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Abstract: In social sciences, multiple groups, such as countries, are frequently compared regarding a
construct that is assessed using a number of items administered in a questionnaire. The corresponding
scale is assessed with a unidimensional factor model involving a latent factor variable. To enable a
comparison of the mean and standard deviation of the factor variable across groups, identification
constraints on item intercepts and factor loadings must be imposed. Invariance alignment (IA)
provides such a group comparison in the presence of partial invariance (i.e., a minority of item
intercepts and factor loadings are allowed to differ across groups). IA is a linking procedure that
separately fits a factor model in each group in the first step. In the second step, a linking of estimated
item intercepts and factor loadings is conducted using a robust loss function L0.5. The present
article discusses implementation alternatives in IA. It compares the default L0.5 loss function with
Lp with other values of the power p between 0 and 1. Moreover, the nondifferentiable Lp loss
functions are replaced with differentiable approximations in the estimation of IA that depend on a
tuning parameter ε (such as, e.g., ε = 0.01). The consequences of choosing different values of ε are
discussed. Moreover, this article proposes the L0 loss function with a differentiable approximation
for IA. Finally, it is demonstrated that the default linking function in IA introduces bias in estimated
means and standard deviations if there is noninvariance in factor loadings. Therefore, an alternative
linking function based on logarithmized factor loadings is examined for estimating factor means and
standard deviations. The implementation alternatives are compared through three simulation studies.
It turned out that the linking function for factor loadings in IA should be replaced by the alternative
involving logarithmized factor loadings. Furthermore, the default L0.5 loss function is inferior to the
newly proposed L0 loss function regarding the bias and root mean square error of factor means and
standard deviations.

Keywords: confirmatory factor analysis; multiple groups; measurement invariance; invariance
alignment; alignment optimization; robust loss function

1. Introduction

In the comparison of multiple groups in confirmatory factor analysis (CFA), some
identifying assumptions have to be made. It is frequently assumed that item parameters
are equal across groups, which is denoted as measurement invariance [1]. The invariance
concept has been very prominent in psychology and the social sciences in general [2,3].
For example, in international large-scale assessment studies in education, like the pro-
gramme for international student assessment (PISA), the necessity of invariance is strongly
emphasized [4].

In violation of measurement invariance, the invariance alignment (IA) method [5,6] has
been proposed to achieve approximate invariance [7]. That is, item parameters should be
made as invariant as possible while allowing a few deviations from invariance. By doing so,
group comparisons can be made more robust against violations of measurement invariance.
Note that IA is also referred to as alignment optimization [8,9].

Although IA can be seen as a canonical method for handling measurement noninvari-
ance in the social sciences [10,11], this method has not been thoroughly studied from a
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statistical and conceptual point of view. There are a few simulation studies that investigate
the behavior of the IA method. Except for a few studies [12,13], all simulation studies
were carried out with the popular but commercial (and closed-source) Mplus software [14].
Previous simulation studies for unidimensional factor models investigated the case of
continuous items [5,9,15–17], dichotomous items [18,19], and polytomous items [13,20].
The extension of IA to multidimensional factor models with continuous items was dis-
cussed in [21,22]. IA was studied in longitudinal measurement models in [23–26]. The IA
method has been extended to exploratory structural equation models [22,27]. Moreover,
the optimization function used in IA gave rise to extending it to a general framework used
in the penalized maximum likelihood estimation of structural equation models [28].

IA has been applied in a wide area of disciplines. For example, IA has been utilized
to compare European countries regarding attitudes towards migration [29,30]. Ref. [31]
compares seven Latin American countries for the purpose in life test through IA. IA was
applied to study bullying for children and adolescents [32,33]. Questionnaire data from
the programme for international student assessment (PISA) study [34,35] and the trends in
international mathematics and science study (TIMSS) [36] were used in IA applications. Fur-
thermore, the IA method was utilized to investigate overexcitability [37], homophobia [38],
distributed leadership [39], and gender role attitudes [40].

In this article, we focus on the implementation aspects of the IA method. The IA
optimization function is nondifferentiable. Software implementations of the IA method rely
on differentiable approximations that depend on a tuning parameter ε. The default value
of this tuning parameter ε is critically examined in this paper. Furthermore, the originally
proposed IA method utilizes the Lp loss function ρ(x) = |x|p for p = 0.5. This article
investigates whether other choices than p = 0.5 result in improved estimation performance
of the IA method. Moreover, the IA method uses a particular linking function for deter-
mining factor standard deviation based on a quantification of differences in residual item
loadings. We show in this article that the performance of IA can be improved by relying on
a different linking function that employs logarithmized item loadings to estimate factor
standard deviations. Finally, the performance of IA is compared with a recently proposed
differentiable approximation of the L0 loss function. It turns out that this loss function
performed comparably to default IA implementations, if not better, regarding the root
mean square error of parameter estimates.

The rest of this article is organized as follows. IA estimation based on the robust
Lp and L0 loss functions is treated in Section 2. Section 3 discusses the standard error
computation in IA. In Section 4, the research purpose of this article is outlined. Sections 5–7
contain three simulation studies, respectively, that thoroughly investigate the choices in IA
implementation. Finally, the article closes with a discussion in Section 8.

2. Loss Functions in Invariance Alignment

In this section, the statistical background of IA is reviewed. In particular, the choice of
different loss functions in IA is discussed.

Let Xig denote item i (i = 1, . . . , I) in group g (g = 1, . . . , G). A unidimensional factor
model [41] is defined as

Xig = νig + λigFg + εig , Fg ∼ N(μg,σ2
g) , εig ∼ N(0, ωig) , (1)

where λig is an item loading and νig is an item intercept. Without loss of generality, item
loadings can be assumed to be positive. The factor variables Fg and all residual variables εig
are independent and normally distributed. The factor variable Fg has a factor mean μg and
a factor standard deviation σg.

It must be emphasized that the model parameters in (1) are not identified. An identified
model is obtained by assuming a standardized latent variable Fg (i.e., with a mean of 0 and
a standard deviation of 1):

Xig = νig,0 + λig,0Fg + εig , Fg ∼ N(0, 1) , εig ∼ N(0, ωig) . (2)
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The model parameters in (1) and (2) are related to each other by

λig,0 = λigσg and νig,0 = νig + λigμg = νig +
λig,0

σg
μg . (3)

A convenient property is measurement invariance [1,3], in which the same item
loadings and item intercepts across groups can be assumed. That is, there exist item
loadings λi such that λi = λig for all g = 1, . . . , G and item intercepts νi such that νi = νig
for g = 1, . . . , G for all items i = 1, . . . , I. The absence of measurement invariance is
also labeled as differential item functioning (DIF; [2,42]) in the literature. In the case of
measurement invariance, Equation (3) can be rewritten as

λig,0 = λiσg and νig,0 = νi +
λig,0

σg
μg . (4)

The IA method of Asparouhov and Muthén [5,6] tackles situations under sparse
violations of measurement invariance. In this case, a few item loadings or item intercepts
are allowed to differ across groups, while the majority of items (approximately) fulfill the
invariance assumption [43]. This situation is referred to as partial invariance [44].

In IA, the unidimensional factor model (2) is separately estimated for all groups in the
first step. The estimated item parameters λ̂ig,0 and ν̂ig,0 (i = 1, . . . , I; g = 1, . . . , G) are used
as the input of the IA. By rewriting (3) and inserting the estimated item loadings and item
intercepts, we obtain

λig − λih =
λ̂ig,0

σg
− λ̂ih,0

σh
and νig − νih = ν̂ig,0 − ν̂ih,0 −

λ̂ig,0

σg
μg +

λ̂ih,0

σh
μh . (5)

These relations motivate the minimization of the following linking function in IA to deter-
mine group means μ = (μ1, . . . ,μG) and standard deviations σ = (σ1, . . . ,σG):

H(μ,σ) =
I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

wi1,ghρ

(
λ̂ig,0

σg
− λ̂ih,0

σh

)
+

I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

wi2,ghρ

(
ν̂ig,0 − ν̂ih,0 −

λ̂ig,0

σg
μg +

λ̂ih,0

σh
μh

)
, (6)

where the weights wi1,gh and wi2,gh are known, and ρ is a loss function. Asparouhov and
Muthén [5] proposed wi1,gh = wi2,gh =

√ngnh and ρ(x) =
√|x|, where ng denotes the

sample size of group g. In the minimization of (6), additional identification constraints
must be imposed. In this article, we fix the moments in the first group; that is, we set μ1 = 0
and σ1 = 1.

