
Citation: Kokonendji, C.C.; Somé,

S.M.; Esstafa, Y.; Bourguignon, M. On

Underdispersed Count Kernels for

Smoothing Probability Mass

Functions. Stats 2023, 6, 1226–1240.

https://doi.org/10.3390/stats6040076

Academic Editor: Dungang Liu

Received: 8 October 2023

Revised: 29 October 2023

Accepted: 2 November 2023

Published: 4 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

On Underdispersed Count Kernels for Smoothing Probability
Mass Functions
Célestin C. Kokonendji 1,2,*,† , Sobom M. Somé 3,4,*,† , Youssef Esstafa 5 and Marcelo Bourguignon 6

1 Laboratoire de Mathématiques de Besançon UMR 6623 CNRS-UBFC, Université Bourgogne Franche-Comté,
16 Route de Gray, CEDEX, 25030 Besançon, France

2 Laboratoire de Mathématiques et Connexes de Bangui, Université de Bangui,
Bangui 908, Central African Republic

3 Laboratoire d’Analyse Numérique Informatique et de BIOmathématique, Université Joseph KI-ZERBO,
Ouagadougou 03 BP 7021, Burkina Faso

4 Laboratoire Sciences et Techniques, Université Thomas SANKARA, Ouagadougou 12 BP 417, Burkina Faso;
sobom.some@uts.bf

5 Laboratoire Manceau de Mathématiques, Le Mans Université, Avenue Olivier Messiaen, Cedex 09,
72085 Le Mans, France; youssef.esstafa@univ-lemans.fr

6 Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil;
m.p.bourguignon@gmail.com

* Correspondence: celestin.kokonendji@univ-fcomte.fr (C.C.K.); sobom.some@gmail.com (S.M.S.);
Tel.: +33-381-666-341 (C.C.K.)

† These authors contributed equally to this work.

Abstract: Only a few count smoothers are available for the widespread use of discrete associated
kernel estimators, and their constructions lack systematic approaches. This paper proposes the mean
dispersion technique for building count kernels. It is only applicable to count distributions that
exhibit the underdispersion property, which ensures the convergence of the corresponding estimators.
In addition to the well-known binomial and recent CoM-Poisson kernels, we introduce two new ones
such the double Poisson and gamma-count kernels. Despite the challenging problem of obtaining
explicit expressions, these kernels effectively smooth densities. Their good performances are pointed
out from both numerical and comparative analyses, particularly for small and moderate sample sizes.
The optimal tuning parameter is here investigated by integrated squared errors. Also, the added
advantage of faster computation times is really very interesting. Thus, the overall accuracy of two
newly suggested kernels appears to be between the two old ones. Finally, an application including a
tail probability estimation on a real count data and some concluding remarks are given.

Keywords: binomial kernel; CoM-Poisson kernel; double Poisson distribution; gamma-count
distribution; integrated squared errors; mode dispersion; normalizing constant

MSC: 62G05; 62G07; 62G99

1. Introduction

Nonparametric statistics use (discrete) asymmetric kernel methods to capture and
visually represent complex relationships between variables that cannot be effectively
captured by symmetric kernels. A common practice now is to employ kernels whose
support coincides with the nature or support of the dataset, whether it is count, categorical,
bounded, unbounded, continuous, left or right skewed, and so on. See, for example, [1–3]
for smoothing of probability mass, probability density, and regression functions with
environmental, econometric and financial applications, among others. Discrete smoothing
of probability mass functions in the case of counts and categoricals has not been studied as
extensively as its continuous counterparts, primarily due to the limited options for suitable
kernels. There are two main classes of discrete associated kernels. The first, called of the
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“second order” (with δ = 0 in Definition 1), includes kernels whose estimators are consistent
and asymptotically tend towards the true function as for the Dirac kernel. Such discrete
(asymmetric and symmetric) kernels are, for instance, triangular [4], Aitchison–Aitken or
Dirac Uniform [5], Wang and Van Ryzin [6], and the recently proposed CoM-Poisson [7,8];
see also [3]. The second class, so-called of the “first order” (with δ ∈ (0, 1) in Definition
1), generally contains the binomial kernel [4] appropriate for small and moderate sample
sizes for which the corresponding estimators do not converge. The previous discrete
kernels are suitable for categorical data, with the exception of the binomial and CoM-
Poisson kernels, which are appropriated for count data. Additionally, all these associated
kernels are typically underdispersed, i.e., its variance is less than the expectation; on
the contrary, the equidispersed Poisson and overdispersed negative binomial kernels are
not recommended for count smoothings; see [4], the authors of which make intensive
simulations that highlight the superiority of these underdispersed discrete smoothers
versus equi-/over-dispersed ones. The reader can also refer to [9,10] for some applications
of discrete kernels in survey sampling and the model specification test, respectively, and
more generally to Li and Racine [11]. Here is the precise definition of a discrete associated
kernel; see, e.g., Esstafa et al. [8].

