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Abstract: In this paper, we compare the effects of forecasting demand using individual (disaggregated)
components versus first aggregating the components either fully or into several clusters. Demand streams
are assumed to follow autoregressive moving average (ARMA) processes. Using individual demand
streams will always lead to a superior forecast compared to any aggregates; however, we show that if
several aggregated clusters are formed in a structured manner, then these subaggregated clusters will
lead to a forecast with minimal increase in mean-squared forecast error. We show this result based on
theoretical MSFE obtained directly from the models generating the clusters as well as estimated MSFE
obtained directly from simulated demand observations. We suggest a pivot algorithm, which we call
Pivot Clustering, to create these clusters. We also provide theoretical results to investigate sub-aggregation,
including for special cases, such as aggregating demand generated by MA(1) models and aggregating
demand generated by ARMA models with similar or the same parameters.

Keywords: forecasting aggregate demand; clustering time series; Pivot Clustering; ARMA model;
order-up-to policy

1. Introduction

Modern-day technologies not only permit firms to accurately track their point of sales
data and lost sales (purchases not made by customers due to a lack of inventory) data but
also gather more granular data. These data streams deluge firms with information which
can be either aggregated for planning purposes or considered in its entirety or follow an
in-between approach. In this paper we analyze a model in which a retailer is faced with
exactly the same choices and provide guidelines for combining the data for the purpose of
forecasting demand.

Consider a retailer who has access to its individual customers’ demand streams.
Assume that each of these demand streams follow an ARMA model having possibly
contemporaneously correlated shock sequences. The primary contribution of this research
is to quantify to what extent such a retailer would benefit from forecasting each of the
individual streams as opposed to the aggregate. In general, retailers forecast their aggregate
demand stream since historically the retailer may only have accurate aggregate demand
information, and the forecasting of the individual customer demand streams is often
thought of as being cumbersome and time consuming. We demonstrate that a retailer
observing multiple demand streams generated by ARMA models can drastically reduce
its mean squared forecasting error (MSFE) by forecasting the individual demand streams
as opposed to just the aggregate demand stream, as noted in [1].

Stats 2023, 6, 1198–1225. https://doi.org/10.3390/stats6040075 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats6040075
https://doi.org/10.3390/stats6040075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://doi.org/10.3390/stats6040075
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats6040075?type=check_update&version=1


Stats 2023, 6 1199

Although the retailer’s MSFE is never lower when forecasting using aggregated
demand compared to the individual demand streams (this holds for the theoretical case
when model coefficients are known and need not be estimated), there are cases when
the individual streams do not reduce the MSFE. The primary situation where this occurs,
as is discussed in the paper, is when various models generating the demand streams
have identical ARMA parameter values. For the in-between case, our results demonstrate
that the retailer’s MSFE under aggregate forecasting can be greatly reduced if the retailer
forecasts various clusters of aggregated demand streams. We also show by example that
clustering continues to perform well in the event that ARMA models are estimated for
non-ARMA data.

In other words, retailers can make use of data mining and other clustering approaches
in order to generate clusters of similar customers and their demand streams. We show that
such clustering methods significantly enhance forecast accuracy. This is related to the
study of telephone data in [2], where the authors concluded that subaggregated data can be
effective for improving forecast accuracy compared to aggregate data. They also note that
data are often aggregated to the level that forecasts are required. We describe here ways in
which subaggregated clusters can be selected to minimize forecast error. Several examples
are mentioned in [3] in the context of assigning demand allocation to different facilities.

Many researchers and practitioners focus on the need to determine clusters of similarly
situated customers in order to create and provide customized and/or personalized products.
This type of clustering is generally performed on specific characteristics that customers
possess (see, for example, [4] and the references within). On the other hand, our focus
is on forecasting demand for a product by a firm’s customers, recognizing that these
customers may have different preferences and hence differing demand. As we describe
below, from the demand forecasting perspective, the information contained within the
individual demand streams provides the optimal forecast (in terms of minimizing the
MSFE and hence inventory related costs) for product demand. Nonetheless, there has been
research on the use of clustering methods within a forecasting environment when customer
demand data are high dimensional (see, for example, [5]).

As opposed to generating clusters based upon customer preferences and customer
demographics, we explain how clusters can be generated explicitly from the individual
time series structure of the individual demand streams or customers. Even though it is
always optimal from a forecasting perspective to use the individual streams, clusters of
similar customer streams may be very helpful to the firm for other reasons as described
above. Future empirical work would be necessary to investigate to what extent and in what
contexts clusters generated based upon time series structure of the demand streams corre-
late to clusters based upon other customer preferences. In such a case where there exists
such a relationship, firms could use clustering for simplifying their demand forecasting
while identifying groups of customers to receive personalized products.

The purpose of this paper is to demonstrate that clustering based upon time series
structure can be utilized within demand forecasting that is superior to forecasting aggregate
demand and nearly as good as forecasting the individual demand streams. The structure of
our paper is as follows. In the next section, we describe the demand framework and supply
chain setting of our research problem as well as the way that theoretical MSFE computations
are determined for the various forecasts (using aggregated demand processes) included
herein. In Section 3, we illustrate (through example) that there exists a particular set of
subaggregated clusters which results in an MSFE that is close to the MSFE obtained from
using disaggregated streams and much lower than the MSFE obtained from the fully
aggregated sequence. In Section 4, we describe how to cluster demand streams generated
by ARMA models using Pivot Clustering and how this compares to other clustering
methods. In Section 5, we describe an objective function that can be minimized to obtain an
optimal assignment of streams to clusters in terms of MSFE reduction. Finally, we obtain
theoretical results on how demand streams produced by MA(1) models can be clustered in
the most efficient way possible to reduce the resulting subaggregated MSFE in Section 6.
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2. Model Framework

We consider a retailer with possibly many large customers. In general, retailers forecast
their aggregate demand stream since the forecasting of the individual customer demand
streams is often thought of as being cumbersome and time consuming. We demonstrate
that a retailer observing multiple streams of demand generated by ARMA models can
drastically reduce its MSFE by forecasting the individual demand streams or aggregated
clusters of similar demand streams. We limit the focus of this paper on ARMA models
that describe stationary demand in order to keep the exposition as clear as possible. If we
were to consider ARIMA (or seasonal ARIMA) models, then differencing (or seasonal
differencing) would need to be carried out on the data to apply the methodology discussed
here. We further note that even simple ARMA(1,1) models appearing in Section 4 can have
coefficients that produce seasonal patterns in demand realizations.

Hence, consider a retailer that observes multiple demand streams for a single product
{X1,t}, {X2,t}, . . . , {XN,t}. Each demand stream {Xk} is assumed to be generated by an
ARMA model with respect to a sequence of shocks {εk,t} given by

Φk(B)Xk,t = Θk(B)εk,t (1)

where Φk(z) = 1 + Φk,1z + . . . + Φk,pk
zpk and Θk(z) = 1 + Θk,1z + . . . + Θk,qk

zqk , such
that{Xk,t} is invertible and causal with respect to {εk,t} (see Brockwell and Davis, page 77
for a definition and discussion about causality and invertibility). We denote the variance
of each shock sequence σ2

k = E[ε2
k ]. Furthermore, we note that the shock sequences are

potentially contemporaneously correlated with σij = E[εi,tεj,t]. In general, this set up
guarantees that the shocks εk,t are the retailer’s Wold shocks (see [6] pp. 187–188 for a
description of a Wold decomposition of a time series) and that the MSFE of one-step-ahead
leadtime demand (when using the disaggregated (individual) streams) is the sum of the
elements in the covariance matrix Σε where Σij = σij such that σ2

k = σkk (see Equation (7)).
The focus of this paper is evaluating the difference in one-step-ahead MSFEs at time

t when the forecast of leadtime demand, given by
`+1

∑
i=1

(X1,t+i + X2,t+i + . . . + XN,t+i), is

based on the different series described below where Ck,τ = XCk
1,τ + . . . + XCk

nCk
,τ . Studying

one-step-ahead MSFEs is mathematically simpler than those for general leadtimes since
the former does not depend on model parameters.

Disaggregated (individual) sequences {X1,τ}t
τ=−∞, {X2,τ}t

τ=−∞, . . . , {XN,τ}t
τ=−∞

Subaggregated (clustered) sequences {C1,τ}t
τ=−∞, {C2,τ}t

τ=−∞, . . . , {Cn,τ}t
τ=−∞

Aggregated (full) sequence {Dτ = X1,τ + X2,τ + . . . + XN,τ}t
τ=−∞

Our problem is related to the one posed by [7] where a two-stage supply chain was
considered with the retailer observing two demand streams. The focus of that paper was in
evaluating information sharing between the retailer and supplier in a situation where the
retailer forecasts each demand stream separately. Here, we show the benefit to the retailer
(the situation is really identical for any player in the supply chain that might be observing
multiple demand streams, where information sharing does not take place) in determining
the separate forecasts while considering the existence of (possibly) more than two demand
streams. Kohn [1] was the first to identify conditions under which using the individual
demand streams leads to a better forecast than using the aggregated sequence; however, he
did not determine the MSFE in the two cases. The same conditions can be used to show
that if streams are subaggregated into clusters where optimal clusters are always used,
then the MSFE of the forecast decreases as the number of clusters increases. Our aim is to
determine the optimal cluster assignment based on a predetermined choice of the number
of clusters. The number of clusters can be based on the level of detailed data available to a
firm or based on the tradeoff from lowering MSFE and increasing the complexity of the
model when increasing the amount of clusters used.
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In this paper, we extend the results of [7] by providing formulas for computing MSFEs
under the possibility of more than two streams and a general leadtime in the situation where
a player’s (retailer’s) forecast can only be based on their Wold shocks. We also describe how
a retailer would forecast its demand by identifying clusters of similar demand streams and
then forecasting each cluster after it is aggregated. We provide a pivot algorithm, which we
call Pivot Clustering, for identifying a locally optimal assignment of streams into a fixed
number of clusters. The algorithm will often find the best possible assignment. We also
describe a fast clustering algorithm which results in a globally optimal assignment when
demand streams are generated by independent MA(1) models. Our results show that after
the algorithms are carried out, much of the benefit of forecasting individual streams can be
obtained by forecasting the aggregated clusters.