In the rest of the article, we ignore the weights in (6) for the following reasons. First, it
simplifies mathematical notation. Second, it is not obvious why one should choose weights
related to the sample sizes of the groups. We think that model deviations should be equally
weighted across groups.

Note that the optimization function H of IA, defined in (6), can be rewritten as

H(μ,σ) = H1(σ) + H2(μ,σ) , where (7)

H1(σ) =
I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

ρ

(
λ̂ig,0

σg
− λ̂ih,0

σh

)
and H2(μ,σ) =

I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

ρ

(
ν̂ig,0 − ν̂ih,0 −

λ̂ig,0

σg
μg +

λ̂ih,0

σh
μh

)
. (8)

It has been shown that the simultaneous minimization of H with respect to μ and σ can be
viewed as a two-step minimization problem [45]. In more detail, a vector of estimated factor
standard deviations σ̂ is obtained by minimizing H1(σ) in the first step. In the second step,
a vector of estimated factor means μ̂ is obtained by minimizing H2(μ, σ̂) with respect to μ.
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Equation (3) can be rewritten as

log λig,0 = log λig+ logσg and νig,0= νig +
λig,0

σg
μg . (9)

This motivates using an alternative optimization function H∗
1 for determining standard

deviations that employs logarithmized item loadings (see [45,46])

H∗
1 (σ

∗) =
I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

ρ
(

log λ̂ig,0 − log λ̂ih,0 − σ∗g + σ∗h
)

, (10)

where σ∗g = logσg for g = 1, . . . , G. Due to the identification constraint, we fix σ∗1 = 0
(i.e., σ1 = exp(σ∗1) = 1). By minimizing H∗

1 , a vector of standard deviations σ̂∗ on the
logarithm metric is obtained; that is, σ̂∗ = (σ̂∗1, . . . , σ̂∗G). The vector of estimated standard
deviations σ̂ can be obtained by exponentiating all entries in σ̂∗. The vector of estimated
factor means μ̂ can again be obtained by minimizing H2(μ, σ̂).

Hence, there are two estimation options for IA. The original approach of [5] mini-
mizes H1 and is referred to as the “NOL” method (i.e., no logarithm for item loadings).
The second approach obtains factor standard deviations by minimizing H∗

1 and is referred to
as the “LOG” method (i.e., taking the logarithmized item loadings for defining deviations).

As mentioned above, IA uses the loss function ρ(x) =
√|x| = |x|0.5 as the default in

the Mplus software package [14]. However, the loss function ρ(x) = |x|0.25 is also available
in Mplus [14]. The more general Lp loss function ρ(x) = |x|p for p > 0 was studied
for IA in [12,45]. It has been shown that values of the power p smaller than 0.5 can be
advantageous in some situations [12]. An interesting case is the limiting case in which p
tends to zero. Effectively, p = 0 counts the number of parameter deviations that differ from
zero [47,48], resulting in the L0 loss function. In the practical minimization of H involved
in IA, the nondifferentiable Lp loss function ρ(x) = |x|p (for 0 < p ≤ 1) is replaced by a
differentiable approximation ρD (see [5,45])

ρD(x) = (x2 + ε)p/2 , (11)

where ε > 0 is a tuning parameter that controls the approximation error of ρD for ρ. The ap-
proximation error becomes smaller with ε values close to zero. However, the minimization
of H in IA gets more difficult when choosing too-small values of ε. Practical experience
led to proposals ε = 0.01 [5] or ε = 0.001 [45]. The choice ε = 0.01 is the default in Mplus
(see [12]). It is also tempting to consider the L0 loss function ρ(x) = |x|0 that takes values of
1 if x 
= 0 and 0 for x = 0. However, the differentiable approximation ρD in (11) performs
poorly for p values close to 0 because the minimization in H becomes very difficult. O’Neill
and Burke [49] proposed, in a recent work related to regularized estimation, the following
differentiable approximation ρD of the L0 loss function:

ρD(x) =
x2

x2 + ε
, (12)

where ε > 0 is again a tuning parameter that controls the approximation error and es-
timation stability of the differentiable approximation. This approximation (12) of the
L0 loss function has not yet been investigated in IA. As IA is particularly suited to the
sparse deviations in model parameters, the L0 loss function should theoretically fit typi-
cal data-generating models frequently utilized in simulation studies that investigate the
performance of IA.
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In our experience, in the case of small ε values, the optimization of the alignment
function is very sensitive to starting values. Asparouhov and Muthén [5] remark that the
linking function in invariance alignment is prone to multiple local minima. Moreover,
they mention that these local minima often yield values of the linking function that are
only slightly different from values at the global minimum. In the estimation of the IA
approach, it is advised to choose a sequence of decreasing values of ε in the optimization,
each using the previous solution as initial values (see [50] for a similar approach). This
choice guarantees better suitable starting values and a more stable estimation of IA.

3. Standard Errors in Invariance Alignment

In this section, the estimation of standard errors for the IA approach is described. IA
minimizes the linking function H(μ,σ) with respect to μ and σ. Let θ = (μ, θ) be the
parameter vector of interest. The estimated item loadings and item intercepts across all
groups are collected in a vector ξ̂ = (ξ̂1, . . . , ξ̂G), where ξ̂g contains the group-specific
model parameter estimates from a unidimensional factor model in group g = 1, . . . , G.
As a maximum likelihood estimate, ξ̂g is approximately multivariate normally distributed.
Because of the independence of subjects across groups, a multivariate normal distribution
of the input parameter ξ̂ in IA is obtained as

ξ̂ − ξ0 ∼ MVN(0, Vξ) , (13)

where Vξ is a block-diagonal covariance matrix, and ξ0 is a population parameter.
The distribution of the IA estimates θ̂ is now derived using the delta method in

M-estimation theory [51] by relying on the implicit function theorem [5]. We assume
differentiability of the optimization function because the nondifferentiable loss function ρ

in IA is replaced by a differentiable approximation ρD . The IA approach minimizes H(θ, ξ̂),
where we now highlight the dependency of the input parameters ξ̂. A parameter estimate
θ̂ is obtained by taking the partial derivative of H with respect to θ (i.e., Hθ) and solving
the nonlinear equation such that

Hθ(θ̂, ξ̂) = 0 . (14)

Note that there exists a population parameter θ0 such that

Hθ(θ0, ξ0) = 0 . (15)

Now, a Taylor expansion of Hθ around (θ0, ξ0) can be carried out. Denote with Hθθ and Hθξ

the matrices of second-order partial derivatives of Hθ with respect to θ and ξ, respectively.
The Taylor expansion can be written as

Hθ(θ̂, ξ̂) = Hθ(θ0, ξ0) + Hθθ(θ0, ξ0)(θ̂− θ0) + Hθξ(θ0, ξ0)(ξ̂ − ξ0) = 0 . (16)

By solving (16) for θ̂, we have the approximation

θ̂− θ0 = −Hθθ(θ0, ξ0)
−1Hθξ(θ0, ξ0)(ξ̂ − ξ0) . (17)

By defining Â = −Hθθ(θ̂, ξ̂)−1Hθξ(θ̂, ξ̂) when substituting θ0 and ξ0 with θ̂ and ξ̂, respec-
tively, we have, by using the multivariate delta method [51],

Var(θ̂) = ÂVξ Â� . (18)

Standard errors for elements in θ̂ can be obtained by taking the square root of diagonal
elements of Var(θ̂) computed from (18).
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4. Purpose

In this article, several implementation aspects for IA should be examined. First, it
should be investigated whether the choice of the power p impacts the performance of the IA
estimates. In particular, it is interesting whether there are better alternatives to the default
choice p = 0.5. Second, the deliberate choice of the tuning parameter ε is studied. It is
interesting to researchers and developers of statistical software which ε should be selected
as a default in order to produce the most reliable parameter estimates. It is expected that
a larger value of ε results in a less precise differentiable approximation and more bias
for the IA estimates compared with that expected with smaller values of ε. Third, the Lp
loss function for 0 < p ≤ 1 should be compared with the newly proposed differentiable
approximation of the L0 loss function by O’Neill and Burke. It would be interesting to
see whether the L0 loss function could also be beneficial in invariance alignment. Fourth,
the two different choices of the estimation of standard deviations σ (methods “NOL” and
“LOG”; see Section 2) are compared. The NOL method uses deviations of λ̂ig,0/σg and
λ̂ih,0/σh with respect to the loss function ρ, while the LOG method utilizes deviations
log λ̂ig,0 − logσg and log λ̂ih,0 − logσh. Fifth, and finally, the quality of standard errors in
terms of coverage is studied for the different IA estimation approaches. These research
questions were answered by means of three simulation studies that are described in the
next three sections.