Definition 1. Let T ⊆ R be the discrete support of the probability mass function (pmf) f to be
estimated, x ∈ T a target point and h > 0 a bandwidth. A parameterized pmf Kx,h(·) on the discrete
support Sx ⊆ R is called “discrete associated kernel” if the following conditions are satisfied:

x ∈ Sx, lim
h→0

E(Zx,h) = x and lim
h→0

Var(Zx,h) = δ ∈ [0, 1),

where Zx,h denotes the discrete random variable with pmf Kx,h(·).

We suppose X1, X2, . . . , Xn is a sample of independent and identically distributed (iid)
discrete random variables with a pmf f defined on T ⊆ R. The usual discrete associated
kernel estimator of f is generally not a pmf. This is particularly true for some discrete
associated-kernels such as the binomial, triangular, and CoM-Poisson, where the total mass
of the corresponding estimator does not necessarily equal one; see , e.g., [12]. Specifically,
one can express both estimators as follows:

f̂n(x) =
f̃n(x)
Cn

, x ∈ T, (1)

with

f̃n(x) =
1
n

n∑
i=1

Kx,hn(Xi) and Cn =
∑
x∈T

f̃n(x) > 0, (2)

where (hn)n≥1 is an arbitrary sequence of positive smoothing (or tuning) parameters that
satisfies limn→∞ hn = 0, while Kx,hn(·) is a suitably chosen discrete kernel function. For the
following three kernels of Dirac, Aitchison and Aitken [5] and Wang and Van Rizin [6], it is
easy to check that Cn = 1, and therefore f̃n = f̂n. Esstafa et al. [8] recently demonstrated
the effectiveness of the normalized version (1) compared to the unnormalized one (2) with
illustrations using the existing count (convergent or not-convergent) smoothers: binomial
and CoM-Poisson, respectively. We here use the standardized version (1) for all. In
nonparametric (discrete or continous) kernel estimation, the tuning (smoothing) parameter
plays a crucial role in preventing overfitting and underfitting. Bandwidth selection methods
can be categorized into three families: global bandwidths for all smoothers, adaptive
for continuous kernels, and local ones for discrete (count and categorical) estimators.
For example, Chu et al. [13] proposed a rule-of-thumb approach, Harfouche et al. [1]
utilized cross-validations, and Somé et al. [2] emploed a local Bayesian method. It is
important to note that smoothers using local bandwidths, which vary according to each
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estimation point, are referred to as “balloon estimators”, while adaptive bandwidths,
varying for each data point, are known as “sample-point estimators”.

In this paper, we propose two new count kernels, namely the double Poisson and
the gamma-count, derived from their underdispersed distributions parts. These additions
enrich the list of existing count kernels, such as binomial and CoM-Poisson. Specifically, they
reinforce the roster of “first-order” kernels, which exclusively contains the CoM-Poisson,
and whose smoothers are consistent and asymptotically tend towards the Dirac kernel.
Their construction is performed through the mean dispersion technique which appears as
a variant of the mode dispersion method [12] in continuous cases. The rest of the paper
is organized as follows. In Section 2, we recall some underdispersed count distributions
including the double Poisson and gamma-count which have some specific properties in
their expressions. Section 3 is devoted to building the double Poisson and gamma-count
kernels after introducing the mean dispersion method of consruction and despite some
approximations in their properties. Section 4 presents the main results from our simulation
studies and then an application on a count dataset on development days of insect pests
on Hura trees. Final remarks are made in Section 5. Some other underdispersed count
distributions and local Bayesian bandwidth selection are mentionned in Appendices A and
B in relation to their feasibility.

2. Some Properties of Underdispersed Count Distributions

In this section we recall three count distributions, namely the double Poisson, the
gamma-count and the CoM-Poisson, which are underdispersed according to a part of their
parameters. Before building their corresponding associated kernels to satisfy Definition 1,
we point out their main properties needed (pmf, mean and variance) even if they are not
generally in closed-form expressions. Thus, approximation and computation approaches
are used for a better understanding of the parameters.

• The double Poisson pmf is defined by

p(y;λ,γ) := KDP
λ,γ(y) = k(λ,γ)γ1/2e−γλ

(
e−yyy

y!

