking stock markets and economic activity, pioneered by Ding and Granger [62], Engle
and Lee [63].

We posit that the predictive ability of Bitcoin and Ethereum will be enhanced if we
add high-frequency data. As recalled by Ghysels et al. [38], the variables that are avail-
able at a high frequency contain potentially valuable information. Conrad and Kleen [61]
demonstrated that the autocorrelation function of squared returns is better captured by a
multiplicative GARCH specification, rather than a nested GARCH(1,1) model, arising from
persistence in the long-term component. Improvements in information gathering on finan-
cial markets have eased access to such intra-daily data, and it would be a waste of data for
the econometrician to discard them. To mitigate the effects of microstructure noise (Bandi
and Russell [64]) (See the discussion in Section 4.3 of the paper by Ghysels et al. [38].),
the MIDAS regressions cannot be run directly on (unequally spaced) raw tick-by-tick
data, but rather on pre-built hourly jump-robust realized volatility series for Bitcoin and
Ethereum, as detailed in Section 2.

http://data.thecrix.de/data/vcrix.csv
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Regarding introducing the ‘X’ factor, Borup and Jakobsen [8], notice that
their REGARCH-MIDAS specification can accommodate the inclusion of exogenous infor-
mation such as low- or high-frequency variables. As explained in Section 4, gathering
historical and implied volatility indices from brokers will lead to augmented information
when inserting one ‘X’ variable at a time. Thus configured, it is expected that REGARCH-
MIDAS-X will capture a rich set of dynamics pertaining to Bitcoin and Ethereum, which
would have been impossible to capture by running same-frequency regressions.

We experimented with several versions of the jump-robust REGARCH-MIDAS-X
model. A skewness parameter γ can be specified. However, the sign of the γ parameter was
not found to be consistent between the jump-robust REGARCH-MIDAS models with and
without the X component. Therefore, it was deemed not necessary. Asymmetry (positive
or negative) was also investigated, but the parameters were never statistically significant,
so we did not further consider this effect. Considering a parsimonious estimation of the
REGARCH-MIDAS-X model, we decided to drop the skewness and asymmetric effects
from the space of coefficients to be estimated.

5.1. Setting the Mixed Data Sampling Lags

Recall that the REGARCH-MIDAS-X specification allows us to extract two components of
volatility via mixed data sampling: (i) the short-term volatility and (ii) the long-run (or secular)
volatility. Classically, the short-run volatility is a GARCH component based on daily returns
that moves around a long-run component driven by the hashrate variable computed over a
monthly basis. The short-run volatility corresponds to daily trading conditions. The long-run
trend component is smoother. Therefore, the MIDAS weighting scheme helps us extract the
slowly moving secular component around which daily volatility moves.

The weights {ω1, ω2} are parametrized via the beta weighting scheme in Equation (11),
with k = 264 (roughly one year of trading on daily data) and K = 36 (approximately three years
of monthly data for the Bitcoin and Ethereum economic cycle). Ghysels et al. [38] underlined
that most MIDAS regressors involve polynomials, putting hardly any weight on longer lags.
Engle et al. [2] showed that optimal weights decay to 0 around thirty months of lags, regardless
of the choice of t and the length of MIDAS lag year. Borup and Jakobsen [8] recalled that an
important aim of the MIDAS filters is parsimony (compared to lags in the ARMA structure).
As long as the weighting function is flexible, the choices of the lag length of the MIDAS
components k and K are of limited importance, if they are chosen to be reasonably large.
Conrad and Kleen [61] confirmed that the estimated MIDAS weighting schemes no longer
change once the selected lag length is sufficiently large. Engle et al. [2] even implemented
an upper bound on the MIDAS beta polynomial parameters at 300, as values above this
tend to create numerical instability. From that perspective, our choices of lag length appear
rather conservative (To put it differently, Borup and Jakobsen [8] suggested a methodology for
choosing a uniform value for the lag length of the MIDAS filters k and K. The econometrician
needs to estimate the model for a range of lag values and choose that for which higher
values lead to no sizeable gain in the maximized log-likelihood value. In Part D of their
Supplementary Appendix, the interested reader can verify that the maximized log-likelihood
values initially increased until lag 25–50 (in weekly frequency), after which the values reached
a ceiling. Therefore, information up to half a year in the past seems most important for
explaining the conditional variance dynamics. They proceeded with a choice of K = 52 for
the weekly MIDAS and K = 12 for the monthly MIDAS. At its core, this is the spirit of the
algorithm we designed to estimate the system of Equations (7)–(12).).

5.2. Estimation Step

In this section, we examine the empirical fit of the REGARCH-MIDAS-X specifica-
tion. One exogenous variable at a time can be added. More explanatory variables are
computationally difficult and yield unstable estimation results (Conrad and Kleen [61] ex-
perimented with including more than two variables in the long-term component. However,
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they concluded that the likelihood is relatively insensitive with respect to changes in the
weighting parameters.).

In Tables 1–12, we report the estimated parameters, their standard errors, and the as-
sociated maximized log-likelihood values for the models under consideration. To facilitate
the reading of tables of the results, the color coding is the following:

• *** stands for 1% statistical significance and is highlighted in green ;

• ** stands for 5% statistical significance and is shown in orange ;

• * stands for 10% statistical significance and is shown in yellow ;

• The values that minimize the forecasting criteria MSE and QLIKE are finally displayed
in gray .