5. Simulation Study 1: Bias and RMSE in a Three-Group Example

In Simulation Study 1, IA is studied in a case with noninvariant item intercepts and
in a case with noninvariant item loadings and noninvariant item intercepts. This study
focuses on bias and root mean square error (RMSE).

5.1. Method

The data-generating models (DGMs) in the simulation study mimicked the DGM used
in [5]. The data were simulated from a one-dimensional factor model involving five items
(i.e., I = 5) and three groups (i.e., G = 3). The factor variable was normally distributed
with group means 0, 0.3, and 0.8, and the group variances were 1, 1.5, and 1.2, respectively.
All measurement error variances were set to one in all groups and were uncorrelated with
each other. The factor variable and residual variables were normally distributed.

Two DGMs were simulated that refer to a violation of measurement invariance. Group-
specific item parameters that are noninvariant are referred to as DIF effects [2].

In the first DGM (i.e., DGM1), only item intercepts were noninvariant. All item
loadings were set to one, and only a subset of group-specific item intercepts were simulated
differently from zero. Hence, data were simulated assuming partial invariance. In the first
group, the fourth item intercept was 0.5. In the second group, the first item was −0.5, while
the second item had an intercept of −0.5 in the third group.

In the second DGM (i.e., DGM2), item intercepts and item loadings were invariant.
The same item intercepts as in DGM1 were used. Three group-specific item loadings were
different from one. The item loading of the third item in the first group and the item
loadings of the fifth item in the third group were 2.013. The second item in the second
group had an item loading of 0.497.

The sample size per group was chosen as N = 250, N = 500, N = 1000, or N = 2000.
IA was estimated using the NOL method (based on the H1 function defined in (8)) and the
LOG method (based on the H∗

1 function defined in (10)). The Lp loss function was employed
using the powers p = 0.5, p = 0.25, and p = 0.1 and the differentiable approximation
defined in (11). The L0 loss function employed differentiable approximation (12). We did
not consider power values p = 2 or p = 1 because they have been shown to result in
severely biased estimates in the situation of partial invariance [12,45]. The reason is that
noninvariant item intercepts (i.e., model errors) indicate a misspecified model. This kind of
misspecification biases factor means if the Lp loss function is with p = 2 because all item
intercepts contribute to the estimation of factor means. The situation is known from robust
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statistics where the unweighted mean is not robust to outlying observations. Moreover,
the Lp loss function with p = 1 does not fully remove bias because it treats model errors
(i.e., outlying observations) symmetrically. In contrast, the Lp loss function with p < 1 is
more robust for asymmetrically distributed model errors.

All estimation methods were applied with the tuning parameters ε = 0.1, ε = 0.01,
ε = 0.001, and ε = 0.0001. The choice ε = 0.1 led to substantially biased parameter
estimates, while the IA estimates based on ε = 0.0001 had large variances. Hence, we only
report findings for the tuning parameters ε = 0.01 and ε = 0.001.

In total, R = 1000 replications were conducted for each cell of the simulation study.
Bias, standard deviation (SD), RMSE, and relative RMSE were computed to assess the
performance of the different estimators. Let θ̂j,r be a model parameter estimate in replication
r = 1, . . . , R for the parameter θj. The bias of the estimator θ̂j was estimated with

Bias(θ̂j) =
1
R

R

∑
r=1

(θ̂j,r − θj) , (19)

where θj denotes the true parameter value. The SD of an estimator θ̂j was calculated as

SD(θ̂j) =

√√√√ 1
R

R

∑
r=1

(θ̂j,r − θ j,•)2 , where θ j,• =
1
R

R

∑
r=1

θj,r . (20)

The RMSE of an estimator θ̂j was estimated with

RMSE(θ̂j) =

√√√√ 1
R

R

∑
r=1

(θ̂j,r − θj)2 . (21)

A relative RMSE can be defined by dividing the RMSE of an estimator by the RMSE of a
chosen reference model. In Simulation Study 1 (and in Simulation Study 3), the Mplus
default with the NOL method, p = 0.5, and ε = 0.01 is used as the reference model.
To more easily grasp differences in the relative RMSE, the values were multiplied by 100.
This quantity can then easily be converted into a percentage gain of a particular estimator
compared with a reference model.

The entire simulation study was carried out in the R [52] software. IA was performed
with the sirt::invariance.alignment() (see also [12,53,54]) function in the R package sirt
(Version 4.0-19; [55]). Information about model specification can be found in the material
located at https://osf.io/7kwqh/ (accessed on 17 September 2023).

5.2. Results

Table 1 reports the bias, SD, and relative RMSE of the factor mean μ2 and the factor
SD σ2 of the second group in the DGM of noninvariant item intercepts (i.e., DGM1). It
can be seen that the Lp loss function with p = 0.5, p = 0.25, and p = 0.1 showed some
bias for μ2. Importantly, the bias was more substantial when using ε = 0.01 instead of
ε = 0.001. Furthermore, the extent of the bias in the estimated factor mean μ2 decreased
with increasing sample size. Notably, the pattern of the bias was similar for the NOL
and LOG methods. Interestingly, the L0 loss function (i.e., p = 0) outperformed the other
specifications regarding bias. While ε = 0.001 would be preferable for p = 0.5, p = 0.25,
and p = 0.1, for p = 0, the tuning parameter choice ε = 0.01 would be preferred due to
a smaller SD of the estimate. Notably, p = 0 had a slightly increased SD compared with
p = 0.5 for the sample size N = 250. However, this effect decreased with larger sample
sizes. Moreover, it can be seen that the Mplus default p = 0.5 and ε = 0.01 could be
improved in terms of relative RMSE by using p = 0.5 and ε = 0.001 for DGM1. Notably,
the relative performance gains are more important in larger sample sizes. Additional
smaller gains can be obtained by switching to p = 0 and ε = 0.01.
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The factor SD σ2 was almost unbiasedly estimated in the condition of only noninvari-
ant item intercepts. In this situation, the choice ε = 0.01 can be defended over ε = 0.001 for
the Mplus default. The L0 loss function could not outperform p values different from zero
regarding the SD.

Table 1. Simulation Study 1: bias, standard deviation (SD), and relative root mean square error
(RMSE) of the factor mean μ2 and the factor standard deviation σ2 as a function of sample size N for
different estimation methods in the case of noninvariant item intercepts (DGM1).

Bias SD RMSE

N N N

Meth p , ε 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Factor Mean μ2

NOL

0.5 , 0.01 † −0.067 −0.051 −0.041 −0.037 0.118 0.082 0.058 0.040 100 † 100 † 100 † 100 †

0.5 , 0.001 −0.043 −0.027 −0.016 −0.012 0.124 0.086 0.059 0.041 96.8 93.2 86.5 77.5
0.25, 0.01 −0.050 −0.036 −0.027 −0.024 0.120 0.083 0.058 0.040 95.9 92.9 90.3 86.0
0.25, 0.001 −0.031 −0.017 −0.009 −0.006 0.127 0.087 0.059 0.041 96.6 91.7 85.1 75.6
0.1 , 0.01 −0.042 −0.029 −0.021 −0.019 0.121 0.083 0.058 0.040 94.5 90.4 87.1 81.3
0.1 , 0.001 −0.026 −0.013 −0.007 −0.004 0.128 0.087 0.060 0.041 96.6 90.4 84.9 75.4
0 , 0.01 −0.007 −0.001 0.000 0.000 0.128 0.084 0.058 0.040 94.8 86.8 82.8 73.6
0 , 0.001 −0.006 0.000 0.001 0.000 0.133 0.089 0.063 0.043 98.4 92.3 89.6 79.1