)(
eλ
y

)γλ
, y = 0, 1, 2, . . . , (3)

with
1

k(λ,γ)
=
∞∑

y=0

γ1/2e−γλ
(

e−yyy

y!

)(
eλ
y

)γλ
' 1 +

1− γ
12γλ

(
1 +

1
γλ

)
and where γ > 0 is the dispersion parameter and λ > 0. The mean and variance do not
have closed-form expressions but they can be approximated, respectively, by

E(Y) ' λ and Var(Y) '
λ
γ

.

We note that the values 0 < γ < 1,γ = 1 and γ > 1 correspond to overdispersion,
equidispersion and underdispersion, respectively. See Efron [14] and Toledo et al. [15]
for further details.

• The gamma-count pmf for the number of events within the time interval (0, T) is given,
with α, β > 0, through

p(y;α, β) = KGC
α,β(y) = G(yα, βT) −G(α(y + 1), βT) y = 0, 1, 2, . . . , (4)

with the cumulative distribution function

G(yα, βT) =
1

Γ(yα)

∫ βT

0
uyα−1 exp(−u)du
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and for y = 0, G(0, βT) = 1 and T can be set to one, without loss of generality.
The parameter α > 0 is such that α > 1 and 0 < α < 1 refer to underdispersion or
overdispersion, respectively. Here, the mean and variance are not available in closed
form but they can be computed through

E(Y) =
∞∑

y=1

G(yα, βT) and Var(Y) =
∞∑

y=1

[
y2KGC

α,β(y)
]
− [E(Y)]2.

See Winkelmann [16] for further details, Zeviani et al. [17] for an application to
regression model, and also [15].
Numerically and from Figure 1, we can observe that the meanE(Y) of the gamma-count
distribution is almost always a constant around β; specifically, by zooming in, we
notice that the shape of the curve is logarithmic or approximately linear in α > 0 for
fixed β > 0. The same fact is observed for its mode, as shown in Figure 2. We also note
that Figure 2 highlights the role of β > 0 as a shape or location parameter and α > 0 as
a scale or dispersion parameter of the gamma-count distribution. Hence, the variance
of the gamma-count distribution can be seen as a function of α > 0.

Figure 1. Computation of the mean of gamma-count distribution according to α and β = 0.5, 1, 3, 7.

(a) (b)

Figure 2. Some gamma-count distributions according to (a) α = 1.2 and also to (b) β = 5 fixed.
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• The CoM-Poisson distribution with location parameter µ ≥ 0 and dispersion parameter
ν > 0 (ν > 1 for underdispersion) such that its pmf p(·;µ, ν) is defined by

p(y;µ, ν) := KCMP
µ,1/ν(y) =

λ(µ, ν)y

(y!)ν
1

D(λ(µ, ν), ν)
, y ∈ N, (5)

where function λ := λ(µ, ν) is the solution to equation

∞∑
z=0

{
λ(µ, ν)

}z

(z!)1/h
(z− µ) = 0,

and it is used to define the normalizing constant D(λ(µ, ν), ν) =
∑
∞

y=0[λ(µ, ν)]y/(y!)ν.
Then,

E(Y) = µ and Var(Y) =
1
ν
[λ(µ, ν)]1/ν +O

({
λ(µ, ν)

}−1/ν
)
,

when {λ(µ, ν)}1/ν
→∞ as ν→∞. See, for example, [8] for some references.

Also, we can refer to Appendix A for some underdispersed count distributions such as
the BerPoi, generalized Poisson, an underdispersed Poisson, the BerG and the hyper-Poisson,
for which their corresponding count associated kernels are inconclusive.

3. Associated Kernel Versions

We introduce in this section the notion of the mean dispersion-ready pmf, a new
method inspired by the mode dispersion technique (see, for example, [12]) and adapted to
the discrete setting. This method allows construction of discrete associated kernels and is
applicable to underdispersed count distributions.

Definition 2. A mean dispersion-ready pmf Kθ is a underdispersed parametrized pmf with discrete
support Sθ ⊆ R, θ ∈ Θ ⊆ R2, such that Kθ has moments of second order with mode m ∈ R and
admitting dispersion parameter D.

Remark 1. Let Kθ be a mean dispersion-ready pmf on Sθ ⊆ R. The following two assertions
are satisfied:

(i) the mode m of Kθ always belongs to Sθ;
(ii) if µ is the mean of Kθ, then Kθ(m) ≥ Kθ(bµc), where b·c denotes the integer part.

In order to create discrete associated kernels from an underdispersed unimodal mean
dispersion-ready pmf Kθ defined on Sθ, the mean dispersion method requires, if it exists,
an explicit solution of the following system of equations:

(θ(m, D)) = (x, h). (6)

It should be noted that this construction may not always be possible, and alternative
methods can be found in [8,12,18].