In terms of the full log-likelihood and information criteria, it is customary to inspect
that the best goodness-of-fit is obtained for the lowest BIC and, correspondingly, that the
worst fit is reached for low log-likelihood values. Overall, the jump-robust estimators
yielded very similar results. Small differences can only be seen in the log-likelihood, AIC,
and BIC scores.

We derived a number of notable findings. The robust standard errors suggested that
almost all parameters were significant. Another interesting feature appearing in the tables is
that the sums of α + β ≈ 0.90, i.e., inferior to 1, as per the model’s requirement. Deviations
of the short-term component from the long-term component were short-lived for the daily
part of REGARCH-MIDAS-X.

The GARCH parameter was smaller than what is usually observed for conventional
GARCH models. Indeed, some persistence in the volatility was already captured by the
jump-robust estimators of realized volatility.

As a way of addressing parameter proliferation, Ghysels et al. [38] recalled that,
in a MIDAS regression, the coefficients of the lag polynomial are captured by a known
function (e.g., the beta function in our case) of a few parameters summarized in a vector θ.
We verified that θ is strongly significant (except for BTC’s MinRV, MultiPower Variation,
and Realized SemiVariance), which confirmed the presence of the MIDAS hashrate filtering.

In what follows, we interpret the MIDAS parameters θ and ω2. For MedRV-BTC-
DvolBtc (Table 1), the parameter estimate of θ was 0.0070 (at the 1% level). Since the
weighting function put 2.0000 on ω2, we found that a high level of Bitcoin’s hashrate
during the current month would increase Bitcoin’s long-term volatility. The same reasoning
applies to MedRV-ETH-DvolETH (Table 2).

To extend our investigation of how much cryptocurrency volatility relates to the
hashrate, consider next RQPV-BTC-DvolBTC (Table 7). The optimal weighting function
was stable at θ = 0.0070 (with 1% significance), which put 2.0000 as well on ω2. For RQPV-
ETH-DvolETH (Table 8), the parameter θ was again positive: increasing the hashrate led to
high ETH volatility.

Notice that, in a few instances, the parameter θ can turn to negative, as for RSV-down-
ETH-CVI (−0.4672 with 1% significance) in Table 10 with ω2 = 2.0859 (at the 5% level).
For an increase in Ethereum’s hashrate one month before, the interpretation was that the
long-term volatility of Ethereum would rather decrease on that occasion.

Next, we turn to investigating the parameter z, which accounts for the ‘X’ factor.
The parameter estimate of z ranged from −0.0632 to 0.0547 at a 1% statistical significance.
As a matter of fact, z was only negative and significant in the case of RMPV-BTC-BitVol
(Table 5). The rest of the time, z exhibited a cyclical pattern: increased in historical or
implied volatility increased the underlying cryptocurrency’s volatility. In terms of the
parameter estimate of z, this rather cyclical finding implied that a 1% increase of historical
or implied volatility in the current month would increase Bitcoin’s or Ethereum’s volatility
the next month by 0.05%.
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Table 1. Estimation results for MedRV BTC.

α β z m θ ω2 LL AIC BIC MSE QLIKE
MedRV-BTC 0.4866 0.3629 −11.1678 0.0494 10.0070 1096.2108 −2182.4216 −2164.7546 - -
MedRV-BTC-CvtBtc20 0.1501 0.8468 0.0503 −0.0186 0.0070 2.0000 276.4898 −540.9797 −519.7793 463.0488 0.7613
MedRV-BTC-Bitcoinity 0.1295 0.8303 0.0547 −0.0178 0.0067 2.0000 30.1268 72.2535 93.4539 318.4513 0.5734
MedRV-BTC-BVIN 0.1428 0.8408 0.0519 −0.0184 0.0069 2.0000 77.7664 −143.5329 −122.3325 246.0094 0.4471
MedRV-BTC-BitVol 0.5015 0.3627 −0.3424 −11.1308 0.1515 9.7312 1097.1519 −2182.3037 −2161.1034 142.7501 0.1625
MedRV-BTC-DvolBtc 0.1495 0.8459 0.0501 −0.0186 0.0070 2.0000 243.5564 −475.1128 −453.9125 146.2702 0.1895
MedRV-BTC-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 105.8110 −199.6220 −178.4217 242.9609 0.4410

Table 2. Estimation results for MedRV ETH.

α β z m θ ω2 LL AIC BIC MSE QLIKE
MedRV-ETH 0.6490 0.3326 −10.5938 −0.5012 4.1152 1221.9385 −2433.8771 −2416.2101 - -
MedRV-ETH-CvtEth20 0.1485 0.8455 0.0511 −0.0185 0.0070 2.0000 211.2266 −410.4531 −389.2528 452.2664 0.7493
MedRV-ETH-Ethv 0.1485 0.8454 0.0504 −0.0186 0.0070 2.0000 188.5920 −365.1841 −343.9837 236.6959 0.4284
MedRV-ETH-EthVol 0.1440 0.8418 0.0524 −0.0184 0.0069 2.0000 119.4148 −226.8297 −205.6294 268.1141 0.4895
MedRV-ETH-DvolETH 0.1488 0.8455 0.0501 −0.0186 0.0070 2.0000 207.3172 −402.6344 −381.4340 148.2760 0.1961
MedRV-ETH-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 105.6346 −199.2691 −178.0688 242.9329 0.4409