LOG

0.5 , 0.01 −0.068 −0.052 −0.041 −0.037 0.117 0.082 0.057 0.040 100.1 100.2 100.2 100.2
0.5 , 0.001 −0.045 −0.028 −0.016 −0.012 0.123 0.086 0.059 0.041 96.7 93.2 86.5 77.6
0.25, 0.01 −0.051 −0.036 −0.028 −0.024 0.119 0.082 0.057 0.040 95.9 93.0 90.4 86.1
0.25, 0.001 −0.033 −0.018 −0.009 −0.007 0.126 0.087 0.059 0.041 96.3 91.6 85.0 75.6
0.1 , 0.01 −0.044 −0.030 −0.022 −0.019 0.120 0.082 0.058 0.040 94.5 90.5 87.2 81.4
0.1 , 0.001 −0.028 −0.014 −0.007 −0.005 0.127 0.086 0.059 0.041 96.3 90.2 84.8 75.4
0 , 0.01 −0.009 −0.002 0.000 0.000 0.128 0.084 0.058 0.040 94.4 86.5 82.7 73.6
0 , 0.001 −0.008 −0.001 0.000 −0.001 0.132 0.089 0.063 0.043 97.8 92.0 89.5 79.0

Factor SD σ2

NOL

0.5 , 0.01 † 0.011 0.006 0.001 0.001 0.096 0.067 0.045 0.033 100 † 100 † 100 † 100 †

0.5 , 0.001 0.013 0.006 0.001 0.001 0.101 0.070 0.047 0.033 105.5 104.1 103.2 102.2
0.25, 0.01 0.011 0.006 0.001 0.001 0.097 0.067 0.046 0.033 100.6 100.3 100.2 100.1
0.25, 0.001 0.014 0.006 0.001 0.000 0.104 0.071 0.048 0.034 108.2 106.2 104.8 103.0
0.1 , 0.01 0.012 0.006 0.001 0.001 0.097 0.067 0.046 0.033 101.1 100.5 100.3 100.1
0.1 , 0.001 0.013 0.006 0.002 0.000 0.105 0.072 0.048 0.034 109.2 107.2 105.9 103.6
0 , 0.01 0.013 0.006 0.001 0.001 0.105 0.070 0.047 0.033 109.1 104.7 102.6 101.1
0 , 0.001 0.015 0.006 0.002 0.000 0.114 0.077 0.054 0.037 119.1 115.3 118.5 112.3

LOG

0.5 , 0.01 0.004 0.003 −0.001 0.000 0.096 0.067 0.046 0.033 99.1 99.5 100.1 100.0
0.5 , 0.001 0.004 0.002 −0.001 0.000 0.101 0.069 0.047 0.033 104.2 102.9 103.1 102.2
0.25, 0.01 0.004 0.003 −0.001 0.000 0.096 0.067 0.046 0.033 99.6 99.8 100.2 100.1
0.25, 0.001 0.004 0.002 −0.001 0.000 0.103 0.070 0.048 0.034 106.8 104.6 104.6 103.1
0.1 , 0.01 0.004 0.003 −0.001 0.000 0.097 0.067 0.046 0.033 100.1 100.0 100.3 100.1
0.1 , 0.001 0.004 0.002 0.000 0.000 0.104 0.071 0.048 0.034 107.9 105.9 105.6 103.7
0 , 0.01 0.004 0.002 −0.001 0.000 0.105 0.070 0.047 0.033 108.7 104.0 102.6 101.1
0 , 0.001 0.004 0.001 0.000 −0.001 0.113 0.077 0.053 0.037 117.2 114.4 117.1 112.5

Note. Meth = estimation method; NOL = no logarithmized linking function for item loadings using H1 in (8);
LOG = logarithmized linking function for item loadings using H∗

1 in (10); p = power used in the Lp loss function
ρ; ε = tuning parameter used in the differentiable approximation of the Lp loss function ρ; absolute biases larger
than 0.03 are shown with a gray background. † The Mplus defaults p = 0.5, ε = 0.01, and NOL are the reference
methods in the computation of the relative RMSE. Relative RMSE values smaller than 95.0 are printed in bold
font.

Table 2 displays bias, SD, and relative RMSE for the factor mean and the factor SD of
the second group in the condition of noninvariant item loadings and noninvariant item
intercepts. In this situation, the SD estimate was biased, particularly for the smallest sample
size N = 250. Importantly, the bias was significantly reduced when using the LOG method
instead of the NOL method. Overall, the L0 loss function with ε = 0.01 was the preferred
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method regarding the bias and relative RMSE for sample sizes of at least 500. Surprisingly,
no bias occurred for the estimated factor mean in DGM2. However, this seems to be a
coincidence of different defining factors for the bias. Table A1 in Appendix A reveals that
the factor mean of the third group in DGM2 also provided biased estimates. Again, in this
case, p = 0 resolved the issue, in particular for larger sample sizes.

Table 2. Simulation Study 1: bias, standard deviation (SD), and relative root mean square error
(RMSE) of the factor mean μ2 and the factor standard deviation σ2 as a function of sample size N
for different estimation methods in the case of noninvariant item intercepts and noninvariant item
loadings (DGM2).

Bias SD RMSE

N N N

Meth p , ε 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Factor Mean μ2

NOL

0.5 , 0.01 † −0.016 −0.012 −0.008 −0.006 0.127 0.085 0.059 0.041 100 † 100 † 100 † 100 †

0.5 , 0.001 −0.008 −0.008 −0.004 −0.002 0.130 0.086 0.057 0.039 101.7 99.9 96.2 96.2
0.25, 0.01 −0.007 −0.006 −0.004 −0.003 0.128 0.084 0.058 0.040 99.8 97.7 97.2 96.9
0.25, 0.001 0.000 −0.003 −0.002 −0.001 0.132 0.086 0.058 0.039 102.5 100.3 96.7 95.8
0.1 , 0.01 −0.003 −0.004 −0.003 −0.002 0.129 0.084 0.057 0.039 100.2 97.0 96.2 95.8
0.1 , 0.001 0.003 −0.002 −0.001 0.000 0.133 0.086 0.058 0.039 103.8 99.9 96.8 95.7
0 , 0.01 0.015 0.003 0.001 0.001 0.136 0.084 0.056 0.038 106.5 97.2 94.5 92.7
0 , 0.001 0.016 0.004 0.001 0.001 0.140 0.088 0.060 0.042 109.5 102.2 100.3 102.0

LOG

0.5 , 0.01 −0.031 −0.023 −0.017 −0.014 0.120 0.082 0.057 0.039 96.7 98.5 99.7 101.6
0.5 , 0.001 −0.021 −0.014 −0.007 −0.004 0.123 0.084 0.057 0.039 97.4 98.1 95.6 95.8
0.25, 0.01 −0.022 −0.015 −0.011 −0.008 0.121 0.081 0.056 0.039 95.5 95.3 96.1 96.7
0.25, 0.001 −0.014 −0.008 −0.004 −0.002 0.123 0.084 0.057 0.039 96.8 97.5 96.2 95.4
0.1 , 0.01 −0.017 −0.012 −0.008 −0.006 0.121 0.080 0.056 0.039 95.3 94.3 95.0 95.2
0.1 , 0.001 −0.011 −0.007 −0.003 −0.001 0.124 0.083 0.057 0.039 97.0 97.1 96.1 95.4
0 , 0.01 −0.001 −0.001 0.000 0.001 0.126 0.080 0.056 0.038 98.0 93.1 93.1 92.5
0 , 0.001 0.000 0.000 0.000 0.001 0.129 0.085 0.059 0.042 100.4 98.0 99.1 102.1

Factor SD σ2

NOL

0.5 , 0.01 † 0.183 0.135 0.108 0.093 0.134 0.094 0.061 0.041 100 † 100 † 100 † 100 †

0.5 , 0.001 0.142 0.072 0.042 0.028 0.161 0.098 0.059 0.038 94.6 73.7 58.2 46.0
0.25, 0.01 0.163 0.105 0.077 0.064 0.146 0.097 0.060 0.040 96.7 86.8 78.7 73.7
0.25, 0.001 0.132 0.056 0.028 0.017 0.175 0.104 0.058 0.037 96.5 72.2 51.8 40.4
0.1 , 0.01 0.153 0.091 0.064 0.051 0.152 0.098 0.059 0.039 95.5 81.3 70.1 63.3
0.1 , 0.001 0.127 0.050 0.023 0.013 0.179 0.106 0.058 0.037 96.9 71.2 50.5 39.0
0 , 0.01 0.114 0.031 0.010 0.005 0.207 0.114 0.058 0.035 104.4 71.8 47.7 35.1
0 , 0.001 0.113 0.028 0.007 0.003 0.214 0.120 0.064 0.040 106.8 74.9 51.6 39.4