2.1. Forecasting Using the Disaggregated (Individual) Sequences {X1,τ}t
τ=−∞, . . . , {Xn,τ}t

τ=−∞

In this section we are interested in forecasting
`+1

∑
i=1

(X1,t+i + X2,t+i + . . . + XN,t+i) when

the forecast is based on the diaggregated individual sequences as discussed in the previous
section. The forecasting contained here is a textbook multivariate time-series result along
with the propagation described in [8] as seen in (5). Thus, we consider processes
{Xk,t}, . . . , {XN,t} such that Xk,t generated by ARMA models given by

Φk(B)Xk,t = Θk(B)εk,t (2)

with σjk = E[εj,tεk,t].
In this case, the disaggregated MSFE given by

MSFEind = E
[( N

∑
k=1

`+1

∑
i=1

Xk,t+i −
N

∑
k=1

̂`+1

∑
i=1

Xk,t+i

)2]
(3)

where
̂`+1

∑
i=1

Xk,t+i is the best linear forecast of leadtime demand at time t for stream {Xk,t}

based on (2). We note that

E
[( `+1

∑
i=1

Xj,t+i −
̂`+1

∑
i=1

Xj,t+i

)( `+1

∑
i=1

Xk,t+i −
̂`+1

∑
i=1

Xk,t+i

)]
= σjk

`

∑
i=0

ωj,iωk,i (4)

such that

ωk,i =


0 i < 0
ψk,i i = 0
ωk,i−1 + ψk,i 0 < i < `+ 1
ωk,i−1 + ψk,i − ψk,i−`−1 i ≥ `+ 1.

(5)

with ψk,i is the ith coefficient appearing in the MA(∞) representation of {Xk,t} with respect
to {εk,t} (see [8] for details). That is, 1 + ψk,1z + ψk,2z2 + . . . = Ψk(z) and

Xk,t = Ψk(B)εk,t (6)

such that Ψk(z) =
Θk(z)
Φk(z)

.

Thus, the MSFE of the best linear forecast (BLF) of leadtime demand when using the
individual sequences

{X1,τ}t
τ=−∞, {X2,τ}t

τ=−∞, . . . , {XN,τ}t
τ=−∞
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is given by

MSFEind =
N

∑
k=1

N

∑
j=1

`

∑
i=0

σkjωj,iωk,i. (7)

We note that the one-step-ahead (` = 0) disaggregated MSFE is given by
N

∑
j=1

N

∑
k=1

σjk.

Thus, we can compare (7) with (26) below to determine the reduction in MSFE when using
the individual sequences as opposed to the aggregated sequence.

2.2. ARMA Representation of a Summed Sequence {Sτ = X1,τ + . . . + Xs,τ}t
τ=−∞

In this subsection, we determine the ARMA representation of a series {St}with respect
to a series of Wold shocks, where {St} is the sum of several ARMA-generated streams
given by {St} = {X1,t + X2,t + . . . + Xs,t}. Furthermore, we determine the variance of the
Wold shocks appearing in this representation. This will allow us to determine the MSFE
when forecasts are based on the fully aggregated series as well as when the forecasts are
based on subaggregated clusters. In order to obtain the ARMA representation, we first
need to obtain the spectral density fS(λ) and the covariance generating function GS(z)
of {St}.

Proposition 1. Let {St} = {X1,t + X2,t + . . . + Xs,t}. The spectral density of {St} is given by

fS(λ) =
s

∑
i=1

fXi (λ) +
s−1

∑
i=1

s

∑
j=i+1

(
fXiXj(λ) + f̄XiXj(λ)

)
(8)

where the cross-spectrum fXiXj(λ) is defined fXi ,Xj(λ) =
1

2π

∞

∑
r=−∞

e−iλrCXiXj(r) with

CXiXj(r) = E[Xi,t+rXj,t] and f̄XiXj(λ) =
1

2π

∞

∑
r=−∞

eiλrCXiXj(r).

Proof. We will prove this by induction. Note that when {St} = {X1,t + X2,t}, fS(λ) is
given by

fS(λ) =
1

2π

∞

∑
r=−∞

e−iλrE[(X1,t+r + X2,t+r)(X1,t + X2,t)] (9)

=
1

2π

∞

∑
r=−∞

e−iλrE[X1,t+rX1,t] +
1

2π

∞

∑
r=−∞

e−iλrE[X2,t+rX2,t]

+
1

2π

∞

∑
r=−∞

e−iλrE[X1,t+rX2,t] +
1

2π

∞

∑
r=−∞

e−iλrE[X2,t+rX1,t]. (10)

Noting that
∞

∑
r=−∞

e−iλrE[X2,t+rX1,t] =
∞

∑
r=−∞

eiλrE[X2,tX1,t+r] = f̄X1X2(λ), we see that

fS(λ) = fX1(λ) + fX2(λ) + fX1X2(λ) + f̄X1X2(λ)

which matches representation (8).

Now suppose (8) holds for {Sn,t} = {X1,t + . . . + Xn,t} processes. Thus,

fSn(λ) =
n

∑
i=1

fXi (λ) +
n−1

∑
i=1

n

∑
j=i+1

(
fXiXj(λ) + f̄XiXj(λ)

)
(11)
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Consider {Sn+1} = {Sn,t + Xn+1,t}. Since {Sn,t} follows and ARMA model, we
observe that

fSn+1(λ) = fSn(λ) + fXn+1(λ) + fSn ,Xn+1(λ) + f̄Sn ,Xn+1(λ) (12)

Note that starting with the definition of fSn ,Xn+1(λ),

fSn ,Xn+1(λ) =
1

2π

∞

∑
r=−∞

e−iλrE[Sn,tXn+1,t+r] (13)

=
1

2π

∞

∑
r=−∞

e−iλrE[X1,tXn+1,t+r + . . . + Xn,tXn+1,t+r] (14)

=
1

2π

∞

∑
r=−∞

e−iλrE[X1,tXn+1,t+r] + . . . +
1

2π

∞

∑
r=−∞

e−iλrE[Xn,tXn+1,t+r] (15)

= fX1Xn+1(λ) + . . . + fXnXn+1(λ) (16)

Similarly,
f̄Sn ,Xn+1(λ) = f̄X1Xn+1(λ) + . . . + f̄XnXn+1(λ)

Thus, from (12),

fSn+1(λ) = fSn(λ) + fXn+1(λ) + fX1Xn+1(λ) + . . .

+ fXnXn+1(λ) + f̄X1Xn+1(λ) + . . . + f̄XnXn+1(λ) (17)

or equivalently

fSn+1(λ) =
n

∑
i=1

fXi (λ) +
n−1

∑
i=1

n

∑
j=i+1

(
fXiXj(λ) + f̄XiXj(λ)

)
+ fXn+1(λ) + fX1Xn+1(λ) + . . .

+ fXnXn+1(λ) + f̄X1Xn+1(λ) + . . . + f̄XnXn+1(λ)

which can be simply written as

fSn+1(λ) =
n+1

∑
i=1

fXi +
n

∑
i=1

n+1

∑
j=i+1

(
fXiXj(λ) + f̄XiXj(λ)

)
(18)

and the result is proved. �

Now, consider the covariance generating function GS(z) =
∞

∑
j=−∞

E[StSt−j]zj of {St}.

Here, we use the equivalence GS(e−iλ) = 2π fS(λ) and note the following:

fXi (λ) =
σ2

i
2π

|Θi(e−iλ)|2
|Φi(e−iλ)|2

(19)

fXiXj(λ) =
σij

2π

Θi(e−iλ)

Φi(e−iλ)

Θj(eiλ)

Φj(eiλ)
(20)

f̄XiXj(λ) =
σij

2π

Θi(eiλ)

Φi(eiλ)

Θj(e−iλ)

Φj(e−iλ)
(21)

Thus, from Proposition 1 we observe that

GS(z) =
s

∑
i=1

σ2
i

Θi(z)Θi(z−1)

Φi(z)Φi(z−1)
+

s−1

∑
i=1

s

∑
j=i+1

(
σij

Θi(z)
Φi(z)

Θj(z−1)

Φj(z−1)
+ σij

Θi(z−1)

Φi(z−1)

Θj(z)
Φj(z)

)
(22)
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As described in Theorem 5 of [7], the covariance generating function GS(z) can be

factorized as the ratio
O(z)P(z)

Q(z)
where O(z), P(z) and Q(z) are Laurent polynomials,

with O(z) having all its roots on the unit circle and P(z) and Q(z) having no roots on the
unit circle. This result follows from the fact that each additive term in (76) is a ratio of
Laurent polynomials and the fact that for any Laurent polynomial P(z), both P(z)P(z−1)
and P(z)+ P(z−1) will be Laurent polynomials. Furthermore, if P1(z) and P2(z) are Laurent
polynomials then P1(z)P2(z) and P1(z) + P2(z) will be Laurent polynomials as well.