Note: For BTC, MedRV is the MedRV estimator, MinRV the MinRV estimator, RMPV the RMPV estimator, RQPV the RQPV estimator, RSV − down the RSV-down estimator,
and RSV − up the RSV-up estimator. Corresponding estimators are indexed by ETH for Ethereum. Regarding the exogenous ‘X’ factors that apply to BTC, CvtBtc20 is the Compass
Crypto Historical Volatility Index Bitcoin 20%, Bitcoinity is the exchange’s Bitcoin Historical Volatility Index, BVIN is the Implied Bitcoin Volatility Index of Alexander and Imeraj [58],
BitVol is Triple3 Partners’ Implied Bitcoin Volatility Index, DvolBtc is Deribit’s BTC Implied Volatility Index, and CVI is CVI Finance’s Aggregate Crypto Implied Volatility Index.
For ETH, we have the additional exogenous ‘X’ factors: CvtEth20 is Compass’s Crypto Historical Volatility Target Ethereum 20%, Ethv Volmex Labs Finance’s Ethereum Historical
Volatility Index, EthVol Triple3 Partners’ Implied Ethereum Volatility index, and DvolETH Deribit’s ETH Implied Volatility Index. The MIDAS parameters are conveniently summarized
in Section 3.3. LL stands for the Log-Likelihood of the model, AIC and BIC for the Akaike and Bayesian Information Criteria, MSE for the Mean-Squared Error forecasting statistic,
and QLIKE for forecasting statistic of Patton [65].
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Table 3. Estimation results for MinRV BTC.

α β z m θ ω2 LL AIC BIC MSE QLIKE
MinRV-BTC 0.5211 0.4022 −10.7376 0.0425 5.3197 1094.8358 −2179.6715 −2162.0046 - -
MinRV-BTC-CvtBtc20 0.1501 0.8468 0.0503 −0.0186 0.0070 2.0000 276.4205 −540.8410 −519.6407 463.0437 0.7613
MinRV-BTC-Bitcoinity 0.1295 0.8303 0.0547 −0.0178 0.0067 2.0000 30.1691 −72.3381 −93.5385 318.4543 0.5734
MinRV-BTC-BVIN 0.1428 0.8408 0.0519 −0.0184 0.0069 2.0000 77.7802 −143.5603 −122.3600 246.0153 0.4471
MinRV-BTC-BitVol 0.1454 0.8427 0.0516 −0.0185 0.0069 2.0000 129.1447 −246.2893 −225.0890 238.6967 0.4323
MinRV-BTC-DvolBtc 0.1494 0.8460 0.0501 −0.0186 0.0070 2.0000 243.6271 −475.2543 −454.0539 146.2972 0.1896
MinRV-BTC-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 105.8645 −199.7289 −178.5286 242.9632 0.4410

Table 4. Estimation results for MinRV ETH.

α β z m θ ω2 LL AIC BIC MSE QLIKE
MinRV-ETH 0.6987 0.2799 −10.5045 −0.1662 26.0184 1234.7678 −2459.5356 −2441.8687 - -
MinRV-ETH-CvtEth20 0.1485 0.8455 0.0511 −0.0185 0.0070 2.0000 211.0849 −410.1698 −388.9695 452.2643 0.7493
MinRV-ETH-Ethv 0.1485 0.8454 0.0504 −0.0186 0.0070 2.0000 188.6315 −365.2630 −344.0626 236.6727 0.4283
MinRV-ETH-EthVol 0.1440 0.8418 0.0524 −0.0184 0.0069 2.0000 119.5087 −227.0173 −205.8170 268.1144 0.4895
MinRV-ETH-DvolETH 0.1488 0.8455 0.0501 −0.0186 0.0070 2.0000 207.3930 −402.7860 −381.5856 148.2754 0.1961
MinRV-ETH-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 105.9029 −199.8057 −178.6054 242.9789 0.4410

Note: For BTC, MedRV is the MedRV estimator, MinRV the MinRV estimator, RMPV the RMPV estimator, RQPV the RQPV estimator, RSV − down the RSV-down estimator,
and RSV − up the RSV-up estimator. Corresponding estimators are indexed by ETH for Ethereum. Regarding the exogenous ‘X’ factors that apply to BTC, CvtBtc20 is the Compass
Crypto Historical Volatility Index Bitcoin 20%, Bitcoinity is the exchange’s Bitcoin Historical Volatility Index, BVIN is the Implied Bitcoin Volatility Index of Alexander and Imeraj [58],
BitVol is Triple3 Partners’ Implied Bitcoin Volatility Index, DvolBtc is Deribit’s BTC Implied Volatility Index, and CVI is CVI Finance’s Aggregate Crypto Implied Volatility Index.
For ETH, we have the additional exogenous ‘X’ factors: CvtEth20 is Compass’s Crypto Historical Volatility Target Ethereum 20%, Ethv Volmex Labs Finance’s Ethereum Historical
Volatility Index, EthVol Triple3 Partners’ Implied Ethereum Volatility index, and DvolETH Deribit’s ETH Implied Volatility Index. The MIDAS parameters are conveniently summarized
in Section 3.3. LL stands for the Log-Likelihood of the model, AIC and BIC for the Akaike and Bayesian Information Criteria, MSE for the Mean-Squared Error forecasting statistic,
and QLIKE for forecasting statistic of Patton [65].
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Table 5. Estimation results for RMPV BTC.