Now, we illustrate the use of (6) in four examples such both new double Poisson and
gamma-count kernels, as well as the old CoM-Poisson and binomial kernels.

Example 1. The double Poisson kernel of the second order and underdispersed for any h ∈ (0, 1) is
defined on Sx = T = N for each x ∈ N,

KDP
x,h (z) = k(x + h, 1/h)h−1/2e−(x+h)/h

(
e−zzz

z!

)(
e(x + h)

z

)(x+h)/h

, z = 0, 1, 2, . . . ,



Stats 2023, 6 1231

where k(x + h, 1/h) is the normalizing constant. It comes from (3) with the reparametrization of
the system (λ,γ) = (x + h, 1/h) which implies

E
(
ZDP

x,h

)
' x + h→ x and Var

(
ZDP

x,h

)
' (x + h)h→ 0

as h→ 0, where Z := ZDP
x,h is the count random variable associated to this double Poisson kernel.

Example 2. The gamma-count kernel, which exhibits the underdispersion phenomenon for any
h ∈ (0, 1), is derived from (4) with parametrization (α, β) = (1/h, x + h). It is defined on
Sx = T = N for each x ∈ N and any h ∈ (0, 1) by

KGC
x,h (z) = G(z/h, (x + h)T) −G((z + 1)/h, (x + h)T), z = 0, 1, 2, . . .

From the analyses of Figures 1 and 2, the mean and mode of the associated gamma-count
random variable Z := ZGC

x,h are around x + h, which therefore tend to a neighborhood of x when

h→ 0. Also, one can observe that Var
(
ZGC

x,h

)
→ 0 as h→ 0.

Example 3. The CoM-Poisson kernel of the second order and underdispersed for any h ∈ (0, 1) is
defined with Sx = T = N for each x ∈ N,

KCMP
x,h (z) =

{
λ(x, 1/h)

}z

(z!)1/h

{
D(λ(x, 1/h), 1/h)

}−1,

where D(λ(x, 1/h), 1/h) =
∑
∞

z=0[λ(x, 1/h)]z/(z!)1/h is the normalizing constant and λ :=
λ(x, 1/h) represents a function of x and 1/h given by the solution of

∞∑
z=0

{
λ(x, 1/h)

}z

(z!)1/h
(z− x) = 0.

One can refer to [7,8] for further details. This construction implies that E
(
ZCMP

x,h

)
= x and

Var
(
ZCMP

x,h

)
=

{
λ(x, 1/h)

}hh +O
({
λ(x, 1/h)

}−h
)
→ 0 as h→ 0.

Example 4. The first-order and underdispersed binomial kernel is introduced by Kokonendji and
Senga Kiessé [4] as follows: Sx = {0, 1, . . . , x + 1} for each x ∈ N = T and h ∈ (0, 1),

KB
x,h(z) =

(x + 1)!
z!(x + 1− z)!

(
x + h
x + 1

)z( 1− h
x + 1

)x+1−z

with E
(
ZB

x,h

)
= x + h→ x as h→ 0 and

Var
(
ZB

x,h

)
=

(x + h)(1− h)
x + 1

→
x

x + 1
∈ (0, 1) as h→ 0.

Figures 3 and 4 show different behaviours of these four underdispersed count kernels
at the origin x = 0 and at x = 5, respectively, according to three values of the bandwidth
h > 0. Hence, the two newly suggested count kernels appear to be better competitors to the
second-order CoM-Poisson kernel compared to the binomial one.
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(a) (b) (c)

Figure 3. Gamma-count (GC), double Poisson (DP) kernels with parametrization (x + h, 1/h)
compared to binomial (B) and CoM-Poisson (CMP) at x = 0 with (a) h = 0.01; (b) h = 0.1; (c) h = 0.3.

(a) (b) (c)

Figure 4. Double Poisson and gamma-count kernels with parametrization (x + h, 1/h) compared to
CoM-Poisson (CMP) and binomial kernels at x = 5 with (a) h = 0.1; (b) h = 0.5; (c) h = 0.9.