LOG

0.5 , 0.01 0.108 0.081 0.066 0.058 0.117 0.081 0.054 0.037 70.3 69.4 68.7 67.5
0.5 , 0.001 0.078 0.044 0.027 0.019 0.128 0.084 0.054 0.037 66.2 57.8 49.1 40.7
0.25, 0.01 0.094 0.064 0.049 0.041 0.121 0.081 0.054 0.037 67.6 62.7 58.5 54.4
0.25, 0.001 0.069 0.034 0.018 0.012 0.133 0.086 0.054 0.037 66.1 56.4 45.9 38.0
0.1 , 0.01 0.086 0.055 0.041 0.034 0.124 0.081 0.053 0.036 66.7 59.8 54.2 49.1
0.1 , 0.001 0.065 0.029 0.014 0.009 0.135 0.087 0.054 0.037 66.3 55.9 45.1 37.2
0 , 0.01 0.047 0.013 0.004 0.003 0.147 0.083 0.051 0.035 68.3 51.4 41.2 34.6
0 , 0.001 0.046 0.010 0.003 0.002 0.152 0.090 0.057 0.040 70.1 54.9 45.9 39.2

Note. Meth = estimation method; NOL = no logarithmized linking function for item loadings using H1 in (8);
LOG = logarithmized linking function for item loadings using H∗

1 in (10); p = power used in the Lp loss function
ρ; ε = tuning parameter used in the differentiable approximation of the Lp loss function ρ; absolute biases larger
than 0.03 are shown with a gray background. † The Mplus defaults p = 0.5, ε = 0.01, and NOL are the reference
methods in the computation of the relative RMSE. Relative RMSE values smaller than 95.0 are printed in bold
font.

As a preliminary conclusion from Simulation Study 1, one could argue that the case of
noninvariant item loadings can induce bias in parameter estimates in default implemen-
tations of IA. The bias can be reduced by using the LOG method instead of the default
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NOL method. There is a tendency that the choice ε = 0.001 outperformed ε = 0.01 for
p = 0.5. Finally, the L0 loss function (i.e., p = 0) had satisfactory performance for ε = 0.01.
However, it came at the price of increased variance in smaller sample sizes.

6. Simulation Study 2: Coverage Rates in a Three-Group Example

The second example, Simulation Study 2, investigated the assessment of coverage
rates for the different IA estimation methods.

6.1. Method

The same DGMs as in Simulation Study 1 were employed to simulate the data (see
Section 5). The standard error computation described in Section 3 was applied for all
estimators used in Simulation Study 1. Confidence intervals at a confidence level of 95%
were computed using a normal distribution approximation (i.e., the estimated confidence
interval was θ̂ ± 1.96× SE(θ̂)). The coverage rate at a confidence level of 95% was computed
as the percentage of the events that an estimated confidence interval covers for the true
parameter value. Coverage rates were considered acceptable if they were not smaller than
91.0 or larger than 98.0 (see [56]).

In total, 5000 replications were conducted in each cell of the simulation. The IA
method with standard error estimates of model parameters was again estimated with the
sirt::invariance.alignment() function that is contained in the R [52] package sirt (Version
4.0-19; [55]). The R code used for this simulation can be found at https://osf.io/7kwqh/
(accessed on 17 September 2023) .

6.2. Results

Table 3 shows coverage rates for factor means μ2 and μ3 and factor SDs σ2 and σ3.
Overall, the coverage rates were acceptable. Undercoverage was observed when parameter
estimates were biased (e.g., p = 0.5, ε = 0.01). For approximately unbiased point estimates,
standard errors based on the delta method can be reliably used. There is no need to rely
on computationally more demanding standard error estimates like jackknife or bootstrap.
Interestingly, the coverage rates were also satisfactory for the newly proposed loss function
with the power p = 0.

Table 3. Simulation Study 2: coverage rates for factor means μ2 and μ3 and factor standard deviations
σ2 and σ3 as a function of sample size N for different estimation methods.

μ2 μ3 σ2 σ3

N N N N

Meth p , ε 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Noninvariant Item Intercepts (DGM1)

NOL

0.5 , 0.01 92.7 91.4 88.0 84.4 92.5 90.6 89.2 85.7 95.6 95.5 95.5 95.2 95.8 95.4 95.4 94.9
0.5 , 0.001 95.8 95.6 94.8 94.9 95.9 95.9 95.8 95.0 97.5 97.4 96.8 96.1 98.1 97.3 96.9 96.0
0.25, 0.01 94.5 93.6 91.6 90.0 94.4 93.1 92.5 90.9 95.8 95.6 95.6 95.2 96.1 95.7 95.5 95.0
0.25, 0.001 96.2 96.4 95.8 95.7 96.5 96.8 96.5 96.0 97.8 97.4 97.1 96.5 98.2 97.6 97.3 96.3
0.1 , 0.01 94.9 94.2 92.7 92.2 95.2 94.0 93.5 92.5 96.1 95.7 95.6 95.3 96.4 95.8 95.6 95.0
0.1 , 0.001 96.2 96.5 96.0 96.0 96.6 97.1 96.7 96.2 97.9 97.5 97.3 96.6 98.0 97.6 97.5 96.5
0 , 0.01 96.3 96.2 95.3 95.6 96.5 96.6 95.9 95.5 97.2 96.9 96.4 95.6 97.4 96.7 96.5 95.5
0 , 0.001 96.2 96.7 96.5 96.6 96.8 97.4 97.3 97.3 97.6 97.5 97.6 97.6 97.9 97.7 97.4 97.1

LOG

0.5 , 0.01 92.5 91.3 87.8 84.3 92.0 90.3 88.9 85.4 95.6 95.3 95.5 95.1 95.6 95.3 95.4 95.0
0.5 , 0.001 95.7 95.5 94.8 94.8 95.7 95.7 95.7 94.9 97.5 97.1 96.8 96.1 97.8 97.2 96.9 96.0
0.25, 0.01 94.3 93.5 91.5 90.0 93.9 92.9 92.2 90.7 95.7 95.3 95.6 95.2 95.9 95.4 95.5 95.0
0.25, 0.001 95.9 96.3 95.8 95.7 96.2 96.6 96.5 95.9 97.6 97.4 97.1 96.4 97.8 97.5 97.2 96.3
0.1 , 0.01 94.7 94.1 92.6 92.2 94.7 93.8 93.3 92.4 95.9 95.4 95.6 95.2 96.0 95.5 95.5 95.0
0.1 , 0.001 96.0 96.5 96.0 96.0 96.4 97.1 96.7 96.1 97.6 97.4 97.2 96.6 97.9 97.5 97.3 96.4
0 , 0.01 96.3 96.2 95.3 95.6 96.4 96.6 95.8 95.5 97.0 96.7 96.3 95.5 97.0 96.7 96.5 95.5
0 , 0.001 96.2 96.7 96.4 96.7 96.7 97.3 97.3 97.3 97.7 97.4 97.7 97.4 97.5 97.5 97.4 97.0
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Table 3. Cont.

μ2 μ3 σ2 σ3

N N N N

Meth p , ε 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Noninvariant Item Intercepts and Noninvariant Item Loadings (DGM2)

NOL

0.5 , 0.01 96.0 95.6 95.1 94.8 94.5 94.1 93.2 91.7 84.9 78.6 64.4 41.7 96.2 94.6 93.4 91.6
0.5 , 0.001 96.9 96.7 96.0 96.1 96.6 96.6 96.2 96.1 92.2 95.4 95.2 93.0 97.3 96.9 96.6 96.2
0.25, 0.01 96.4 95.9 95.4 95.2 95.6 95.1 94.3 93.8 89.0 89.1 81.8 69.5 96.6 95.4 94.6 93.7
0.25, 0.001 96.7 96.7 96.4 96.3 96.7 96.9 96.9 96.5 91.0 95.4 96.0 95.3 97.2 96.8 96.9 96.4
0.1 , 0.01 96.4 96.0 95.3 95.3 95.9 95.4 94.9 94.4 89.7 92.4 86.9 79.1 96.6 95.6 94.9 94.2
0.1 , 0.001 96.8 96.5 96.4 96.4 96.7 96.9 97.0 96.7 90.6 95.5 96.5 96.0 96.9 96.8 96.8 96.6
0 , 0.01 95.9 96.4 95.6 95.6 95.7 96.8 96.2 95.6 87.5 94.7 96.0 95.3 95.3 96.3 96.1 95.8
0 , 0.001 95.9 96.4 96.6 96.7 95.7 96.9 97.2 97.4 86.5 94.6 96.9 96.6 95.5 96.3 97.0 96.9