α β z m θ ω2 LL AIC BIC MSE QLIKE
RMPV-BTC 0.5843 0.3457 −10.5756 −0.1991 1.0015 1080.6021 −2151.2043 −2133.5373 - -
RMPV-BTC-CvtBtc20 0.1501 0.8468 0.0503 −0.0186 0.0070 2.0000 276.4517 −540.9034 −519.7030 463.0702 0.7614
RMPV-BTC-Bitcoinity 0.1295 0.8303 0.0547 −0.0178 0.0067 2.0000 29.6303 71.2607 92.4610 318.4591 0.5735
RMPV-BTC-BVIN 0.1428 0.8408 0.0519 −0.0184 0.0069 2.0000 78.3252 −144.6504 −123.4501 246.0211 0.4471
RMPV-BTC-BitVol 0.5857 0.3468 −0.0632 −10.5941 −0.1417 1.0375 1080.7296 −2149.4592 −2128.2589 142.0262 0.2464
RMPV-BTC-DvolBtc 0.1494 0.8460 0.0501 −0.0186 0.0070 2.0000 243.4180 −474.8360 −453.6357 146.3895 0.1899
RMPV-BTC-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 105.4080 −198.8161 −177.6157 242.9679 0.4410

Table 6. Estimation results for RMPV ETH.

α β z m θ ω2 LL AIC BIC MSE QLIKE
RMPV-ETH 0.6704 0.3154 −10.3544 −0.5659 3.2964 1221.5920 −2433.184 −2415.517 - -
RMPV-ETH-CvtEth20 0.1485 0.8455 0.0511 −0.0185 0.0070 2.0000 210.7629 −409.5258 −388.3254 452.2671 0.7493
RMPV-ETH-Ethv 0.1485 0.8454 0.0504 −0.0186 0.0070 2.0000 188.5877 −365.1754 −343.9751 236.6745 0.4283
RMPV-ETH-EthVol 0.1440 0.8418 0.0524 −0.0184 0.0069 2.0000 119.4864 −226.9727 −205.7724 268.1034 0.4895
RMPV-ETH-DvolETH 0.1488 0.8455 0.0501 −0.0186 0.0070 2.0000 207.1457 −402.2913 −381.0910 148.2762 0.1961
RMPV-ETH-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 105.6729 −199.3459 −178.1455 242.9412 0.4409

Note: For BTC, MedRV is the MedRV estimator, MinRV the MinRV estimator, RMPV the RMPV estimator, RQPV the RQPV estimator, RSV − down the RSV-down estimator,
and RSV − up the RSV-up estimator. Corresponding estimators are indexed by ETH for Ethereum. Regarding the exogenous ‘X’ factors that apply to BTC, CvtBtc20 is the Compass
Crypto Historical Volatility Index Bitcoin 20%, Bitcoinity is the exchange’s Bitcoin Historical Volatility Index, BVIN is the Implied Bitcoin Volatility Index of Alexander and Imeraj [58],
BitVol is Triple3 Partners’ Implied Bitcoin Volatility Index, DvolBtc is Deribit’s BTC Implied Volatility Index, and CVI is CVI Finance’s Aggregate Crypto Implied Volatility Index.
For ETH, we have the additional exogenous ‘X’ factors: CvtEth20 is Compass’s Crypto Historical Volatility Target Ethereum 20%, Ethv Volmex Labs Finance’s Ethereum Historical
Volatility Index, EthVol Triple3 Partners’ Implied Ethereum Volatility index, and DvolETH Deribit’s ETH Implied Volatility Index. The MIDAS parameters are conveniently summarized
in Section 3.3. LL stands for the Log-Likelihood of the model, AIC and BIC for the Akaike and Bayesian Information Criteria, MSE for the Mean-Squared Error forecasting statistic,
and QLIKE for forecasting statistic of Patton [65].
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Table 7. Estimation results for RQPV BTC.

α β z m θ ω2 LL AIC BIC MSE QLIKE
RQPV-BTC 0.0010 0.1627 −15.5076 1.1998 45.1743 1726.2885 −3442.5770 −3424.9101 - -
RQPV-BTC-CvtBtc20 0.1501 0.8468 0.0503 −0.0186 0.0070 2.0000 277.8153 −543.6307 −522.4303 462.9173 0.7612
RQPV-BTC-Bitcoinity 0.1295 0.8303 0.0547 −0.0178 0.0067 2.0000 30.0454 −72.0909 −93.2912 318.4248 0.5734
RQPV-BTC-BVIN 0.1428 0.8408 0.0519 −0.0184 0.0069 2.0000 78.5732 −145.1463 −123.9460 245.9909 0.4470
RQPV-BTC-BitVol 0.1454 0.8427 0.0516 −0.0185 0.0069 2.0000 130.4447 −248.8894 −227.6891 238.6700 0.4322
RQPV-BTC-DvolBtc 0.1494 0.8460 0.0501 −0.0186 0.0070 2.0000 246.76685 −481.53370 −460.33337 146.25008 0.18941
RQPV-BTC-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 106.0563 −200.1127 −178.9123 242.9711 0.4410

Table 8. Estimation results for RQPV ETH.

α β z m θ ω2 LL AIC BIC MSE QLIKE
RQPV-ETH 0.5976 0.3410 −17.3658 1.6262 5.5779 2227.3549 −4444.7098 −4427.0429 - -
RQPV-ETH-CvtEth20 0.1485 0.8455 0.0511 −0.0185 0.0070 2.0000 211.4919 −410.9837 −389.7834 452.2523 0.7493
RQPV-ETH-Ethv 0.1485 0.8454 0.0504 −0.0186 0.0070 2.0000 188.8604 −365.7209 −344.5205 236.6665 0.4283
RQPV-ETH-EthVol 0.1440 0.8418 0.0524 −0.0184 0.0069 2.0000 120.3615 −228.7229 −207.5226 268.0922 0.4895
RQPV-ETH-DvolETH 0.1488 0.8455 0.0501 −0.0186 0.0070 2.0000 207.3323 −402.6646 −381.4643 148.2758 0.1961
RQPV-ETH-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 105.8471 −199.6943 −178.4939 242.9708 0.4410