4. Simulation Studies and an Application to Real Data

The purpose of all numerical studies conducted here is to investigate the performances
of the two new double Poisson and gamma-count kernels alongside the classical binomial
and CoM-Poisson smoothers derived from (1) and (2). Computations are conducted on
a 2.30 GHz PC using R software [19]. The previous smoothers are fitted using the rmutil,
Ake and mpcmp packages [20–22], respectively. The corresponding four underdispersed
count kernel estimators are assessed by employing integrated squared error (ISE) method
to determine the optimal bandwidth parameter

hise = arg min
h∈(0,1)

∑
x∈T

{
f̂n(x) − f (x)

}2
. (7)

In fact, the usual cross-validation (data-driven) technique does not converge in
simulations and real data for the proposed kernel estimator: double Poisson and gamma-
count. The reader can refer, for others methods, to Chu [13] for the plug-in method,
Harfouche et al. [1] for cross-validation and to Kokonendji and Senga Kiéssé [4] for mean
integrated squared errors.
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In this study, we examine the performances of four count smoothers using count
simulated datasets under four different scenarios denoted by A, B, C, and D. These scenarios
are chosen to assess how well the estimators handle zero inflation, unimodality and
multimodality. We evaluate the effectiveness of the smoothers by analyzing the empirical
estimates of the ISE, specifically

ÎSEn :=
1

Nsim

Nsim∑
t=1

∑
x∈T

{
f̂n(x) − f (x)

}2
,

where Nsim is the number of replications and n denotes the sample size.

• Scenario A is generated by using the Poisson distribution

fA(x) =
8xe−8

x!
, x ∈ N;

• Scenario B comes from the zero-inflated Poisson distribution

fB(x) =
( 7

10
1{x=0}

)
+

(
3
10
×

10xe−10

x!

)
1N\{0}(x);

• Scenario C is from a mixture of two Poisson distributions

fC(x) =
(

2
5
×

0.5xe−0.5

x!

)
+

(
3
5
×

8xe−8

x!

)
, x ∈ N;

• Scenario D comes from a mixture of three Poisson distributions

fD(x) =
(

3
5
×

10xe−10

x!

)
+

(
1
5
×

22xe−22

x!

)
+

(
1
5
×

50xe−50

x!

)
, x ∈ N.

Table 1 presents the computation times required to perform all ISE bandwidth selection
techniques (7) for gamma-count, double Poisson, binomial and CoM-Poisson smoothers
based on a single replication of sample sizes ranging from n = 20 to 500 for the target
function C. For all sample sizes, the results show that the CoM-Poisson is the most time
consuming followed by the double Poisson smoother mainly due to the normalizing constant
in their expressions, (5) and (3), respectively. As the sample sizes increase, the binomial
kernel outperforms in terms of CPU times due to its support Sx = {0, 1, . . . , x}, whereas the
gamma-count kernel becomes the second quickest due to the integrals in its expression.

Table 1. Comparison of execution times (in seconds) for one replication of Scenario C using
gamma-count (gc), double Poisson (dp), binomial (b) and CoM-Poisson (cmp) kernel estimates.

n tgc tdp tb tcmp

20 0.14757 1.37290 0.07343 51.82259
50 0.22256 4.63862 0.14665 126.42510

100 0.42298 10.53522 0.16610 263.30720
250 0.79673 17.08182 0.25914 467.66510
500 1.82560 32.71456 0.49030 945.52740

Figure 5 depicts the true pmf and the smoothing ones using gamma-count, double
Poisson, binomial and CoM-Poisson kernels with respect to Scenario C, and for one
replication. The graphs show that, in general, the two new underdispersed count kernel
estimators are accurate.
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(a) (b)

Figure 5. True pmf and estimate ones by gamma-count (GC), double Poisson (DP), binomial (B) and
CoM-Poisson (CMP) kernels for the bimodal Scenario C with (a) n = 50; (b) n = 250.

Table 2 exhibits some empirical values of ISEn, obtained through ISE bandwidth
selection (7) using N = 500 as number of replications, according to the four Scenarios
A, B, C and D and with respect to sample sizes n = 10, 25, 50, 100, 250, 500. Then, several
behaviours emerge. As the sample sizes increase, the smoothings improve for all smoothers.
As expected, the binomial kernel is the least efficient since it is of the first order. The three
others have comparable performances. The two new count kernels, namely double Poisson
and gamma-count, are slightly more precise than the CoM-Poisson one, notably for small
and medium sample sizes (i.e., n ≤ 100) while the latter is the best for large sample sizes.
Additionally, approximations made for the moments of the gamma-count distribution (4)
may help clarify the performance discrepancy between the two new kernels for larger
sample sizes. Finally, from a purely practical perspective, Tables 1 and 2 highlight the
following ranking in performances: double Poisson, gamma-count and CoM-Poisson.