We can now use the factorization provided in [9] and described in [7] to obtain the
ARMA representation of {St} with respect to the Wold shocks {εt} (appearing in its Wold
representation). It should be noted that Remark 1 is simply a restatement of Theorem 5
of [7] with the slight addition of determining the polynomials appearing in the ARMA
representation of the aggregate sequence {St}.

Remark 1. {St} can be represented with respect to shocks {εt} using the ARMA model

Φ(B)St = Θ(B)εt (23)

where Θ(z) =
m

∏
i=1

(1− aiz) where {ai} are the roots of O(z)P(z) on or inside the unit circle and

Φ(z) =
n

∏
i=1

(1− biz) where {bi} are the roots of Q(z) inside the unit circle. Furthermore,

σ2
ε = E[ε2

t ] =
pm ∏m

j=1(−1/aj)

qn ∏n
j=1(−1/bj)

(24)

where pm is the coefficient of zm in P(z) and qn is the coefficient of zn in Q(z).

2.3. Forecasting Using the Fully Aggregated Sequence {Dτ}t
τ=−∞ for a General Leadtime

We note that Remark 1 can be used to obtain the ARMA representation of {Dt} with
respect to its Wold shocks {εt} as well as σ2

ε = E[ε2
t ]. We can therefore use Lemma 1 of [8]

and its proof to determine the BLF of
( `+1

∑
k=1

Dt+k

)
and its MSFE when forecasting using

the infinite past of {Dt} up to time t, namely {Dτ}t
τ=−∞. That is, if we consider the MA(∞)

representation of {Dt} with respect to {εt} given by

Dt = Ψ(B)εt (25)

where Ψ(z) = 1 + Ψ1z + Ψ2z2 + . . ., then the MSFE of the BLF when using {Dτ}t
τ=−∞ is

MSFEagg = σ2
ε

`

∑
i=0

ω2
i (26)

where

ωi =


0 i < 0
ψi i = 0
ωi−1 + ψi 0 < i < `+ 1
ωi−1 + ψi − ψi−`−1 i ≥ `+ 1.

(27)

We note that Ψ(z) =
Θ(z)
Φ(z)

.
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2.4. Forecasting Using Subaggregated Sequences

In this section we use the results in the previous section to create a forecast and
compute its MSFE when some of the individual streams are subaggregated. That is,
for k ∈ 1 . . . n, let cluster Ck consist of nCk streams such that {Ck,t = XCk

1,t + . . . + XCk
nCk

,t}. We

are interested in the forecast and MSFE based on {C1,τ}t
τ=−∞, . . . , {Cn,τ}t

τ=−∞.
Section 2.2 describes how we can obtain the ARMA representation and variance of the

Wold shocks appearing in the Wold representation for each sequence {Ck,t}. This can then
be used to create a forecast from each subaggregated sequence, the sum of which can be
taken as the forecast for Dt+`+1. The one-step ahead MSFE of this forecast is the sum of the
entries of the covariance matrix of the Wold shocks appearing in the Wold representation
of {C1,t, . . . , Cn,t}. Equation (7) describes how we can also use the covariance matrix of the
shocks of {C1,t, . . . , Cn,t} to obtain the MSFE for multi-step ahead forecasts. The remainder
of this section will focus on obtaining this covariance matrix.

Without loss of generality, consider two subaggregated series {C1,t = X1,t + . . .+ Xa,t}
and {C2,t = Xa+1,t + . . . + Xb,t} with ARMA representations

φ?
1 (B)C1,t = θ?1 (B)ε?1,t (28)

φ?
2 (B)C2,t = θ?2 (B)ε?2,t (29)

where {ε?1,t} and {ε?2,t} are the shocks appearing in the Wold representation of {C1,t} and
{C2,t}, respectively. We note that the variances of {ε?1,t} and {ε?2,t} can be obtained using
Remark 1. To obtain the covariance σ?

12 = E[ε?1,tε
?
2,t] consider the following.

We can rewrite the ARMA representations above as

ε?1,t =
φ?

1 (B)
θ?1 (B)

C1,t (30)

ε?2,t =
φ?

2 (B)
θ?2 (B)

C2,t (31)

The ARMA representations of {X1,t}, . . . , {Xb,t} can also be rewritten as

X1,t =
Θ1(B)
Φ1(B)

ε1,t . . . Xb,t =
Θb(B)
Φb(B)

εb,t (32)

Based on the definition of C1,t = X1,t + . . . + Xa,t and C2,t = Xa+1,t + . . . + Xb,t we
observe that

ε?1,t =
φ?

1 (B)
θ?1 (B)

[
Θ1(B)
Φ1(B)

ε1,t + . . . +
Θa(B)
Φa(B)

εa,t

]
(33)

ε?2,t =
φ?

2 (B)
θ?2 (B)

[
Θa+1(B)
Φa+1(B)

εa+1,t + . . . +
Θb(B)
Φb(B)

εb,t

]
(34)

To obtain E[ε?1,tε
?
2,t] we need to compute the expectation of the the product of the

right-hand-sides of these two equations. Thus, we need to consider the sum of terms
such as

E
[

φ?
1 (B)

θ?1 (B)
Θi(B)
Φi(B)

εi,t
φ?

2 (B)
θ?2 (B)

Θj(B)
Φj(B)

εj,t

]
. (35)

Note that we can write

φ?
1 (B)

θ?1 (B)
Θi(B)
Φi(B)

εi,t =
∞

∑
k=0

ψ̃i,kεi,t−k (36)

and
φ?

2 (B)
θ?2 (B)

Θj(B)
Φj(B)

εj,t =
∞

∑
k=0

ψ̃j,kεj,t−k (37)
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where ψ̃i,k and ψ̃j,k can be obtained in the same way as the MA(∞) coefficients in (27).
Hence, the term in Equation (35) can be rewritten as

E
[ ∞

∑
k=0

ψ̃i,kεi,t−k

∞

∑
k=0

ψ̃j,kεj,t−k

]
(38)

Since the shock sequences are not correlated across time by assumption, this is equiva-
lent to

E
[ ∞

∑
k=0

ψ̃i,kψ̃j,kεi,t−kεj,t−k

]
(39)

or equivalently
∞

∑
k=0

ψ̃i,kψ̃j,kσij (40)

Adding up these terms as required would yield the covariance. Hence

σ?
12 = E[ε?1,tε

?
2,t] =

a

∑
i=1

b

∑
j=a+1

∞

∑
k=0

ψ̃i,kψ̃j,kσij (41)

We note that this methodology can easily be extended to obtain any of the covariances
in the covariance matrix

Σ?
ε =


σ?

11 . . . σ?
1n

σ?
21

. . . σ?
2n

...
...

σ?
n1 . . . σ?

nn

 (42)

We will use the previous methodology for all theoretical MSFE computations found in
this paper. In the next subsection, we provide an example describing the importance of
forecasting leadtime demand based upon the individual sequences.

2.5. Example

Consider a retailer that observes aggregate demand {Dt = X1,t + X2,t + X3,t} where
each individual demand stream is generated by one of the following ARMA models:

X1,t = (1− 0.9B)ε1,t (43)

X2,t = (1 + 0.9B)ε2,t (44)

X3,t = (1 + 0.9B)ε3,t (45)

where the shock covariance matrix is given by Σ =

 1.6 −1.4 0.5
−1.4 1.3 −0.8
0.5 −0.8 2.0


We use the results described in Sections 2.1 and 2.2 to compare the MSFE of the

forecasts of leadtime demand
`+1

∑
j=1

Dt+j when using the individual sequences {X1,t}t
τ=−∞,

{X2,t}t
τ=−∞, {X3,t}t

τ=−∞ versus when using the aggregate sequence {Dτ}t
τ=−∞.

The covariance generating function of {Dt} is given by

GS(z) =
0.090z−1 + 5.631 + 0.090z

1
(46)
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and the ARMA representation of {Dt} is given by

Dt = (1 + 0.01598704B)εt (47)

where σ2
ε = 5.629561. We can check that the ARMA representation of {Dt} and its covari-

ance generating function match up by noting that

GS(z) = σ2
ε

Θ(z)Θ(z−1)

Φ(z)Φ(z−1)

= 5.629561(1 + 0.01598704z)(1 + 0.01598704z−1)

= 0.090z−1 + 5.631 + 0.090z (48)

with Θ(z) = (1+ 0.01598704z) and Φ(z) = 1 being the MA and AR polynomials appearing
in the ARMA representation of {Dt} as defined in Remark 1.

We note that the one-step ahead forecast then has a MSFE = 5.629561 and a two-step-
ahead forecast (of Dt+1 + Dt+2) has an MSFE = 11.44056.