Note: For BTC, MedRV is the MedRV estimator, MinRV the MinRV estimator, RMPV the RMPV estimator, RQPV the RQPV estimator, RSV − down the RSV-down estimator,
and RSV − up the RSV-up estimator. Corresponding estimators are indexed by ETH for Ethereum. Regarding the exogenous ‘X’ factors that apply to BTC, CvtBtc20 is the Compass
Crypto Historical Volatility Index Bitcoin 20%, Bitcoinity is the exchange’s Bitcoin Historical Volatility Index, BVIN is the Implied Bitcoin Volatility Index of Alexander and Imeraj [58],
BitVol is Triple3 Partners’ Implied Bitcoin Volatility Index, DvolBtc is Deribit’s BTC Implied Volatility Index, and CVI is CVI Finance’s Aggregate Crypto Implied Volatility Index.
For ETH, we have the additional exogenous ‘X’ factors: CvtEth20 is Compass’s Crypto Historical Volatility Target Ethereum 20%, Ethv Volmex Labs Finance’s Ethereum Historical
Volatility Index, EthVol Triple3 Partners’ Implied Ethereum Volatility index, and DvolETH Deribit’s ETH Implied Volatility Index. The MIDAS parameters are conveniently summarized
in Section 3.3. LL stands for the Log-Likelihood of the model, AIC and BIC for the Akaike and Bayesian Information Criteria, MSE for the Mean-Squared Error forecasting statistic,
and QLIKE for forecasting statistic of Patton [65].
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Table 9. Estimation results for RSV-down BTC.

α β z m θ ω2 LL AIC BIC MSE QLIKE
RSV-down-BTC 0.4962 0.4886 −9.3410 0.1681 15.0189 1136.2019 −2262.4037 −2244.7368 - -
RSV-down-BTC-CvtBtc20 0.1501 0.8468 0.0503 −0.0186 0.0070 2.0000 276.6208 −541.2416 −520.0413 462.9441 0.7612
RSV-down-BTC-Bitcoinity 0.1295 0.8303 0.0547 −0.0178 0.0067 2.0000 30.1628 72.3256 93.5259 318.4366 0.5734
RSV-down-BTC-BVIN 0.1428 0.8408 0.0520 −0.0184 0.0069 2.0000 77.4454 −142.8907 −121.6904 246.0244 0.4471
RSV-down-BTC-BitVol 0.1454 0.8427 0.0516 −0.0185 0.0069 2.0000 129.5717 −247.1433 −225.9430 238.7083 0.4323
RSV-down-BTC-DvolBtc 0.1494 0.8460 0.0501 −0.0186 0.0070 2.0000 244.6182 −477.2364 −456.0361 146.2617 0.1895

RSV-down-BTC-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 104.9365 −197.8729 −176.6726 242.9486 0.4410

Table 10. Estimation results for RSV-down ETH.

α β z m θ ω2 LL AIC BIC MSE QLIKE
RSV-down-ETH 0.6459 0.3387 −10.5556 −0.7062 1.0011 1280.5893 −2551.1787 −2533.5117 - -
RSV-down-ETH-CvtEth20 0.1485 0.8455 0.0511 −0.0185 0.0070 2.0000 210.8355 −409.6711 −388.4707 452.2596 0.7493
RSV-down-ETH-Ethv 0.1485 0.8454 0.0504 −0.0186 0.0070 2.0000 188.7898 −365.5796 −344.3792 236.6705 0.4283
RSV-down-ETH-EthVol 0.1440 0.8418 0.0524 −0.0184 0.0069 2.0000 118.8862 −225.7725 −204.5722 268.0988 0.4895
RSV-down-ETH-DvolETH 0.1488 0.8455 0.0501 −0.0186 0.0070 2.0000 207.3300 −402.6599 −381.4596 148.2730 0.1961
RSV-down-ETH-CVI 0.7000 0.2990 −0.0014 −7.7408 −0.4672 2.0859 1278.1685 −2544.3370 −2523.1367 0.0000 −11.6409

Note: For BTC, MedRV is the MedRV estimator, MinRV the MinRV estimator, RMPV the RMPV estimator, RQPV the RQPV estimator, RSV − down the RSV-down estimator,
and RSV − up the RSV-up estimator. Corresponding estimators are indexed by ETH for Ethereum. Regarding the exogenous ‘X’ factors that apply to BTC, CvtBtc20 is the Compass
Crypto Historical Volatility Index Bitcoin 20%, Bitcoinity is the exchange’s Bitcoin Historical Volatility Index, BVIN is the Implied Bitcoin Volatility Index of Alexander and Imeraj [58],
BitVol is Triple3 Partners’ Implied Bitcoin Volatility Index, DvolBtc is Deribit’s BTC Implied Volatility Index, and CVI is CVI Finance’s Aggregate Crypto Implied Volatility Index.
For ETH, we have the additional exogenous ‘X’ factors: CvtEth20 is Compass’s Crypto Historical Volatility Target Ethereum 20%, Ethv Volmex Labs Finance’s Ethereum Historical
Volatility Index, EthVol Triple3 Partners’ Implied Ethereum Volatility index, and DvolETH Deribit’s ETH Implied Volatility Index. The MIDAS parameters are conveniently summarized
in Section 3.3. LL stands for the Log-Likelihood of the model, AIC and BIC for the Akaike and Bayesian Information Criteria, MSE for the Mean-Squared Error forecasting statistic,
and QLIKE for forecasting statistic of Patton [65].
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Table 11. Estimation results for RSV-up BTC.