Table 2. Empirical mean values (×103) of ÎSEn with their standard deviations in parentheses
over Nsim = 500 replications and with different sample sizes n = 10, 25, 50, 100, 250, 500 under
four Scenarios A, B, C and D by using gamma-count (gc), double Poisson (dp), binomial (b) and
CoM-Poisson (cmp) kernel estimators with the ISE bandwidth selection.

n ÎSEgc,n ÎSEdp,n ÎSEb,n ÎSEcmp,n

A

10 9.2240 (7.9708) 8.2596 (6.9910) 24.5732 (19.0226) 17.7012 (23.1386)
25 3.4346 (2.2426) 4.0327 (2.5589) 8.5250 (5.8778) 9.3622 (11.2054)
50 2.9191 (2.0443) 3.5842 (2.7603) 4.5986 (3.0472) 5.4105 (4.0815)

100 1.8657 (1.2710) 2.0070 (1.6637) 2.2286 (1.3852) 2.7595 (2.2578)
250 0.9299 (0.7017) 0.9670 (0.7401) 1.2736 (0.8046) 1.2511 (0.9823)
500 0.5621 (0.3472) 0.5906 (0.3923) 1.2451 (0.6987) 0.3669 (0.3047)

B

10 9.9963 (8.2902) 10.4663 (8.8282) 25.3129 (13.1625) 26.0588 (26.1514)
25 4.9811 (3.2787) 5.4373 (4.2802) 11.1561 (5.4033) 10.5811 (8.4023)
50 3.1851 (2.2039) 3.2929 (2.6541) 5.0259 (3.1212) 5.7034 (3.4369)

100 2.2802 (1.2304) 1.8941 (1.3242) 2.8072 (1.4701) 3.3802 (2.0909)
250 1.7360 (0.7059) 1.0332 (0.6626) 1.3826 (0.6745) 1.0374 (0.7745)
500 1.5323 (0.5410) 0.6010 (0.6010) 0.8543 (0.3585) 0.6245 (0.4315)
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Table 2. Cont.

n ÎSEgc,n ÎSEdp,n ÎSEb,n ÎSEcmp,n

C

10 10.1931 (7.5874) 11.2862 (7.3767) 20.3614 (10.5060) 23.3991 (20.7747)
25 5.3461 (3.8926) 5.3975 (3.5143) 8.1700 (4.1344) 10.5258 (8.6422)
50 4.1610 (2.9936) 4.0950 (2.6204) 4.8990 (3.1218) 5.0903 (4.2856)

100 2.9958 (2.0992) 2.1094 (1.7659) 2.8961 (2.6908) 3.0479 (2.1213)
250 2.6143 (1.7647) 1.5706 (1.2562) 2.0777 (2.4729) 0.8465 (0.5463)
500 2.3825 (1.4641) 1.0457 (1.1703) 1.6664 (2.4254) 0.4847 (0.2213)

D

10 4.8289 (2.9155) 4.9263 (2.9017) 27.3001 (10.7675) 10.7178 (20.0109)
25 2.3274 (1.5628) 2.5004 (1.5756) 9.4341 (3.6559) 9.8068 (9.6282)
50 1.6284 (1.0325) 1.8046 (1.2067) 4.8759 (1.9313) 2.1646 (1.8732)

100 0.9935 (0.4916) 1.0355 (0.6685) 2.4179 (0.9076) 1.1866 (0.7682)
250 0.5522 (0.5522) 0.5493 (0.3678) 0.9362 (0.4277) 0.4444 (0.3726)
500 0.4297 (0.2286) 0.3738 (0.2110) 0.5068 (0.1881) 0.3746 (0.2075)

Now, we apply these four underdispersed count kernels for smoothing the real count
dataset on development days of insect pests on Hura trees with moderate sample size
n = 51; see also [8]. Practical performances are here examined via the empirical ISE method
(7) and the empirical criterion of ISE:

hise0 = arg min
h∈(0,1)

∑
x∈T

{
f̂n(x) − f0(x)

}2
 and ÎSE0 :=

∑
x∈T⊆N

{
f̂n(x) − f0(x)

}2
,

where f0(·) is the empirical or naive estimator. The double Poisson and the CoM-Poisson

kernels are comparable and appear to be the best with hDP
ise0

= 0.001, ÎSE
DP
0 = 0.00031657 and

hCMP
ise0

= 0.006, ÎSE
CMP
0 = 0.00034531 followed by the binomial smoother with hB

ise0
= 0.001

and ÎSE
B
0 = 0.01232621 and finally the gamma-count smoother with hGC

ise0
= 0.012 and

ÎSE
GC
0 = 0.01287723.