Using Equation (7) and noting that ωk,0 = ψk,0 = 1 in Equation (5), we can obtain
the MSFE of the forecast based on the individual demand streams. In this case, the MSFE
is 1.5, which is 4.129561 (73.3%) lower that the forecast error when using the aggregated
series. We can likewise compute the elements ωk,i when forecasting Dt+1 + Dt+2. In this
case, ωk,0 = ψk,0 = 1 and ω1,1 = 0.1, ω2,1 = 1.9, and ω3,1 = 1.9. From (7) this implies
that the MSFE = 7.311, which is also 4.129561 (36.1%) lower (In this case, the reduction in
MSFE appears the same, regardless of leadtime; however, this is due to the series being
generated by MA(1) models. For higher order ARMA models, the reduction in MSFE may
be dependent on leadtime.) than the forecast error when using the aggregated series. In the
next section we demonstrate, with example, the benefit of forecasting using subaggregated
clusters (which would have been identified using a suitable technique).

3. The Benefit of Forecasting Using Subaggregated Clusters

In this section, we consider a retailer that has ten demand streams that aggregate into three
clusters consisting of similar streams. The models generating these streams are specifically
chosen to provide a clear separation between “good” clusters leading to low MSFE and
“bad” clusters leading to high MSFE. Intuition gleaned from Sections 6 and 7 hint that streams
generated from ARMA models with similar coefficients should be clustered together. Hence,
for our example we consider three groups of models having similar sets of coefficients within
each group. Later, in Section 4, we will randomly assign coefficients to streams and still observe
a sharp drop in MSFE when streams are clustered to minimize MSFE.

Suppose the retailer observes aggregate demand {Dt = X1,t + X2,t + . . . + X10,t} where
each individual demand stream is generated by one of the following ARMA processes:

(1− 0.3B− 0.6B2)X1,t = (1− 0.6B− 0.2B2)ε1,t (49)

(1− 0.35B− 0.5B2)X2,t = (1− 0.65B− 0.15B2)ε2,t (50)

(1− 0.27B− 0.55B2)X3,t = (1− 0.63B− 0.17B2)ε3,t (51)

(1− 0.8B)X4,t = ε4,t (52)

(1− 0.9B)X5,t = ε5,t (53)

(1− 0.75B)X6,t = ε6,t (54)

(1 + 0.77B)X7,t = (1 + 0.6B)ε7,t (55)

(1 + 0.68B)X8,t = (1 + 0.55B)ε8,t (56)

(1 + 0.73B)X9,t = (1 + 0.52B)ε9,t (57)

(1 + 0.7B)X10,t = (1 + 0.5B)ε10,t (58)
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where the shock covariance matrix is given by

Σ =



2 1 0.8 −0.9 −1.2 −1.5 0.8 0.9 0.95 1
1 2.1 0.7 −0.6 −0.5 −0.4 0.21 0.31 0.36 0.39

0.8 0.7 2.2 −0.5 −1.3 −1 0.4 0.8 1 1.1
−0.9 −0.6 −0.5 3 1.8 1.9 −2 −2.1 −2.2 −2.3
−1.2 −0.5 −1.3 1.8 3.2 2 −1.9 −1.8 −1.7 −1.5
−1.5 −0.4 −1 1.9 2 3.3 −2.2 −2.3 −2.4 −2.5
0.8 0.21 0.4 −2 −1.9 −2.2 5 1 1.25 1.5
0.9 0.31 0.8 −2.1 −1.8 −2.3 1 5.1 1.3 1.6

0.95 0.36 1 −2.2 −1.7 −2.4 1.25 1.3 5.7 1.8
1 0.39 1.1 −2.3 −1.5 −2.5 1.5 1.6 1.8 5.9


(59)

Consider the three natural clusters in the above ten demand streams, namely, streams
1–3, 4–6, and 7–10. It can be shown that, indeed, this grouping is optimal out of any
other possible choice of three clusters simply by looking at all possible combinations and
computing their MSFEs. Our analysis of the MA(1) case in Section 6 also points to these
being the correct clusters based on the proximity of the ARMA coefficients of the models
generating the demand streams. We demonstrate that, even though the best the retailer can
achieve in such a situation is forecast all ten streams individually, if the retailer correctly
clusters the demand streams as mentioned, the results will be similar. All MSFEs stated in
this section are obtained using the methods described in Section 2.

Specifically in this case, if the retailer were to forecast the individual streams, its
one-step ahead theoretical MSFE would be 21.64. If the retailer were to consider the
subaggregated processes consisting of the correct clusters and forecast these separately,
then the MSFE would be 21.74. This is in stark contrast to an MSFE of 61.39 when forecasting
using the aggregate process of all ten streams. In other words, it is sufficient to determine
clusters of similar customers as opposed to forecasting each individual stream in order to
keep inventory-related costs down.

To see the impact of choosing the correct clusters, we consider the case that the retailer
incorrectly clusters the streams as 1–2, 3–5, and 6–10. In this case, the MSFE rises to 33.4.
Similarly, if the clusters chosen are 1&4, 2&3&5, and 6–10, then the MSFE is 45.04. Assigning
streams randomly to three clusters consisting of three, two, and five streams yields Table 1.

Table 1. The MSFEs for various clusters of three, two, and five streams.

MSFE Clusters

52.34495576 6,10,9 and 1,2 and 8,3,4,5,7
51.90912188 2,10,5 and 3,8 and 4,1,7,6,9
31.40789218 7,2,10 and 8,9 and 5,4,6,3,1
44.15962369 10,1,7 and 3,4 and 8,2,9,6,5
50.32525078 5,8,3 and 1,10 and 4,2,7,6,9
39.31100769 6,9,5 and 10,7 and 1,3,8,4,2
45.09358141 3,1,10 and 5,8 and 2,4,9,7,6
51.54828609 9,5,10 and 4,2 and 7,6,8,1,3
34.21154829 8,7,2 and 1,9 and 6,4,5,10,3
55.21445794 6,1,10 and 2,4 and 7,3,8,5,9

We note that there could be substantial reduction in MSFE even when multiple streams
are clustered incorrectly. In the next section, we demonstrate how a retailer would be able
to generate clusters of its individual demand streams using Pivot Clustering.

4. TS Clustering Algorithms and Pivot Clustering; Empirical Evaluation

We have shown that the when the retailer forecasts using clusters of its demand
streams as opposed to the individual streams, its MSFE can vary greatly from close to the
optimal value (when forecasting using the individual streams) to close to the MSFE of a
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forecast based on the aggregate of all the streams. Hence, if the retailer wishes to forecast
using clusters of its demand streams, the selection of the clusters is important. In general,
a retailer might have customer-related information that could be used to generate the
clusters. The benefit of generating the clusters and forecasting them is that there could
be situations where it would be cumbersome for the retailer to collect the individual
demand streams and service them individually. Forecasting clusters would therefore be a
second-best option.

We propose Pivot Clustering for determining clusters which usually result in a rel-
atively low MSFE among all choices of streams to clusters. We consider two ways to
obtain the subaggregated MSFE based on some clustering assignment. The first is to use
the individual ARMA demand models appearing in (2) to compute the subaggregated
theoretical MSFE as per Sections 2.2–2.4. We note that if there is only one cluster, then the
MSFE is the one computed for a forecast based on the aggregate of the all the streams, while
if the number of clusters is equal to the number of streams, the MSFE is for a forecast based
on the disaggregated (individual) sequences. We also estimate the MSFE by generating
demand realizations for each stream based on (2). Once demand realizations are simulated
for each stream, we subaggregate the realizations based on our choice of clusters. So, if
some cluster is made up of streams {Xi,t} and {Xj,t}, we say that the cluster has realization
{Xi,t + Xj,t}. We then estimate an ARMA(5,5) (the AR and MA degrees were chosen with
the understanding that these degrees increase with the number of streams subaggregated
into a particular cluster while trying to limit the complexity of the models being estimated)
model using each cluster’s realization. Finally, we use the estimated models to obtain
in-sample forecast errors and compute the covariance matrix of these forecast errors to
estimate the MSFE for a particular assignment of streams to clusters. In the analysis below
we see that the estimated MSFEs are close to theoretical ones and often lead to similar
choices of clusters. Based on a predetermined number of clusters n, Pivot Clustering works
as follows.

For each stream, randomly assign it to a cluster.
For each cluster:
For each stream in the cluster, compute or estimate the MSFE for the current assign-

ment along with the resulting MSFEs if the stream was moved to each of the other clusters.
The MSFE can be either estimated based on realizations of the demand streams or

computed using Equations (28), (29), (41) and (42).
Move each stream in the cluster to a cluster which leads to the largest overall MSFE

reduction among all choices of clusters.
In the remainder of this section, we perform various simulations to assess the efficacy

of Pivot Clustering. We focus on ARMA(1,1) models as these do not require too much
runtime for Pivot Clustering based on theoretical MSFE and are complex enough to describe
demand data such as in [10]. Additionally, forecasting an aggregate of ARMA(1,1) demand
sequence has been studied by [11], where forecasts were based on exponential smoothing.
The methods herein are generally applicable, however, to higher-order ARMA models.
From a computational standpoint, it is possible to determine theoretical MSFE based on the
aggregate of up to twenty demand streams generated by ARMA(1,1) models. The burden
lies in having to find roots of large degree polynomials in order to determine the ARMA
model and shock variance that describes the aggregated sequence. To understand the
computational requirements, we check the runtimes of Pivot Clustering when determining
theoretical and estimated MSFEs. Based on a given number of streams (between 10 and
20), we carry out Pivot Clustering for twenty different combinations of ARMA(1,1) models
and plot the average of the runtimes in Figure 1 in assigning the streams to four clusters.
If using estimated MSFE, then many more streams can be clustered, and Pivot Clustering
has faster runtimes for larger amounts of streams. Upon checking, Pivot Clustering with
estimated MSFEs for 200 streams takes approximately 20 min.
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Figure 1. Runtimes of Pivot Clustering for assigning streams to four clusters using theoretical and
estimated MSFEs. The graph contains the average runtime of Pivot Clustering for each specific
number of streams being assigned to four clusters. That is, for N streams (between 10 and 20), we
consider twenty randomly assigned ARMA(1,1) models for each stream. Pivot Clustering (with
theoretical and estimated MSFE) is then used to obtain the four optimal clusters. The average
runtime of Pivot Clustering is approximately 63 s when twenty streams are assigned to clusters using
theoretical MSFE and 40 s using estimated MSFE.