LOG

0.5 , 0.01 95.3 94.9 93.8 93.4 91.8 91.0 89.2 85.6 92.7 88.7 81.6 70.1 96.0 95.5 95.2 95.2
0.5 , 0.001 96.6 96.5 95.9 95.8 95.5 96.2 95.9 95.7 96.5 96.9 95.9 94.8 97.5 97.0 96.7 96.2
0.25, 0.01 95.8 95.4 94.6 94.3 93.7 93.3 92.5 90.8 94.8 93.3 88.9 83.4 96.2 95.8 95.3 95.2
0.25, 0.001 96.6 96.6 96.2 96.2 95.9 96.7 96.5 96.5 96.4 97.0 96.7 96.0 97.2 97.0 96.9 96.5
0.1 , 0.01 96.0 95.8 94.9 94.7 94.5 94.3 93.4 92.7 95.5 94.8 91.4 87.7 96.3 96.0 95.4 95.2
0.1 , 0.001 96.7 96.6 96.3 96.4 95.9 96.7 96.8 96.7 96.3 96.9 97.0 96.3 96.9 97.1 97.0 96.6
0 , 0.01 96.1 96.5 95.6 95.5 95.3 96.8 96.1 95.5 95.2 96.6 96.1 95.3 95.7 96.5 96.1 95.8
0 , 0.001 96.2 96.6 96.6 96.7 95.1 97.0 97.1 97.3 94.7 96.5 96.8 96.5 96.0 96.6 96.8 96.9

Note. Meth = estimation method; NOL = no logarithmized linking function for item loadings using H1 in (8);
LOG = logarithmized linking function for item loadings using H∗

1 in (10); p = power used in the Lp loss function
ρ; ε = tuning parameter used in the differentiable approximation of the Lp loss function ρ; coverage rates smaller
than 91.0 or larger than 98.0 are shown with a gray background.

7. Simulation Study 3: Bias and RMSE in a Six-Group Example

In the last example, Simulation Study 3, different estimation methods of IA were
examined for DGMs involving six groups and four items.

7.1. Method

The data were simulated from a one-dimensional factor model involving four items
(i.e., I = 4) and six groups (i.e., G = 6). The factor variable was normally distributed with
group means 0, −0.27, −0.46, 0.11, 0.21, and 0.49, and the group variances were 1, 0.95,
0.87, 1.23, 1.1, and 0.99, respectively. All measurement error variances were set to one in all
groups and uncorrelated with each other. The factor variable and residual variables were
normally distributed.

Two DGMs were simulated that refer to a violation of measurement invariance. In-
variance only appeared in item loadings, while item intercepts had invariant parameters.

In the first DGM of Simulation Study 3 (i.e., DGM3), the DIF effects in item loadings
λig (i = 1, . . . , I, . . .) were unidirectional. That is, item loadings with DIF loadings were all
larger than one, while the invariant item parameters had loadings equal to one. The item
loadings with DIF effects were as follows: λ12 = 2.014 (i.e., first item in second group),
λ21 = 1.733, λ23 = 2.014, and λ36 = 2.117. The item intercepts were all set to 0 in DGM3.

In the second DGM of Simulation Study 3 (i.e., DGM4), the DIF effects in item loadings
were directional. That is, item loadings with DIF effects could be smaller or larger than one.
The item loadings with DIF effects were as follows: λ12 = 0.497, λ21 = 1.733, λ23 = 2.014,
and λ36 = 2.117. Like in DGM3, the item intercepts were all set to 0 in DGM4.
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As in Simulation Study 1 and Simulation Study 2, the sample size per group was
chosen as N = 250, N = 500, N = 1000, or N = 2000. The same IA estimation methods as
in the other two studies were utilized. To summarize the performance of the parameter
estimates across the six groups, average absolute bias, average SD, and the average relative
RMSE were computed, where the average was calculated for factor means μ and factor
SDs σ, separately.

Again, the simulation study was carried out in the R [52] software. IA was estimated
using the sirt::invariance.alignment() function in the R package sirt (Version 4.0-19; [55]).
Replication material can be found at https://osf.io/7kwqh/ (accessed on 17 September 2023) .

7.2. Results

Table 4 displays average absolute bias, average SD, and average relative RMSE for
factor means μ and factor SDs σ for the DGM with unidirectional effects of noninvariance
(i.e., DGM3). As expected from Simulation Study 1, noninvariant item loadings mainly
impacted factor standard deviations. It was obtained that factor SDs had a larger absolute
bias for the (default) NOL method compared with the LOG method. However, absolute
bias decreased with larger sample sizes and by choosing the tuning parameter ε = 0.001
instead of ε = 0.01. Furthermore, the LOG method had a much smaller bias in estimated
factor SDs. This finding also translated into findings for the average absolute RMSE of
the σ estimates. Interestingly, the LOG method was also preferred for the estimated factor
means. The LOG estimates for μ had, on average, smaller SDs than the NOL estimates.

Similar findings were obtained in the case of the bidirectional DIF effects in item
loadings (DGM4) that are displayed in Table A2 in Appendix B. The LOG method was
preferred over the NOL method regarding the estimation of factor SDs σ. Furthermore,
LOG resulted in slightly better estimates than the NOL method for factor means μ. IA with
p = 0.5 should preferably choose the tuning parameter ε = 0.001 instead of ε = 0.01.

Table 4. Simulation Study 3: average absolute bias, average standard deviation (average SD),
and average relative root mean square error (ARRMSE) for factor means μ and factor standard
deviations σ as a function of sample size N for different estimation methods for unidirectional effects
in noninvariance in item loadings (DGM3).

Average Absolute Bias Average SD ARRMSE

N N N

Meth p , ε 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Factor Means μ

NOL

0.5 , 0.01 † 0.047 0.030 0.025 0.021 0.108 0.071 0.050 0.034 100 † 100 † 100 † 100 †

0.5 , 0.001 0.034 0.017 0.011 0.007 0.108 0.071 0.048 0.034 95.1 92.9 87.4 83.2
0.25, 0.01 0.033 0.019 0.015 0.011 0.104 0.070 0.048 0.034 91.4 92.1 89.9 87.7
0.25, 0.001 0.025 0.011 0.007 0.003 0.107 0.071 0.048 0.033 91.9 91.4 84.9 81.0
0.1 , 0.01 0.028 0.015 0.012 0.008 0.102 0.069 0.048 0.033 88.9 89.9 87.1 84.6
0.1 , 0.001 0.022 0.009 0.005 0.002 0.107 0.071 0.048 0.033 91.6 90.9 85.1 81.1
0 , 0.01 0.012 0.004 0.003 0.001 0.105 0.069 0.047 0.033 88.4 87.1 82.2 79.1
0 , 0.001 0.012 0.005 0.003 0.001 0.111 0.074 0.051 0.035 93.5 93.7 90.1 84.7

LOG

0.5 , 0.01 0.003 0.003 0.003 0.003 0.091 0.065 0.046 0.032 75.9 82.0 80.6 78.7
0.5 , 0.001 0.003 0.003 0.002 0.002 0.094 0.067 0.046 0.033 78.8 84.4 80.9 79.1
0.25, 0.01 0.003 0.003 0.002 0.003 0.092 0.065 0.046 0.032 76.5 82.1 80.8 78.7
0.25, 0.001 0.002 0.003 0.002 0.002 0.096 0.068 0.047 0.033 80.6 85.8 81.6 79.3
0.1 , 0.01 0.003 0.003 0.002 0.002 0.092 0.066 0.046 0.032 77.0 82.5 80.7 78.8
0.1 , 0.001 0.002 0.003 0.002 0.001 0.098 0.069 0.047 0.033 81.6 87.3 82.4 79.9
0 , 0.01 0.002 0.002 0.002 0.001 0.098 0.068 0.046 0.033 81.8 85.5 81.4 78.9
0 , 0.001 0.002 0.003 0.002 0.001 0.104 0.074 0.051 0.035 86.8 92.4 89.7 84.7
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Table 4. Cont.