Figure 6 offers their graphical representations. We also evaluate the practical upper
tail probability P(X ≥ 32) suitable for applied statisticians. Then, these tail probabilities
are estimated to be 0.1569, 0.1949, 0.1568, 0.1510 and 0.1572 for the empirical frequency
f0, gamma-count, double Poisson, binomial and CoM-Poisson kernel estimations, respec-
tively. Although the double Poisson and the CoM-Poisson have similar performances, we
recommend, again, the first one, which is more flexible and much faster; see Table 1.
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Figure 6. Empirical frequency with its corresponding gamma-count (GC), double Poisson (DP),
binomial (B) and CoM-Poisson (CMP) kernel estimates of count dataset of insect pests on Hura trees
with n = 51.

5. Summary and Final Remarks

We introduced two novel underdispersed count kernels, specifically the double
Poisson and gamma-count ones. They were developed using the proposed mean dispersion
method. Also, we considered the integrated squared error method (7) to select as quickly
and efficiently as possible the bandwidth of their corresponding estimations. Through
simulation experiments and real count data analysis, we demonstrated that these kernels
perform better than the binomial kernel, while falling between the CoM-Poisson kernel
smoothing (which performs the best) and the binomial kernel (which performs the worst).
Although the CoM-Poisson and double Poisson kernels have similar performances, we
strongly recommend using the latter due to its significantly lower time consumption and
its flexibility from some closed-form expressions.

We note that any underdispersed count distribution cannot always lead to its corre-
sponding associated kernel; see Appendix A and also [23,24]. It would also be better to
improve the bandwidth selection with data-driven methods; Appendix B mentions the
direction for the local Bayesian bandwidth selection. In addition, an important fact for
smoothing a pmf on T = {k, k + 1, . . .}with k ≥ 1 is to consider, for instance, the k-shifted
version of any underdispersed count kernel. In fact, the two main properties of the
associated kernel, as recalled in Definition 1, are first to adapt the support S of the kernel to
T and second to maintain the variance property which tends to δ ∈ [0, 1) as h→ 0.
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Appendix A. Some Other Underdispersed Count Distributions for Kernels Attempts

We provide five count distributions, namely BerPoi, generalized Poisson, underdis-
persed Poisson, BerG, and hyper-Poisson, which can exhibit the underdispersion property
and have closed-form expressions for their pmf, mean, and variance. However, it is not
possible to construct their corresponding associated kernels. Thus, an alternative approach
to the proposed mean dispersion method may be necessary.

• The BerPoi distribution has its pmf,

p(y;α,λ) := KBP
α,λ(y) =

(
1− α+

αy
λ

)e−λλy

y!
, y = 0, 1, . . . ,

with 0 < α < 1 and λ > 0. Its mean and variance are, respectively,

E(Y) := µ = α+ λ and Var(Y) := σ2 = α(1− α) + λ.

Bourguignon et al. [25] propose a reparametrization by mean µ = α+λ and dispersion
index φ = 1− α2/(λ+ α); that is, α =

√
µ(1−φ) and λ = µ−

√
µ(1−φ) with µ > 0

and 0 < φ < 1. It follows from this parametrization that

E(Y) := µ and Var(Y) := µφ

and

p(y;µ,φ) := KBP
µ,φ(y) =

1−
√
µ(1−φ) + y

√
µ(1−φ)

µ−
√
µ(1−φ)


×

e−µ+
√
µ(1−φ)(µ−

√
µ(1−φ))y

y!
y = 0, 1, . . . , (A1)

with conditions µ > 0 and 0 < min(µ, 1/µ) < φ < 1 to ensure (A1) being underdis-
persed and a proper pmf.

• The generalized Poisson (GP) is defined through its pmf as

p(y;θ, δ) := KGP
θ,δ(y) =

θ(θ+ δy)y−1e−θ−δy

y!
, y = 0, 1, 2, . . . ,
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with θ > 0 and max(−1,−θ/4) < δ < 1; see Harris et al. [26]. The corresponding mean
and variance are given by

µ = E(Y) = θ
1− δ

, Var(Yi) =
θ

(1− δ)3 =
1

(1− δ)2E(Y) = φE(Y).

We thus obtain underdispersion for δ < 0.
• The pmf of the so-called Underdispersed Poisson distribution of Singh et al. [27] is

given, for θ > 0 and λ > 0, by

p(y;λ,θ) := KUP
λ,θ(y) =

e−λλy−1(λ+ θy)
(1 + θ)y!

, y = 0, 1, 2, . . . ,

with
E(Y) := µ = λ+

θ
1 + θ

and Var(Y) := σ2 = λ+
θ

(1 + θ)2 .

• The BerG distribution is defined by

p(y;π,θ) := KBG
π,θ(y) =

(1−π)/(1 + θ), if y = 0,
(θ+ π)θy−1/(1 + θ)y+1, if y = 1, 2, . . .