We can check the efficacy of Pivot Clustering through simulation. We begin by ran-
domly assigning coefficients to twenty ARMA(1,1) models to produce twenty demand
streams as well as the covariance matrix of the shock sequences. We make sure that each
assignment results in causal and invertible demand with respect to the shocks and that the
resulting covariance matrix is positive definite. The AR and MA coefficients and covariance
matrix can be found under “Models.csv” and “covarmat.csv” in our Github location [12].

After randomly assigning streams to one of four cluster,s we compute both the esti-
mated and theoretical one-step-ahead MSFEs based on this random assignment and use
it to start Pivot Clustering. We output the clusters found by Pivot Clustering as well as
the MSFE of the forecast based on this set of clusters. We iterate this procedure 50 times to
study how much the MSFE improves based on Pivot Clustering for the starting allocations.
The MSFEs of the final clusters and random clusters can be found under “MSFEresults.csv”
in our Github link [12]. These can also be compared with the MSFEs of the forecast based on
the individual (disaggregated) demand streams and the forecast based on fully aggregating
the streams.

For the twenty demand streams and models used, the theoretical and estimated MSFEs
when forecasting based on individual (disaggregated) streams are 102.1 and 96.2. The theo-
retical and estimated MSFEs when forecasting based on the fully aggregated streams are
231.3 and 220.6. For the 50 simulations of assigning streams to random clusters (used in the
initialization step of Pivot Clustering) the average of the theoretical and estimated MSFEs
based on the subaggregated random clusters are 202.2 and 194.2. After Pivot Clustering is
carried out to obtain a better set of subaggregated clusters in each of the 50 simulations,
the averages of the theoretical and estimated MSFEs are 109.4 and 101.0. The various theo-
retical and estimated MSFEs for the different initializations are provided in Figures 2 and 3.
We note that regardless of the initial random assignment of streams to clusters, Pivot
Clustering leads to the clustering of streams such that the subaggregated MSFE is very
low. In fact, typically, Pivot Clustering results in clusters for which the subaggregated
MSFE ends up very close to the MSFE obtained when forecasts are based on the individual
(disaggregated) streams.



Stats 2023, 6 1211

Figure 2. Theoretical subaggregated MSFE for random initialization of Pivot Clustering. Theoretical
MSFEs are computed on the four clusters obtained by Pivot Clustering for different random initializa-
tions. The MSFE of the initial random assignment is provided as well as the MSFE that is obtained by
Pivot Clustering. Horizontal lines are drawn to represent the MSFE based on the fully aggregated
demand sequence (top) and the MSFE based on the fully disaggregated demand sequences (bottom).

Figure 3. Estimated subaggregated MSFE for random initialization of Pivot Clustering. Estimated
MSFEs are computed for different initializations of Pivot Clustering. The MSFE of the initial random
assignment is provided as well as the MSFE that is obtained by Pivot Clustering. Horizontal lines are
drawn to represent the MSFE based on the fully aggregated demand sequence (top) and the MSFE
based on the fully disaggregated demand sequences (bottom).
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We can compare our results with existing time-series clustering methods. Two distance
measures that can be computed for time-series realizations are available in the TSclust
package for R, namely AR.PIC and AR.LPC.CEPS. These distances can be used to perform
hierarchical clustering such as average-linkage clustering. The final groups determined by
these methods lead to MSFEs of 123.4 and 108.8, respectively, higher than those found by
Pivot Clustering starting from random assignments. We note that the cluster assignments
found by these methods can also be used in the initialization of Pivot Clustering, potentially
leading to even better clusters.

Since the previous simulations were carried out on only one set of twenty ARMA(1,1)
demand models, we should also check the efficacy of Pivot Clustering for other sets of
models as well. As such, we consider twenty simulations where within each simulation a
new set of twenty demand models is considered. We compare the estimated and theoretical
MSFEs of one random assignment of streams to four clusters with the estimated and
theoretical MSFEs of the four clusters obtained by Pivot Clustering. In each simulation,
we also compute the MSFEs that would be found when fully aggregating the streams or
when considering forecasts based on individual streams as well as the MSFEs that would
be found using the AR.PIC and AR.LPC.CEPS distances for hierarchical clustering streams
into four clusters. The results of these simulations are displayed in Figures 4 and 5. We
note that if forecasts are to be based on four clusters, the lowest MSFEs are obtained when
clusters are formed using Pivot Clustering. Furthermore, Pivot Clustering leads to forecasts
whose MSFE is very close to the MSFE of the forecast based on the individual streams in
every simulation.

Figure 4. Theoretical subaggregated MSFE found by Pivot Clustering for different sets of streams.
Theoretical MSFEs are computed for twenty simulations using different sets of twenty streams in each
simulation. We note that using individual streams to forecasts leads to the lowest MSFE, while basing
the forecast on the aggregate of the streams always leads to the highest MSFE. If subaggregated
clusters are formed from the streams, the lowest MSFEs are obtained when clusters are based on
Pivot Clustering.
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Figure 5. Estimated subaggregated MFSE found by Pivot Clustering for different sets of streams.
Estimated MSFEs are computed for twenty simulations using different sets of twenty streams in each
simulation. We note that using individual streams to forecasts leads to the lowest MSFE while basing
the forecast on the aggregate of the streams always leads to the highest MSFE. If subaggregated
clusters are formed from the streams, the lowest MSFEs are obtained when clusters are based on
Pivot Clustering.

We continue with twenty simulations where in each simulation we consider a separate
set of 20 streams being subaggregated into four clusters with 10 random initializations of
Pivot Clustering. The means of the various theoretical and estimated MSFEs under different
clustering approaches are displayed in Figures 6 and 7. We note again that in every set of
twenty streams, the averaged subaggregated MSFEs are very close to the disaggregated
MSFEs when averaged for different initial random assignments of streams to clusters.

We continue by assessing how well Pivot Clustering performs when compared against
an exhaustive algorithm which checks all possible assignments of streams to clusters using
theoretical MSFE calculations. To achieve this, we consider twenty simulations where
within each simulation we randomly generate 10 ARMA(1,1) streams (We reduced the
number of streams and clusters here due to the fact that an exhaustive algorithm requires
O(kN) iterative steps to check all possible cluster assignments where k is the number of
clusters and N is the number of streams. We note that Pivot Clustering has a complexity of
O(kN) in the event that each stream is only allowed to change clusters once.) and compute
the lowest MSFE possible among all choices of streams to three clusters. Furthermore, we
consider 10 random initializations of Pivot Clustering each time new streams are considered.
The results are displayed in Table 2. For the first simulation of twenty streams (described
by the first row of the table), 8 out of 10 initializations of our algorithm led Pivot Clustering
to find the optimal solution. Among the two initializations that did not lead to the optimal
solution, the ratio of optimal MSFE to the MSFE of the grouping found by pivot is 96.81%.
The median was 96.81%, while the minimum ratio was 96.24%. In some instances Pivot
Clustering never found an optimal solution (such as in the sixth simulation); however, the
average MSFE of the optimal solution was around 99.6% of the MSFE of the groupings
found by Pivot Clustering. In the worst performance, of Pivot Clustering (simulation 15),
the best possible grouping led to an MSFE that was 80.27464% lower than the MSFE found
by Pivot Clustering.
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Figure 6. Theoretical subaggregated MSFE found by Pivot Clustering for different sets of streams.
Theoretical MSFEs are computed for twenty simulations using different sets of twenty streams in
each simulation and different initial assignments of streams to clusters. When averaging the final
MSFEs based on the different initializations for each set of streams, we note that using individual
streams to forecasts leads to the lowest averaged MSFE, while basing the forecast on the aggregate of
the streams always leads to the highest averaged MSFE. If subaggregated clusters are formed from
the streams, the lowest averaged MSFEs are obtained when clusters are based on Pivot Clustering.

Figure 7. Estimated subaggregated MSFE found by Pivot Clustering for different sets of streams.
Estimated MSFEs are computed for twenty simulations using different sets of twenty streams in each
simulation and different initial assignments of streams to clusters. When averaging the final MSFEs
based on the different initializations for each set of streams, we note that using individual streams
to forecasts leads to the lowest averaged MSFE, while basing the forecast on the aggregate of the
streams always leads to the highest averaged MSFE. If subaggregated clusters are formed from the
streams, the lowest averaged MSFEs are obtained when clusters are based on Pivot Clustering.
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Table 2. Twenty simulations are carried out where within each simulation we select a new set of
ARMA(1,1) coefficients for each of 10 streams. The streams are then clustered using Pivot Clustering
using theoretical MSFE based on 10 different starting groups. We also obtain the optimal (minimum
MSFE) clustering assignment based on an exhaustive search of all possible assignments of streams to
clusters. Each row corresponds to a new simulation. The three columns contain the mean, median and
minimum ratios of global optimal MSFE to the MSFE obtained by Pivot Clustering for the different
initializations in the event that Pivot Clustering did not find the optimal solution.