Average Absolute Bias Average SD ARRMSE

N N N

Meth p , ε 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Factor SDs σ

NOL

0.5 , 0.01 † 0.126 0.091 0.072 0.063 0.118 0.071 0.048 0.035 100 † 100 † 100 † 100 †

0.5 , 0.001 0.087 0.053 0.031 0.021 0.120 0.073 0.049 0.034 86.6 78.4 67.9 55.6
0.25, 0.01 0.084 0.060 0.043 0.035 0.111 0.069 0.048 0.034 80.9 79.3 74.6 68.8
0.25, 0.001 0.064 0.037 0.019 0.011 0.116 0.073 0.049 0.033 77.4 71.2 61.0 49.4
0.1 , 0.01 0.071 0.049 0.033 0.026 0.109 0.068 0.047 0.034 75.6 73.0 67.1 60.0
0.1 , 0.001 0.056 0.031 0.015 0.008 0.117 0.073 0.049 0.033 75.4 68.8 59.3 48.1
0 , 0.01 0.031 0.018 0.008 0.004 0.110 0.069 0.046 0.032 66.7 61.9 54.6 45.4
0 , 0.001 0.028 0.016 0.006 0.002 0.118 0.077 0.052 0.035 70.5 68.3 60.8 49.8

LOG

0.5 , 0.01 0.015 0.010 0.009 0.007 0.090 0.062 0.044 0.032 53.3 54.7 52.1 46.4
0.5 , 0.001 0.010 0.006 0.004 0.002 0.097 0.066 0.045 0.032 56.8 57.7 53.0 45.7
0.25, 0.01 0.011 0.007 0.006 0.005 0.091 0.062 0.044 0.032 53.4 54.6 51.8 45.6
0.25, 0.001 0.008 0.004 0.002 0.001 0.100 0.068 0.046 0.032 58.1 59.1 53.6 46.0
0.1 , 0.01 0.009 0.006 0.005 0.004 0.092 0.063 0.044 0.032 53.8 54.6 51.7 45.3
0.1 , 0.001 0.006 0.005 0.002 0.001 0.101 0.069 0.047 0.033 59.0 60.1 54.3 46.2
0 , 0.01 0.003 0.007 0.004 0.002 0.101 0.067 0.046 0.032 58.8 58.6 53.2 45.4
0 , 0.001 0.003 0.006 0.002 0.001 0.108 0.076 0.052 0.035 63.0 66.4 60.3 49.9

Note. Meth = estimation method; NOL = no logarithmized linking function for item loadings using H1 in (8);
LOG = logarithmized linking function for item loadings using H∗

1 in (10); p = power used in the Lp loss function ρ;
ε = tuning parameter used in the differentiable approximation of the Lp loss function ρ; values of average absolute
bias larger than 0.03 are shown with a gray background. † The Mplus defaults p = 0.5, ε = 0.01, and NOL are the
reference methods in the computation of the relative RMSE. ARRMSE values smaller than 95.0 are printed in bold
font.

8. Discussion and Conclusions

In this article, we critically discussed implementation aspects in IA. Because IA is
now widely applied in the social sciences, researchers should opt for appropriate estima-
tion methods. We derived recommendations for software implementation and practical
application of IA through three simulation studies.

In IA, the loss function ρ(x) =
√|x| = |x|0.5 is the default choice in the popular Mplus

software. A differentiable approximation of this loss function uses the tuning parameter
ε = 0.01 as a default in this software. Our simulations revealed that this default choice
can induce bias in estimated factor means and factor standard deviations. The bias can
be reduced by switching to the tuning parameter ε = 0.001. Notably, biases in IA were
particularly pronounced in small to moderate samples (i.e., N = 250 persons per group). It
turned out that bias in estimated factor standard deviations occurred in the presence of
noninvariant item loadings. This bias can be reduced by using a modified IA optimization
function in which logarithmized item loadings are aligned (i.e., the LOG method described
in this paper). In general, we found that the LOG method generally improves the default
NOL method in IA (which uses no logarithmized item loadings) in the situations in which
bias occurred and performed comparably to NOL in all other situations. Furthermore,
the L0 loss function recently proposed by O’Neill and Burke (i.e., p = 0) showed the least
bias across all simulated conditions. This method can be regarded as the frontrunner across
all simulation conditions when used with the tuning parameter ε = 0.01. Finally, statistical
inference based on the delta method performed satisfactorily for all approximately unbiased
estimates in terms of coverage rates.

In future research, the generalizability of the findings of this study to more groups
or more items [17] can be examined. Moreover, implementation aspects of IA could also
be investigated for dichotomous or ordinal items [19,20]. In particular, the performance
of IA in small samples [57] requires additional consideration. It might be that regularized
estimation [58–61] or confirmatory factor analysis estimation that uses robust loss functions
(i.e., model-robust estimation; see [62,63]) have advantages over IA in small samples.
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Abbreviations

The following abbreviations are used in this manuscript:

CFA confirmatory factor analysis;
DGM data-generating model;
DIF differential item functioning;
IA invariance alignment;
ML maximum likelihood;
PISA programme for international student assessment;
RMSE root mean square error;
SD standard deviation;
TIMSS trends in international mathematics and science study.

Appendix A. Additional Results for Simulation Study 1

Table A1 displays bias, SD, and relative RMSE for the factor mean μ3 and the factor
SD σ2 of the third group in the condition of noninvariant item loadings and noninvariant
item intercepts (DGM2).

Table A1. Simulation Study 1: bias, standard deviation (SD), and relative root mean square error
(RMSE) of the factor mean μ3 and the factor standard deviation σ3 as a function of sample size N
for different estimation methods in the case of noninvariant item intercepts and noninvariant item
loadings (DGM2).

Bias SD RMSE

N N N

Meth p , ε 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Factor Mean μ3

NOL

0.5 , 0.01 † −0.037 −0.031 −0.027 −0.024 0.131 0.090 0.061 0.042 100 † 100 † 100 † 100 †

0.5 , 0.001 −0.019 −0.016 −0.011 −0.009 0.142 0.098 0.062 0.043 105.4 103.6 95.4 90.0
0.25, 0.01 −0.022 −0.019 −0.018 −0.016 0.136 0.091 0.061 0.042 101.3 97.7 95.1 92.3
0.25, 0.001 −0.006 −0.008 −0.006 −0.005 0.148 0.101 0.064 0.043 108.8 105.7 97.0 89.5
0.1 , 0.01 −0.015 −0.014 −0.013 −0.012 0.139 0.092 0.061 0.042 102.9 97.2 93.7 89.8
0.1 , 0.001 −0.002 −0.005 −0.004 −0.003 0.151 0.101 0.065 0.043 111.2 105.3 97.5 89.7
0 , 0.01 0.016 0.007 0.000 0.000 0.163 0.098 0.062 0.041 120.1 103.2 93.9 85.4
0 , 0.001 0.016 0.008 0.001 0.000 0.169 0.107 0.070 0.048 125.0 111.9 104.8 98.2

LOG

0.5 , 0.01 −0.066 −0.053 −0.044 −0.038 0.126 0.087 0.059 0.041 104.4 106.3 110.6 115.8
0.5 , 0.001 −0.045 −0.030 −0.020 −0.014 0.136 0.094 0.061 0.043 105.5 103.4 97.0 92.1
0.25, 0.01 −0.049 −0.038 −0.030 −0.026 0.130 0.088 0.059 0.041 102.6 100.0 100.4 100.5
0.25, 0.001 −0.032 −0.020 −0.012 −0.008 0.141 0.096 0.063 0.043 106.6 102.8 96.9 90.0
0.1 , 0.01 −0.041 −0.031 −0.025 −0.021 0.133 0.088 0.060 0.041 102.7 97.9 97.0 95.2
0.1 , 0.001 −0.026 −0.015 −0.009 −0.006 0.145 0.097 0.064 0.043 108.5 102.9 97.0 89.7
0 , 0.01 −0.006 −0.001 −0.002 −0.002 0.154 0.095 0.062 0.041 113.1 98.9 93.1 85.2
0 , 0.001 −0.006 0.000 −0.002 −0.001 0.160 0.103 0.069 0.047 117.4 107.6 104.0 97.7
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Table A1. Cont.