α β z m θ ω2 LL AIC BIC MSE QLIKE
RSV-up-BTC 0.2615 0.2518 −12.8542 0.4461 3.6884 1273.5822 - -
RSV-up-BTC-CvtBtc20 0.1501 0.8468 0.0503 −0.0186 0.0070 2.0000 277.4237 −542.8473 −521.6470 462.9274 0.7612
RSV-up-BTC-Bitcoinity 0.1295 0.8303 0.0547 −0.0178 0.0067 2.0000 30.1358 72.2717 93.4720 318.4124 0.5734
RSV-up-BTC-BVIN 0.1428 0.8408 0.0519 −0.0184 0.0069 2.0000 78.7717 −145.5434 −124.3430 245.9962 0.4470
RSV-up-BTC-BitVol 0.1454 0.8427 0.0516 −0.0185 0.0069 2.0000 130.0371 −248.0741 −226.8738 238.6769 0.4322
RSV-up-BTC-DvolBtc 0.1494 0.8460 0.0501 −0.0186 0.0070 2.0000 245.1405 −478.2809 −457.0806 146.2536 0.1894
RSV-up-BTC-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 106.1840 −200.3680 −179.1677 242.9758 0.4410

Table 12. Estimation results for RSV-up ETH.

α β z m θ ω2 LL AIC BIC MSE QLIKE
RSV-up-ETH 0.1513 0.8372 −12.8196 −0.1409 41.8788 1311.5592 −2613.1183 −2595.4514 - -
RSV-up-ETH-CvtEth20 0.1485 0.8455 0.0511 −0.0185 0.0070 2.0000 211.0943 −410.1885 −388.9882 452.2553 0.7493
RSV-up-ETH-Ethv 0.1486 0.8454 0.0504 −0.0186 0.0070 2.0000 188.9290 −365.8580 −344.6576 236.6663 0.4283
RSV-up-ETH-EthVol 0.1440 0.8418 0.0524 −0.0184 0.0069 2.0000 120.0437 −228.0875 −206.8871 268.0975 0.4895
RSV-up-ETH-DvolETH 0.1488 0.8455 0.0501 −0.0186 0.0070 2.0000 207.3562 −402.7123 −381.5120 148.2717 0.1961
RSV-up-ETH-CVI 0.1445 0.8418 0.0516 −0.0185 0.0069 2.0000 106.2047 −200.4093 −179.2090 242.9720 0.4410

Note: For BTC, MedRV is the MedRV estimator, MinRV the MinRV estimator, RMPV the RMPV estimator, RQPV the RQPV estimator, RSV − down the RSV-down estimator,
and RSV − up the RSV-up estimator. Corresponding estimators are indexed by ETH for Ethereum. Regarding the exogenous ‘X’ factors that apply to BTC, CvtBtc20 is the Compass
Crypto Historical Volatility Index Bitcoin 20%, Bitcoinity is the exchange’s Bitcoin Historical Volatility Index, BVIN is the Implied Bitcoin Volatility Index of Alexander and Imeraj [58],
BitVol is Triple3 Partners’ Implied Bitcoin Volatility Index, DvolBtc is Deribit’s BTC Implied Volatility Index, and CVI is CVI Finance’s Aggregate Crypto Implied Volatility Index.
For ETH, we have the additional exogenous ‘X’ factors: CvtEth20 is Compass’s Crypto Historical Volatility Target Ethereum 20%, Ethv Volmex Labs Finance’s Ethereum Historical
Volatility Index, EthVol Triple3 Partners’ Implied Ethereum Volatility index, and DvolETH Deribit’s ETH Implied Volatility Index. The MIDAS parameters are conveniently summarized
in Section 3.3. LL stands for the Log-Likelihood of the model, AIC and BIC for the Akaike and Bayesian Information Criteria, MSE for the Mean-Squared Error forecasting statistic,
and QLIKE for forecasting statistic of Patton [65].
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The estimates showed that the REGARCH-MIDAS-X model with implied volatility
had the most-important exogenous contribution. Among these models involving implied
volatility series, we observed that the broker Deribit’s 30-day rolling implied volatility
(‘Dvol’ displayed in Figure 9) contributed systematically to delivering the best estimation
results (as proxied by the forecast statistics MSE and QLIKE, which were minimized).
Notice that, in Table 5, the broker’s Triple3 Partners’ implied volatility series also features
a statistically (yet negative) effect on Bitcoin’s volatility, which was deemed to minimize
the forecast statistics almost equally. This result applies to both Ethereum and Bitcoin in
Tables 1–12. Volatility extracted from option prices is clearly a great source of Bitcoin and
Ethereum’s volatility.

Interestingly, when looking at the last row of Table 10, we can infer as well the negative
influence of CVI Finance’s Aggregate Cryptocurrency Volatility Index (as seen in Figure 10)
on Ethereum’s volatility (z = −0.0014 at 1% significance). This is the only instance when
we can infer some statistical influence from a clone of the VVIX (for the S&P500) or the
VCRIX (when it used to be computed).

Suppose we combine the experiments gathered from historical and implied volatility
series. In that case, it is unsurprising that the largest influence (over Bitcoin and Ethereum’s
volatility) came from the 30-day rolling implied volatility, especially from the broker Deribit
(Figure 9). Volatility extracted from options data is clearly the greatest source of variation in
Bitcoin and Ethereum’s volatility. Triple3 Partners and CVI Finance occasionally featured
some statistical significance as well, albeit in a marginal number of cases across Tables 1–12.