Simulation Average MSFE-Ratio of
Global to Pivot

Median MSFE-Ratio of
Global to Pivot

Minimum MSFE-Ratio
of Global to Pivot

1 0.9681 0.9681 0.9624
2 0.9774 0.9767 0.9748
3 0.9894 0.9890 0.9846
4 0.9865 0.9865 0.9865
5 0.9484 0.9479 0.9284
6 0.9959 0.9963 0.9952
7 0.9721 0.9810 0.9435
8 0.9933 0.9933 0.9933
9 0.9172 0.8920 0.8920
10 0.9809 0.9809 0.9809
11 0.9762 0.9861 0.9310
12 0.9902 0.9894 0.9864
13 0.9877 0.9877 0.9877
14 0.9890 0.9991 0.9688
15 0.8417 0.8481 0.8027
16 0.9568 0.9568 0.9315
17 0.9916 0.9952 0.9785
18 0.9942 0.9965 0.9802
19 0.9920 0.9948 0.9695
20 0.9946 0.9946 0.9946

Finally, we consider the robustness of the Pivot Clustering algorithm to cases where
the data generation process is not ARMA. To accomplish this, we perform ten simulations
where in each simulation we simulate twenty demand stream realizations such that stream
Xk follows an ARFIMA(0, dk, 0) model given by

(1− B)dk Xk,t = εk,t (60)

where −0.4 < dk < 0.4 and Cov(εk,t, εj,t) may be nonzero. Each realization, consisting of
1500 time periods, is used to fit an ARMA(5,5) model to compute an estimated one-step-
ahead MSFE for the disaggregated series (appearing as a blue dot in Figure 8). Summing
the realizations together to fit an ARMA(5,5) model yields an estimated MSFE for the
aggregated series (appearing as a black dot in Figure 8). Finally, the Pivot Clustering
algorithm is carried out using five different random initializations of assigning streams to
one of four clusters. The MSFEs for the subaggregated random clusters and pivot clusters
appear as red and green dots in Figure 8. We note that in the subaggregated case the
number of ARMA models that needs to be estimated is equal to the number of clusters.

As before, we note that Pivot Clustering provides a sharp reduction in MSFE compared
to random cluster assignments as well as compared to the aggregated case. We also observe
that when fitting ARMA models to non-ARMA data, it is possible for Pivot Clustering
to yield clusters which lead to a subaggregated MSFE that is lower than the MSFE using
the individual (disaggregated) series. The exact cause of this is unclear; however, it is
possible it has to do with the extra number of misspecified ARMA models that are fit in the
disaggregated case.
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Figure 8. Estimated MSFEs when using aggregated, disaggregated and subaggregated series to
forecast one-step-ahead demand for series that are not generated using an ARMA process. A total of
10 simulations are performed where, within each simulation, twenty separate demand realizations
are generated according to the ARFIMA(0, d, 0) model with a different d for each realization such that
the shocks appearing in the ARFIMA model are contemporaneously correlated. Pivot Clustering is
carried out for five random initialization of assigning the streams to one of four clusters. We compute
the estimated MSFEs for the disaggregated series (blue), aggregated series (black), subaggregated
clusters generated using random assignment (red) and subaggregated clusters generated using the
result of Pivot Clustering. We note the supremacy of Pivot Clustering in all ten simulations.

5. Clustering Demand Streams through Minimizing an Objective Function Based on
Subaggregated MSFE

In this section, we describe how to determine the optimal assignment of streams to
clusters by identifying and minimizing an objective function which computes the overall
MSFE given a particular assignment of streams to clusters. We begin by assuming that the
desired number of clusters is known to be n. For α ∈ 1, 2, . . . n, let subaggregated cluster
series {Cα,t} = {X1,ty1,α + . . . + XN,tyN,α}, where yi,α = 1 if stream {Xi,t} is in cluster
{Cα,t} and 0 otherwise, have the ARMA representation

φ?
α(B)Cα,t = θ?α(B)ε?α,t. (61)

For α ∈ 1, 2, . . . n, the shocks ε?α,t have covariance matrix Σ?
ε given in Equation (42).

We define the number of demand streams in cluster {Cα,t} to be nCα
=

N

∑
i=0

yi,α > 0 for all

α ∈ 1, 2, . . . n. Furthermore, if yi,α = 1 then yi,β = 0 for all α 6= β ∈ 1, 2, . . . n. For each of
nCα

streams {XCα
i,t } in cluster {Cα,t}, we adapt the notation of its ARMA representation

to be
Φi,α(B)XCα

i,t = Θi,α(B)εα,i,t. (62)
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Lemma 1. An optimal set of clusters can be found by minimizing the subaggregated MSFE
given by

MSFEsubagg =
n

∑
α=1

n

∑
β=1

`

∑
l=0

ω?
β,lω

?
α,l ·

nCα

∑
i=1

nCβ

∑
j=1

∞

∑
k=0

ψ̃α,i,kψ̃β,j,kσij (63)

where ψ̃α,i,k and ψ̃β,j,k are obtained from the equivalence

φ?
α(z)

θ?α(z)
Θi,α(z)
Φi,α(z)

≡
∞

∑
k=0

ψ̃α,i,kzk (64)

and
φ?

β(z)

θ?β(z)
Θj,β(z)
Φj,β(z)

≡
∞

∑
k=0

ψ̃β,j,kzk. (65)

where the key terms are defined in the proof below.
Alternatively, the objective can be stated as finding the optimal set of {y1, . . . , yN} such that

we minimize

MSFEsubagg =
n

∑
α=1

n

∑
β=1

`

∑
l=0

ω?
β,lω

?
α,l ·

N

∑
i=1

N

∑
j=1

∞

∑
k=0

yi,αyj,βψ̃α,i,kψ̃β,j,kσij (66)

where ω?
α,l and ψ?

α,l in Equation (69) are obtained through the equivalence

θ?α(z)
φ?

α(z)
=

∞

∑
l=0

ψ?
α,lz

l (67)

where again the key terms are defined in subsequent proof.

Proof. From Equation (7) we note that a forecast based on the clusters would have MSFE
given by

MSFEsubagg =
n

∑
α=1

n

∑
β=1

`

∑
l=0

σ?
αβω?

β,lω
?
α,l (68)

where

ω?
α,l =


0 i < 0
ψ?

α,l l = 0
ω?

α,l−1 + ψ?
α,l 0 < l < `+ 1

ωα,l−1 + ψ?
α,l − ψ?

α,l−`−1 l ≥ `+ 1.

(69)

where ψ?
α,l is the lth coefficient appearing in the MA(∞) representation of {Cα,t} with

respect to {ε?α,t}. From Equation (41), we note that for any two subaggregated clusters
{Cα,t} and {Cβ,t} consisting of nCα

and nCβ
streams, respectively, the corresponding shock

series {ε?α,t} and {ε?β,t}, the covariance E[ε?α,tε
?
β,t] is expressed by

σ?
αβ =

nCα

∑
i=1

nCβ

∑
j=1

∞

∑
k=0

ψ̃α,i,kψ̃β,j,kσij. (70)

Therefore, the objective is to assign streams to clusters such that we minimize the MSFE

MSFEsubagg =
n

∑
α=1

n

∑
β=1

`

∑
l=0

ω?
β,lω

?
α,l ·

nCα

∑
i=1

nCβ

∑
j=1

∞

∑
k=0

ψ̃α,i,kψ̃β,j,kσij (71)
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where ψ̃α,i,k and ψ̃β,j,k are obtained from the equivalence

φ?
α(z)

θ?α(z)
Θi,α(z)
Φi,α(z)

≡
∞

∑
k=0

ψ̃α,i,kzk (72)

and
φ?

β(z)

θ?β(z)
Θj,β(z)
Φj,β(z)

≡
∞

∑
k=0

ψ̃β,j,kzk. (73)

Alternatively, we can say that we are finding the optimal set of {y1, . . . , yN} such that
we minimize

MSFEsubagg =
n

∑
α=1

n

∑
β=1

`

∑
l=0

ω?
β,lω

?
α,l ·

N

∑
i=1

N

∑
j=1

∞

∑
k=0

yi,αyj,βψ̃α,i,kψ̃β,j,kσij (74)

where ω?
α,l and ψ?

α,l in Equation (69) are obtained through the equivalence

θ?α(z)
φ?

α(z)
=

∞

∑
l=0

ψ?
α,lz

l (75)

with θ?α(z) and φ?
α(z) found using Remark 1, where Laurent polynomials O(z), P(z) and

Q(z) are obtained from the covariance generating function GCα
(z) given by

GCα
(z) =

N

∑
i=1

yi,ασ2
i

Θi(z)Θi(z−1)

Φi(z)Φi(z−1)

+
N−1

∑
i=1

N

∑
j=i+1

yi,αyj,α

(
σij

Θi(z)
Φi(z)

Θj(z−1)

Φj(z−1)
+ σij

Θi(z−1)

Φi(z−1)

Θj(z)
Φj(z)

)
. (76)

We note that it is impossible to offer an explicit solution because of the dependence
of coefficients ω?