Bias SD RMSE

N N N

Meth p , ε 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Factor SD σ3

NOL

0.5 , 0.01 † 0.051 0.034 0.028 0.022 0.102 0.069 0.048 0.033 100 † 100 † 100 † 100 †

0.5 , 0.001 0.046 0.023 0.015 0.009 0.116 0.075 0.049 0.033 109.5 100.7 92.7 85.5
0.25, 0.01 0.048 0.029 0.022 0.016 0.107 0.071 0.048 0.033 103.0 98.5 95.3 92.3
0.25, 0.001 0.045 0.020 0.011 0.006 0.122 0.078 0.050 0.033 114.1 103.2 92.3 83.8
0.1 , 0.01 0.047 0.026 0.019 0.014 0.109 0.071 0.048 0.033 104.4 98.0 93.3 89.3
0.1 , 0.001 0.044 0.018 0.010 0.005 0.124 0.079 0.050 0.033 115.1 104.2 92.8 83.5
0 , 0.01 0.040 0.014 0.006 0.003 0.132 0.079 0.048 0.032 121.4 103.2 87.3 80.1
0 , 0.001 0.040 0.015 0.007 0.003 0.138 0.086 0.054 0.035 126.4 112.7 98.4 89.2

LOG

0.5 , 0.01 0.007 0.002 0.003 0.001 0.097 0.066 0.046 0.032 85.5 85.4 83.8 80.7
0.5 , 0.001 0.008 0.003 0.003 0.002 0.109 0.071 0.048 0.032 95.7 92.1 86.9 81.6
0.25, 0.01 0.007 0.003 0.003 0.001 0.102 0.067 0.047 0.032 89.8 86.9 84.6 80.8
0.25, 0.001 0.008 0.003 0.003 0.002 0.114 0.073 0.049 0.033 100.4 94.8 88.1 81.8
0.1 , 0.01 0.008 0.003 0.003 0.001 0.105 0.068 0.047 0.032 92.0 87.7 84.8 80.8
0.1 , 0.001 0.008 0.004 0.003 0.002 0.117 0.074 0.049 0.033 102.8 96.1 88.9 82.0
0 , 0.01 0.010 0.003 0.003 0.001 0.124 0.074 0.047 0.032 108.9 94.9 85.6 79.5
0 , 0.001 0.011 0.004 0.003 0.002 0.128 0.081 0.053 0.036 112.9 104.1 96.6 89.3

Note. Meth = estimation method; NOL = no logarithmized linking function for item loadings using H1 in (8);
LOG = logarithmized linking function for item loadings using H∗

1 in (10); p = power used in the Lp loss function
ρ; ε = tuning parameter used in the differentiable approximation of the Lp loss function ρ; absolute biases larger
than 0.03 are shown with a gray background. † The Mplus defaults p = 0.5, ε = 0.01, and NOL are the reference
methods in the computation of the relative RMSE. Relative RMSE values smaller than 95.0 are printed in bold
font.

Appendix B. Additional Results for Simulation Study 3

Table A2 displays the average absolute bias, average SD, and average relative RMSE
for factor means and factor SDs for the DGM4, which contained bidirectional DIF effects in
item loadings.

Table A2. Simulation Study 3: average absolute bias, average standard deviation (average SD),
and average relative root mean square error (ARRMSE) for factor means μ and factor standard
deviations σ as a function of sample size N for different estimation methods for bidirectional effects
in noninvariance in item loadings (DGM4).

Average Absolute Bias Average SD ARRMSE

N N N

Meth p , ε 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Factor Means μ

NOL

0.5 , 0.01 † 0.029 0.023 0.019 0.016 0.105 0.073 0.051 0.036 100 † 100 † 100 † 100 †

0.5 , 0.001 0.020 0.014 0.009 0.006 0.107 0.073 0.051 0.035 99.1 95.1 93.0 88.0
0.25, 0.01 0.021 0.016 0.012 0.010 0.103 0.072 0.051 0.035 95.7 95.0 94.7 91.8
0.25, 0.001 0.015 0.010 0.006 0.003 0.109 0.074 0.051 0.035 99.2 94.5 91.7 86.3
0.1 , 0.01 0.018 0.013 0.010 0.008 0.103 0.072 0.050 0.035 94.6 93.3 92.9 89.4
0.1 , 0.001 0.013 0.009 0.004 0.003 0.109 0.074 0.051 0.035 99.2 94.2 91.7 86.6
0 , 0.01 0.009 0.005 0.002 0.002 0.110 0.073 0.050 0.035 98.7 92.0 89.2 85.1
0 , 0.001 0.010 0.004 0.002 0.001 0.116 0.077 0.054 0.037 104.5 97.9 96.6 91.7
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Table A2. Cont.

Average Absolute Bias Average SD ARRMSE

N N N

Meth p , ε 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

LOG

0.5 , 0.01 0.008 0.004 0.005 0.004 0.094 0.068 0.048 0.034 84.7 86.9 87.2 84.1
0.5 , 0.001 0.006 0.002 0.002 0.002 0.099 0.070 0.049 0.034 89.2 88.2 87.9 84.2
0.25, 0.01 0.006 0.003 0.003 0.002 0.094 0.069 0.048 0.034 84.9 87.3 87.3 84.0
0.25, 0.001 0.005 0.002 0.001 0.001 0.102 0.071 0.049 0.035 91.7 89.7 88.6 85.0
0.1 , 0.01 0.005 0.003 0.003 0.002 0.096 0.069 0.049 0.034 85.9 87.3 87.4 84.0
0.1 , 0.001 0.005 0.002 0.001 0.001 0.103 0.072 0.050 0.035 92.7 90.5 89.0 85.6
0 , 0.01 0.003 0.002 0.001 0.001 0.105 0.071 0.049 0.035 93.8 89.9 88.4 84.7
0 , 0.001 0.004 0.001 0.001 0.001 0.110 0.076 0.053 0.037 98.5 95.6 95.7 91.8

Factor SDs σ

NOL

0.5 , 0.01 † 0.083 0.062 0.050 0.042 0.099 0.067 0.048 0.033 100 † 100 † 100 † 100 †

0.5 , 0.001 0.061 0.039 0.023 0.014 0.104 0.071 0.050 0.033 93.7 89.6 80.3 69.3
0.25, 0.01 0.062 0.044 0.033 0.026 0.098 0.067 0.048 0.033 89.8 88.0 84.7 79.6
0.25, 0.001 0.047 0.029 0.014 0.008 0.105 0.073 0.049 0.033 89.6 86.3 76.2 65.6
0.1 , 0.01 0.054 0.037 0.026 0.020 0.098 0.067 0.047 0.033 87.3 84.3 79.6 73.5
0.1 , 0.001 0.043 0.025 0.011 0.006 0.106 0.073 0.050 0.033 89.0 85.3 75.5 64.9
0 , 0.01 0.030 0.015 0.007 0.003 0.105 0.069 0.047 0.032 85.2 78.7 70.0 62.3
0 , 0.001 0.029 0.013 0.005 0.002 0.113 0.078 0.053 0.036 90.9 87.4 79.2 70.9

LOG

0.5 , 0.01 0.029 0.023 0.018 0.016 0.089 0.063 0.044 0.031 76.7 77.2 75.0 74.3
0.5 , 0.001 0.019 0.012 0.008 0.006 0.097 0.067 0.046 0.032 78.7 76.4 70.4 64.4
0.25, 0.01 0.021 0.015 0.012 0.010 0.091 0.063 0.045 0.031 74.8 73.5 70.2 66.4
0.25, 0.001 0.013 0.007 0.005 0.003 0.100 0.069 0.047 0.032 80.1 76.9 70.7 63.8
0.1 , 0.01 0.017 0.012 0.009 0.007 0.091 0.064 0.045 0.031 74.2 72.6 68.9 63.9
0.1 , 0.001 0.011 0.005 0.003 0.003 0.102 0.069 0.048 0.032 80.9 77.5 71.1 63.9
0 , 0.01 0.004 0.002 0.001 0.001 0.101 0.068 0.046 0.031 79.4 74.9 68.4 61.7
0 , 0.001 0.004 0.001 0.001 0.001 0.109 0.076 0.053 0.036 85.8 84.2 78.4 70.6

Note. Meth = estimation method; NOL = no logarithmized linking function for item loadings using H1 in (8);
LOG = logarithmized linking function for item loadings using H∗

1 in (10); p = power used in the Lp loss function ρ;
ε = tuning parameter used in the differentiable approximation of the Lp loss function ρ; values of average absolute
bias larger than 0.03 are shown with a gray background. † The Mplus defaults p = 0.5, ε = 0.01, and NOL are the
reference methods in the computation of the relative RMSE. ARRMSE values smaller than 95.0 are printed in bold
font.
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