5.3. Prediction Step

Forecasting volatility is central for pricing derivatives and is meaningful for assessing
risk management strategies. First, let us outline the forecasting procedure involved with
the proposed model. We followed the approach by Borup and Jakobsen [8] for multi-day-
ahead forecasting. We used the estimated parameters of the model to make out-of-sample
forecasts 10 days ahead.

To evaluate the variance prediction of a specific model, we used the MSE and QLIKE
loss functions. Correspondingly, the out-of-sample results for forecast horizon k = 10 are
presented across Tables 1–12.

Regarding the volatility indices, the broker’s Deribit Dvol Implied Volatility Index
appeared overwhelmingly as the best predictor, as we can verify that the MSE and QLIKE
were systematically minimized. Notice that Triple3 Partners’ BitVol can compete twice with
Dvol in terms of the MSE and QLIKE in the case of Bitcoin’s MedRV (Table 1) and MPV
(Table 5) estimators.

Regarding jump-robust estimators, for BTC, the QPRV estimator slightly outperformed
other jump-robust estimators based on the MSE statistic (Table 7). For ETH, judging by the
MSE and QLIKE statistics, we may suggest that the RSV-down estimator stood out as the
best among all jump-robust estimators (Table 10).

In the particular case of the ETH RSV-down estimator, the Aggregate Crypto Volatility
Index (CVI) tended to perform even better as an exogenous variable. This would imply
that the Ethereum ecosystem can pick up influences from other cryptocurrencies. Added to
the informational content of its own implied volatility, the Ethereum price can, therefore,
be usefully complemented by the predicting power of CVI Finance’s Aggregate Volatility
Index (Figure 10).

One additional finding can be inferred if we use instead the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion (BIC) to evaluate the results. Indeed,
in an attempt to minimize the value of these information criteria, the reader is geared
towards the additional interpretation that Compass’s Crypto Historical Volatility Indices
CvtBtc20 and CvtEth20 were also useful to predict the BTC and ETH prices.

All in all, we can generalize that the REGARCH-MIDAS-X model with Deribit’s 30-day
implied volatility series, improves the model fit with respect to other candidate regressors.
To illustrate this finding, we produce in Figure 11 the 10-day-ahead out-of-sample forecast for
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the corresponding REGARCH-MIDAS-X models with any jump-robust estimator and, as an
exogenous variable, Deribit’s DVol explanatory variable. Following Amendola et al. [1], all
cases covered out-of-sample forecasts and pertained to non-overlapping samples of forecasts.

Figure 11. Ten-day-ahead forecast for REGARCH-MIDAS-X models with jump-robust estimators (as
the input) and volatility indices (as X).

6. Conclusions

A rich literature has now developed on Bitcoin, considered as a derivatives instru-
ment. Following the methodology by Hasbrouck [66], Baur and Dimpfl [67] analyzed the
trading volume and trading hours of the globally distributed Bitcoin spot market, com-
pared to that of the U.S.-based CBOE/CME futures contracts introduced in December 2017.
Entrop et al. [68] assessed that medium-sized trades, as well as news-based Bitcoin sen-
timent contain the most information in terms of price discovery on spot and futures
markets. Alexander et al. [23] examined the price discovery and hedging effectiveness
on the unregulated derivatives exchange BitMEX. Using minute-by-minute data, the au-
thors demonstrated that BitMEX derivatives led prices on major Bitcoin spot exchanges,
by looking primarily at inter-exchange spreads and relative trading volumes.

However, there is little literature on how financial variables could forecast the future
movement of Bitcoin futures volatility. Moreover, there is virtually no contribution to how
blockchain variables might affect Bitcoin’s price path. The literature on Ethereum is even
more scarce on these latter topics. This paper proposed to fill these research gaps. We
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believe we are the first paper dealing with jump-robust high-frequency time series of Bitcoin
and Ethereum augmented with hashrates (as the MIDAS filter) and volatility indices (as the
exogenous variables). To do so, it appeared attractive to mobilize the research methodology
for the REGARCH-MIDAS-X model, which provided an excellent framework for the joint
modeling of returns and realized volatility measures.

With an original application to Bitcoin and Ethereum, the REGARCH-MIDAS-X model
helped us analyze the link between financial volatility and the digital environment. The unit
variance GARCH fluctuated around a time-varying long-term component, which is a
function of each cryptocurrency’s hashrate. This MIDAS approach bridged the gap be-
tween high- (e.g., jump-robust intraday or daily) and low- (e.g., monthly) frequency data.
The model explicitly distinguished short- and long-run Bitcoin and Ethereum volatility
sources. Besides, the model enabled the inclusion of brokers’ volatility indices as exogenous
variables (the ‘X’ factor) and linked them directly to blockchain in bivariate specifications.
Last, but not least, we identified the realized GARCH as a very attractive model to be
coupled with MIDAS filters, to capture volatility persistence better than the GARCH
framework, and to deliver superior predictive ability (especially at shorter horizons).