β,l , ω?
α,l , ψ̃α,i,k and ψ̃β,j,k on the selection of clusters. In the next section, we

consider a much simpler case of demand streams being generated by MA(1) models which
leads to a much simpler objective function. This allows us to find several theoretical results,
culminating in the fact that optimal clusters can be found in this case by identifying streams
having the closest MA coefficients with one another.

6. MA(1) Streams

In this section, we consider the case that the demand streams being considered are
independent MA(1). As we demonstrate below, this leads to a simpler objective function.
We will use this fact to show how we can use non-linear optimization to assign clusters
to streams and to come up with an efficient way to cluster independent MA(1) streams
based on segmenting the coefficient space into intervals. The focus on MA(1) streams here
allows us to observe that streams with their MA coefficients close to each other should be
clustered together. At the end of the section, we provide a lemma on aggregating streams
produced by models having identical ARMA coefficients.

Lemma 2. Suppose {X1,t}, {X2,t}, . . . , {XN,t} are MA(1) with MA coefficients θ1, θ2, . . . , θN .
Optimal clusters can be found by assigning yjk as an indicator variable for stream Xj being in
cluster Ck such that we minimize

n

∑
k=1

√
(bk + 2ak)(bk − 2ak) (77)
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where

bk =
N

∑
j=1

σ2
j (1 + θ2

j )yjk (78)

and

ak =
N

∑
j=1

σ2
j θjyjk. (79)

Alternatively, the objective function (77) can be written as

n

∑
k=1

√√√√ N

∑
j=1

N

∑
i=1

σ2
j σ2

i (1 + θj)2(1− θi)2yjkyik. (80)

Proof. Suppose {X1,t}, {X2,t}, . . . , {XN,t} are MA(1) with MA coefficients θ1, θ2, . . . , θN .
Suppose cluster Cα,t consists of streams {X1,t}, . . . , {Xα,t}. The covariance generating
function of Cα,t simplifies to

GCα
(z) = σ2

1 (1 + θ1z)(1 + θ1z−1) + . . . + σ2
α(1 + θαz)(1 + θαz−1). (81)

In order to determine the variance of the shocks of Cα,t, we need to find the roots of
Equation (81). Note that it can be rewritten as(

σ2
1 θ1 + . . . + σ2

α θα

)
z−1 +

(
σ2

1 (1 + θ2
1) + . . . + σ2

α(1 + θ2
α)

)
+

(
σ2

1 θ1 + . . . + σ2
α θα

)
z. (82)

We can find the roots of Equation (82) using the quadratic formula
−b±

√
b2 − 4a2

2a
where

a = σ2
1 θ1 + . . . + σ2

α θα =
α

∑
j=1

σ2
j θj (83)

b = σ2
1 (1 + θ2

1) + . . . + σ2
α(1 + θ2

α) =
α

∑
j=1

σ2
j (1 + θ2

j ) (84)

We note that one roots r1 will be outside the unit circle and from Remark 1 that the
variance of the shocks of Cα,t is equal to −ar1. Since b > 0, the variance is then given by

σ2
α =

b +
√
(b + 2a)(b− 2a)

2
(85)

Thus, if we are subaggregating into n clusters, the MSFE is given by

MSFEsubagg =
1
2

( n

∑
k=1

bk +
n

∑
k=1

√
(bk + 2ak)(bk − 2ak)

)
(86)

Since
n

∑
k=1

bk will be the same regardless of choice of clusters, we are minimizing the

objective function given by

n

∑
k=1

√
(bk + 2ak)(bk − 2ak) (87)

where

bk =
N

∑
j=1

σ2
j (1 + θ2

j )yjk (88)
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and

ak =
N

∑
j=1

σ2
j θjyjk (89)

where yjk is an indicator variable for stream Xj being in cluster Ck.
Noting that

(bk + 2ak) =
N

∑
j=1

σ2
j (1 + θj)

2yjk (90)

(bk − 2ak) =
N

∑
j=1

σ2
j (1− θj)

2yjk (91)

The objective function can also be rewritten as

n

∑
k=1

√√√√ N

∑
j=1

N

∑
i=1

σ2
j σ2

i (1 + θj)2(1− θi)2yjkyik. (92)

We have results (not shown here) where we use Equation (92) in a non-linear opti-
mization algorithm to come up with clusters. When using 10 streams with three clusters,
the approach actually leads to a globally optimal solution almost every time.

We note that Equation (92) can also be rewritten as

n

∑
k=1

√
∑

Xi ,Xj∈Ck

σ2
j σ2

i (1 + θj)2(1− θi)2. (93)

where the inner sum is taken over all pairs of streams in each cluster, including pairs of
streams with themselves.

If stream Xp is moved from cluster k to cluster κ, then the change in the objective
function is √

σ2
p(1 + θp)2 ∑

Xi∈Cκ

σ2
i (1− θi)2 + σ2

p(1− θp)2 ∑
Xi∈Cκ

σ2
i (1 + θi)2

−
√

σ2
p(1 + θp)2 ∑

Xi∈Ck

σ2
i (1− θi)2 + σ2

p(1− θp)2 ∑
Xi∈Ck

σ2
i (1 + θi)2 (94)

which provides an alternative way to cluster streams by identifying and moving the stream
from one cluster to another, which yields the largest drop in the objective function.

Aggregate of Two MA(1) Streams

In this subsection, we consider two MA(1) streams whose variance of shocks is unitary.
We demonstrate that the MA coefficient (The aggregate of two MA(1) streams is always
MA(1)) of their aggregate process is always between the two MA coefficients of the individ-
ual streams. Furthermore, we show that as the two coefficients of the two MA(1) streams
are moved further apart from each other, the variance of the shocks appearing in the aggre-
gated process increases. These two facts imply that if we are studying N individual MA(1)
streams (with unit shock variance) and would like to cluster them into n clusters, then the
globally optimal clustering assignment will cluster the streams along intervals. That is,
the assignment will have split the clusters into groups of streams whose MA coefficients
are next to each other in a sorted arrangement. This implies that an efficient algorithm for
obtaining a globally optimal cluster assignment consists of arranging the MA coefficients
in increasing order and checking all possible “interval” clusters, without worrying that if
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two streams are clustered together, another stream with an MA coefficient between the two
is assigned to a different cluster. This algorithm would need to check (N

n ) possible cluster
assignments to find the globally optimal arrangement.

Theorem 1. Consider two streams whose ARMA representations are given by

X1,t = (1 + θ1B)ε1,t

X2,t = (1 + θ2B)ε2,t

with var(ε1,t) = var(ε2,t) = 1 and σ12 = 0 and θ1 < θ2. Note that θ1 and θ2 are allowed to
equal 0.

The aggregated process {X1,t + X2,t} is described by the MA(1) model

X1,t + X2,t = (1 + θB)εt

such that θ1 < θ < θ2.

Proof. Note that the covariance generating function of the aggregate process is

GS(z) = (θ1 + θ2)z−1 + (2 + θ2
1 + θ2

2) + (θ1 + θ2)z. (95)

As long as θ1 6= −θ2 (if θ1 = −θ2, then θ = 0 and the result still holds), this polynomial
has roots a1 and 1/a1. Suppose a1 is inside the unit circle, then according to Remark 1,
θ = −a1 and var(εt) = σ2

ε = −(θ1 + θ2)(1/a1).
We can note that the Laurent polynomial in Equation (95) has roots given by

−(2 + θ2
1 + θ2

2)±
√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2

2(θ1 + θ2)
(96)

This implies that

a1 =
−(2 + θ2

1 + θ2
2) +

√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2

2(θ1 + θ2)
(97)

and

θ =
(2 + θ2

1 + θ2
2)−

√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2

2(θ1 + θ2)
(98)

In the remainder of this section, we will prove that

θ1 <
(2 + θ2

1 + θ2
2)−

√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2

2(θ1 + θ2)
< θ2 (99)

Suppose first that θ1 + θ2 > 0.
Then, we can rewrite Equation (99) as

2θ2
1 + 2θ2θ1 < (2 + θ2

1 + θ2
2)−

√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2 < 2θ2
2 + 2θ2θ1 (100)

or equivalently,

θ2
1 − θ2

2 + 2θ2θ1 − 2 < −
√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2 < θ2
2 − θ2

1 + 2θ1θ2 − 2 (101)

or

θ2
1 − θ2

2 − 2θ2θ1 + 2 <
√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2 < θ2
2 − θ2

1 − 2θ1θ2 + 2 (102)
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Noting that the left and right-hand sides of the inequality are always larger than zero, (102)
holds if and only if the following inequality holds as well:

(θ2
1 − θ2

2 − 2θ2θ1 + 2)2 < (2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)

2 < (θ2
2 − θ2

1 − 2θ1θ2 + 2)2. (103)

Labeling the three sides of this inequality as A < B < C, we observe that

A = θ4
1 − θ2

1θ2
2 − 2θ3

1θ2 + 2θ2
1 − θ2

1θ2
2 + θ4

2 + 2θ3
2θ1 − 2θ2

2

− 2θ3
1θ2 + 2θ3

2θ1 + 4θ2
1θ2

2 − 4θ2θ1 + 2θ2
1 − 2θ2

2 − 4θ2θ1 + 4

B = 4 + 2θ2
1 + 2θ2

2 + 2θ2
1 + θ4

1 + θ2
1θ2

2 + 2θ2
2 + θ2

1θ2
2 + θ4

2 − 4(θ2
1 + 2θ1θ2 + θ2

2)