,

with parameters −θ ≤ π ≤ 1 and θ > 0. Its mean and variance are, successively,

E(Y) := µ = π+ θ and Var(Y) := σ2 = π(1−π) + θ(1− θ).

This model presents overdispersion, equidispersion and underdispersion for θ >
π, θ = π and θ < π, respectively. See Bourguignon and de Medeiros [28] for
further details.

• The hyper-Poisson distribution, initially proposed by Bardwell and Crow [29], is
defined as follows:

p(y;γ,λ) := KhP
γ,λ(y) =

1
C(1,γ,λ)

λy

(γ)y
, y = 0, 1, 2, . . . ,

with γ,λ > 0, (a)r = a(a + 1) · · · (a + r − 1) = Γ(a + r)/Γ(a) for a > 0, r a positive
integer, and

C(a, c, z) =
∞∑

r=0

(a)r

(c)r

zr

r!

as the confluent hypergeometric series. The mean and variance are

E(Y) = λ+γ−1+(λ−1)/C(1,γ,λ) and Var(Y) = λ+γ−1+(γ−λ+ 1−E(Y))E(Y).

This distribution is overdispersed if γ > 1, equidispersed if γ = 1 and underdispersed
if γ < 1. See also [29,30] for some details.

Appendix B. Local Bayesian Bandwidths of Discrete Kernels

Among the three approaches of the Bayesian bandwidths (global, adaptive and local),
it is known that the local one is appropriate for discrete kernel estimators.

Hence, our approach involves treating h as a tuning parameter of the pmf f (x) and
then constructing a Bayesian estimator for h using f (x). We assume a prior distribution
π(h) for h, and then apply the Bayes theorem to obtain the posterior distribution of h at the
(local) point of estimation x:

π(h | x) =
f (x)π(h)∫
f (x)π(h)dh

.
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Since f is unknown, we use f̂n in Equation (1) as the natural estimator of f , and
afterward we can estimate the posterior π(h | x) by the so-called posterior density as

π̂(h | x, X1, X2, . . . , Xn) =
f̂n(x)π(h)∫ 1

0 f̂n(x)π(h)dh
= N(h)

(∫ 1

0
N(h)dh

)−1

.

Under the squared error loss function, the Bayes estimator of the smoothing (tuning)
parameter h is the mean of the previous posterior density given by

ĥn(x) =
(∫ 1

0
hN(h)dh

)(∫ 1

0
N(h)dh

)−1

, ∀x ∈ N.

Since the smoothing parameter h here belongs to [0, 1], a natural univariate prior
distribution of π(h) is the beta distribution with positive parameters α and β:

π(h) =
1

B(α, β)
hα−1(1− h)β−1,

where h ∈ (0, 1] and B(α, β) is the Euler beta function defined by

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt.

Then, the posterior becomes

π̂(h | x, X1, X2, . . . , Xn) = N(h)
(∫ 1

0
N(h)dh

)−1

,

where specific N(h) of double Poisson, gamma-count, CoM-Poisson and binomial kernels
are, respectively,

NDP(h) =
k(x + h, 1/h)

nB(α, β)
(x + h)(1+x/h)hα−3/2(1− h)β−1

n∑
i=1

 e−XiXXi
i

Xi!

X−(1+x/h)
i ,

NGC(h) =
1

nB(α, β)
hα−1(1− h)β−1

n∑
i=1

{
G(Xi(x + h), T/h) −G((x + h)(Xi + 1), T/h)

}
,

NCMP(h) =
{
D(λ(x, 1/h), 1/h)

}−1

nB(α, β)

n∑
i=1

{
λ(x, 1/h)

}Xi

(Xi!)1/h
,

and

NB(h) =
1

nB(α, β)

n∑
i=0

Xi∑
k=0

(x + 1)!xk

(x + 1−Xi)!k!(Xi − k)!(x + 1)x+1
hXi+α−k−1(1− h)x+β−Xi .

For instance, only the local bandwidths of the binomial kernel estimator have the exact
expressions as

ĥn(x) =

n∑
i=0

Xi∑
k=0

xk

(x + 1−Xi)!k!(Xi − k)!
B(Xi + α− k + 1, x + β+ 1−Xi)

n∑
i=0

Xi∑
k=0

xk

(x + 1−Xi)!k!(Xi − k)!
B(Xi + α− k, x + β+ 1−Xi)

,∀x ∈ N
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with Xi ≤ x+ 1; see, e.g., Somé et al. [2] for more details in univariate and multivariate setups.
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