Our results expose new essential findings on the Bitcoin and Ethereum market dy-
namics from May 2018 to January 2023. According to our experiments, the best ‘X’ factor
to model Bitcoin and Ethereum’s high-frequency jump-robust returns stemmed from the
30-day implied volatility. Brokers such Triple3 Partners or Deribit can provide such an
index. Regarding the MIDAS filtering, each cryptocurrency’s hashrate allowed us to de-
termine the long-term component. Besides, we investigated the predictive ability of the
REGARCH-MIDAS-X model for Bitcoin and Ethereum returns. Models driven by the bro-
ker’s Deribit 30-day implied volatility (and, for Ethereum once, CVI Finance’s Aggregate
Crypto Volatility Index) performed the best in the out-of-sample prediction at a 10-day
horizon. This informational content gleaned from options prices has a guiding significance
for market participants, policymakers, and risk managers.
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Appendix A

Appendix A.1. Descriptive Statistics of Bitcoin and Ethereum Jump-Robust Estimators

Table A1. Descriptive statistics of Bitcoin and Ethereum jump-robust estimators.

Mean Median Min Max Std. Dev. Skewness Kurtosis

rmedrvarbit 0.0018 0.00094 0.000027 0.10 0.0037 13.52 305.62

rminrvarbit 0.0017 0.00087 0.000017 0.11 0.0038 15.30 366.82

rmpvarbit 0.0019 0.00100 0.000017 0.11 0.0040 14.71 342.10

rqpvarbit 0.0000 0.00000 0.000000 0.03 0.0007 39.15 1573.40

rsvardownbit 0.0012 0.00051 0.000009 0.09 0.0031 16.45 396.62

rsvarupbit 0.0011 0.00054 0.000008 0.06 0.0021 13.05 298.42

rmedrvareth 0.0010 0.00049 0.000007 0.07 0.0025 15.78 377.58

rminrvareth 0.0010 0.00046 0.000007 0.06 0.0023 13.72 292.88

rmpvaeth 0.0011 0.00054 0.000007 0.07 0.0025 15.48 376.64

rqpvareth 0.0000 0.00000 0.000000 0.01 0.0002 39.98 1628.50

rsvardowneth 0.0007 0.00028 0.000002 0.07 0.0022 21.83 656.12

rsvarupeth 0.0007 0.00029 0.000002 0.05 0.0017 16.55 426.54
Note: For Bitcoin, rmedrvarbit is the Median Realized Volatility estimator, rminrvarbit is the Minimum Variance
Estimator, rmpvarbit the Realized MultiPower Estimator, rqpvarbit the Realized QuadPower Estimator, rsvardownbit
the Realized Downside Semi-Variance Estimator, and rsvarupbit the Realized Upside Semi-Variance Estimator.
Corresponding estimators are indexed by eth for Ethereum. The number of observations is equal to 1709.

Appendix A.2. Blockchain.com’s View of Bitcoin Price against the Hashrate

Figure A1. Blockchain.com’s snapshot of Bitcoin’s price in USD against total hashrate from February
2009 until the present.
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Appendix A.3. Descriptive Statistics of Bitcoin and Ethereum Volatility Indices

Table A2. Descriptive statistics of Bitcoin and Ethereum volatility indices.

Mean Median Min Max Std. Dev. Skew. Kurt. Obs.

BVIN 84.29 83.75 39.13 174.29 21.57 0.63 0.82 1021

CVI 81.67 80.03 37.76 170.55 20.50 0.75 0.98 1579

BitVol 79.61 77.00 40.47 190.28 20.94 1.03 1.80 1490

EthVol 92.98 91.83 38.59 217.99 28.23 0.93 1.82 1187

BTCDVOL 39.71 39.27 34.15 46.43 3.06 0.08 −1.08 471

ETHDVOL 39.47 38.65 33.40 48.33 3.75 0.22 −1.05 471

CVTBTC20 484.24 434.08 93.50 962.45 246.37 0.19 −1.19 2761

CVTETH20 434.11 342.54 99.62 890.45 230.94 0.43 −1.25 2761

Bitcoinity 31.29 10.81 0.06 552.66 50.31 2.78 11.36 3789

ETHV 109.64 108.69 88.44 141.15 7.82 1.45 2.01 728
Note: BVIN is the Bitcoin Volatility Index, CVI the Crypto Volatility Index, BitVol T3 Partners’ Implied Volatility
Index for Bitcoin, EthVol T3 Partners’ Implied Volatility Index for Ethereum, BTCDVOL Deribit’s Implied Volatility
Index for Bitcoin, ETHDVOL Deribit’s Implied Volatility Index for Ethereum, CVTBTC20 Compass FT’s Bitcoin
Historical Volatility Target 20% for Bitcoin, CVTETH20 Compass FT’s Bitcoin Historical Volatility Target 20% for
Ethereum, Bitcoinity the historical standard deviation for Bitcoin calculated from Bitfinex, and ETHV Volmex
Labs Finance’s Index of Ethereum Volatility. Std. Dev. stands for Standard Deviation, Kurt. for excess Kurtosis,
Skew. for Skewness, and Obs. for the number of Observations.

Appendix A.4. Cyclic/Trend Decomposition and Simple Moving Average Channels for Bitcoin
and Ethereum

The sample considered was between May 2018 and January 2023. To analyze the
long-memory behavior of the time series, we produced two graphs. One handles the
decomposition of BTC and ETH into seasonal, trend, and cyclic components. The other
reproduces a Simple Moving Average channel for BTC and ETH. The interested reader may
glean from Figures A2 and A3 that dramatic changes have impacted Bitcoin and Ethereum
during the period January 2021–July 2022 especially, substantially inflating the prices before
they dropped into what is known as the ‘crypto winter’.
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Figure A2. Cyclic/trend decomposition for BTCUSD (top) and ETHUSD (bottom).
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Figure A3. SMA decomposition for BTCUSD (top) and ETHUSD (bottom).
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