C = θ4
2 − θ2

2θ2
1 − 2θ3

2θ1 + 2θ2
2 − θ2

2θ2
1 + θ4

1 + 2θ3
1θ2 − 2θ2

1

− 2θ3
2θ1 + 2θ3

1θ2 + 4θ2
2θ2

1 − 4θ1θ2 + 2θ2
2 − 2θ2

1 − 4θ1θ2 + 4 (104)

Removing equivalent terms and combining like terms, we observe

2θ2
1θ2

2 − 4θ3
1θ2 + 4θ2

1 + 4θ3
2θ1 − 4θ2

2 − 8θ1θ2

< 2θ2
1θ2

2 − 8θ1θ2

< θ2
2θ2

1 − 4θ3
2θ1 + 4θ2

2 + 4θ3
1θ2 − 4θ2

1 − 8θ2θ1

which can be rewritten as

−4θ3
1θ2 + 4θ2

1 + 4θ1θ3
2 − 4θ2

2 < 0 < −4θ1θ3
2 + 4θ2

2 + 4θ3
1θ2 − 4θ2

1 . (105)

Noting that the left and right-hand sides of this inequality are additive inverses, we
see that this inequality holds (the given direction of the inequalities must hold, otherwise
θ1 > θ2 in (99)) and therefore inequality (99) holds.

Finally, if θ1 + θ2 < 0 in (99), then the direction of the inequalities is reversed in (100)
and a similar sequence of steps would lead us to observe

−4θ3
1θ2 + 4θ2

1 + 4θ1θ3
2 − 4θ2

2 > 0 > −4θ1θ3
2 + 4θ2

2 + 4θ3
1θ2 − 4θ2

1 (106)

and by the same argument, we see that (99) holds and the theorem is proved.

Theorem 2. Consider two streams whose ARMA representations are given by

X1,t = (1 + θ1B)ε1,t

X2,t = (1 + θ2B)ε2,t

with σ2
1 = σ2

2 = 1 and σ12 = 0 and θ1 < θ2. Note that θ1 and θ2 may be 0.
As the distance between θ1 and θ2 increases, var(εt) = σ2

ε increases.

Proof. From Equation (95) we see that the root 1/a1 of GS(z), which is outside the unit
circle, is given by

−(2 + θ2
1 + θ2

2)−
√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2

2(θ1 + θ2)
. (107)

Since σ2
ε = −(θ1 + θ2)/a1, we have

σ2
ε =

(2 + θ2
1 + θ2

2) +
√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2

2
(108)
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To show that this is increasing in θ2, consider the derivative of the above with respect
to θ2:

∂σ2
ε

∂θ2
= θ2 +

θ2(2 + θ2
1 + θ2

2)− 2(θ1 + θ2)√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2.
(109)

We need to show that (109) is larger than zero, thus consider

∂σ2
ε

∂θ2
= θ2 +

θ2(2 + θ2
1 + θ2

2)− 2(θ1 + θ2)√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2
> 0 (110)

or equivalently

θ2(2 + θ2
1 + θ2

2)− 2(θ1 + θ2) > −θ2

√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2 (111)

which simplifies to

2(θ1 + θ2)− θ2(2 + θ2
1 + θ2

2) < θ2

√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2 (112)

or
2θ1 − θ2θ2

1 − θ3
2 < θ2

√
(2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)2. (113)

We will refer to the left and right hand sides of the inequality in (113) as LHS and
RHS. Note that squaring both yields,

LHS2 = 4θ2
1 − 4θ3

1θ2 − 4θ1θ3
2 + θ4

1θ2
2 + 2θ2

1θ4
2 + θ6

2

RHS2 = 4θ2
2 + 4θ2

1θ22 + θ4
1θ2

2 + 2θ2
1θ4

2 + θ6
2 − 4θ2

1θ2
2 − 8θ1θ3

2 (114)

Note that, furthermore,

LHS2 − RHS2 = 4θ2
1 − 4θ2

2 − 4θ3
1θ2 + 4θ1θ3

2 = 4(1− θ1θ2)(θ
2
1 − θ2

2) (115)

Suppose first that θ1 < θ2 = 0. Note that (113) reduces to 2θ1 < 0, which holds,
and therefore (110) holds as well.

Next, suppose that 0 = θ1 < θ2. Note that (113) reduces to

−θ3
2 < θ2

√
(2 + θ2

2)
2 − 4θ2

2 (116)

which holds as well since the left-hand side is negative in this case.
In the remainder of the proof, we assume that θ1 6= 0 and θ2 6= 0. Consider the case

that |θ2| > |θ1|. Note that this implies that θ2>0 (since θ2 > θ1) and that (115) is less than
zero. Thus, in this case LHS2 < RHS2 and LHS < RHS in (113). Therefore, (110) holds in
this case as well.

Now, suppose that |θ1| > |θ2| and that θ2 > 0. The former implies that LHS2 −
RHS2 > 0 and the latter implies that RHS > 0. Therefore LHS < 0 and therefore
LHS < RHS. Therefore, (110) holds in this case as well.

Finally, suppose that |θ1| > |θ2| and that θ2 < 0. The former again implies that
LHS2 − RHS2 > 0, while the latter implies that RHS < 0. Therefore, LHS < RHS
and (110) holds in all cases.

7. Demand Streams Produced by Identical ARMA Models

Note that Theorems 1 and 2 imply that the prescribed algorithm at the top of the
previous subsection always leads to an optimal solution. The following lemma establishes
that in the event that two streams are generated by the same ARMA model, the aggregate
will also follow the same ARMA model. Therefore, we can greatly reduce the dimensionality
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of the number of streams that need to be assigned to clusters by first aggregating demand
streams from equivalent models.

Lemma 3. Consider two sequences {X1,t} and {X2,t} that have the same ARMA representation
with respect to Wold shock sequences {ε1,t} and {ε2,t} given by

Φ?(B)X1,t = Θ?(B)ε1,t (117)

Φ?(B)X2,t = Θ?(B)ε2,t (118)

such that the variance of the shock sequences are σ2
1 and σ2

2 with covariance σ12.
The aggregate {St = X1,t + X2,t} also has the same ARMA representation with respect to its

Wold shocks {εt} given by
Φ?(B)St = Θ?(B)εt (119)

such that the variance of {εt} is given by σ2
1 + σ2

2 + 2σ12.

Proof. From Remark 1, we note that the ARMA representation of {St} is given by

Φ(B)St = Θ(B)εt (120)

such that Θ(z) =
m

∏
i=1

(1− aiz) where {ai} are the roots of O(z)P(z) on or inside the unit

circle and Φ(z) =
n

∏
i=1

(1− biz) where {bi} are the roots of Q(z) inside the unit circle with

O(z),P(z) and Q(z) are obtained from the covariance generating function GS(z) given by

GS(z) = (σ2
1 + σ2

2 )
Θ?(z)Θ?(z−1)

Φ?(z)Φ?(z−1)
+ 2σ12

Θ?(z)Θ?(z−1)

Φ?(z)Φ?(z−1)
(121)

as per (76). This can further be simplified as

GS(z) = (σ2
1 + σ2

2 + 2σ12)
Θ?(z)Θ?(z−1)

Φ?(z)Φ?(z−1)
(122)

and therefore Φ(z) = Φ?(z) and Θ(z) = Θ?(z), and the result is proved.

Lemma 3 shows us that if we have n demand sequences X1,t, . . . , Xn,t, generated by
models with the same ARMA coefficients with respect to their Wold shocks, their aggregate
will have the same ARMA coefficients. Therefore, if the customer base of a firm is comprised
of many demand streams having the same ARMA representation, it is possible to greatly
reduce the number of streams that need to be considered for clustering by first aggregating
these equivalent streams.

8. Extensions and Other Questions

In this paper we compare theoretical MSFEs of a firm forecasting its leadtime demand
based on disaggregated (individual) demand streams and subaggregated clusters formed
from those streams. We highlight examples that illustrate that the MSFE based on subaggre-
gates need not be much larger than the MSFE based on the disaggregated streams as long
as those clusters are well formed. We propose a Pivot Clustering algorithm to form clusters
which minimize the MSFE among all cluster assignments. We end with some theoretical
results when the demand streams are generated by MA(1). Here, we show that clusters
resulting in the lowest MSFE are formed by grouping streams by the proximity of their
MA coefficient.

The MA(1) case hints that in a general ARMA case, “best” clusters would be formed
based on proximity of the ARMA coefficients between models generating the various
streams (or equivalently based on the proximity of roots of the AR and MA polynomials).
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Alternatively, best cluster assignments may result from grouping streams with most similar
coefficients appearing in the MA(∞) representation. Future work can be performed to
establish the best approach.

Our current theoretical approach based on general ARMA models is limited in that
root-finding algorithms are unstable once the degree of a polynomial gets too large. In our
study, this begins to occur when we consider the aggregate of around twenty streams with
at least one AR coefficient. It is possible to greatly reduce the dimensionality, however, by
first aggregating demand streams that are produced by identical or nearly-identical ARMA
models. This is another direction for future research.
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