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Abstract: This paper studies a subclass of the class of generalized hyperbolic distribution called
the semi-hyperbolic distribution. We obtain analytical expressions for the cumulative distribution
function and, specifically, their first and second lower partial moments. Using the received formulas,
we compute the value at risk, the expected shortfall, and the semivariance in the semi-hyperbolic
model of the financial market. The formulas depend on the values of generalized hypergeometric
functions and modified Bessel functions of the second kind. The research illustrates the possibility
of analysis of generalized hyperbolic models using the same methodology as is employed for the
well-established variance-gamma model.
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1. Introduction

In this paper, we explore a subclass of the generalized hyperbolic (GH) distribution,
which we term the semi-hyperbolic distribution. The class of GH distribution was pri-
marily introduced by Barndorff-Nielsen [1] for the investigation of the physics of dune
movements. This distribution is infinitely divisible, and therefore, it originates from corre-
sponding Lévy processes. The widely discussed subclasses of the GH distribution are the
normal–inverse Gaussian (NIG) and the hyperbolic distribution. We call the considered
subclass of distributions semi-hyperbolic because their probability density functions are
close to the densities of the hyperbolic distribution. Presently, an important area of the
applications of GH distribution is financial index modeling; see the work by Eberlein [2].
Next, we introduce the family of GH distribution in more detail. Specifically, we start from
the discussion of the two most prominent members of the class of GH distribution: the
NIG and hyperbolic distributions. We consider below several research papers in which
the theoretical properties of these distributions are investigated, and the financial data are
calibrated in the related market models.

The NIG distribution was first discussed in terms of financial applications by Barndorff-
Nielsen [3] and Rydberg [4]. The properties of the NIG distribution are summarized in
Barndorff-Nielsen [5]. Different approximations of the NIG Lévy processes are provided by
Pacheco-González [6] and by Chapter 3 of Rasmus [7] and Benth et al. [8]. Computational
methods in the NIG model for various problems of mathematical finance have been devel-
oped by Aguilar [9], Ivanov and Temnov [10], and Venter and de Jongh [11]. It has been
shown by Mabitsela et al. [12] that the NIG distribution fits well with the equity behavior
at the Johannesburg Stock Exchange.

The hyperbolic distribution was examined as a pattern for daily German stock index
returns, primarily by Eberlein and Keller [13]. Eberlein et al. [14] confirmed the use of the
hyperbolic model for the simulation of the NYSE composite. Küchler et al. [15] presented an
empirical study that affirmed that the hyperbolic distribution fitted well to the stock returns
of German companies listed on the DAX and the FAZ indices. Bauer [16] showed that
the symmetric hyperbolic distribution estimates the 1% value-at-risk substantially better
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than the normal distribution. Dorić and Nikolić-Dorić [17] investigated how accurately the
hyperbolic distribution described BELEX15 index returns.

Furthermore, we consider the two distributions that are very close to GH ones. They
are the variance-gamma and skewed Student’s t distributions. As is revealed in Eberlein and
von Hammerstein [18], the gamma and the inverse gamma distributions can be understood
as limiting cases of the generalized inverse Gaussian (GIG) distribution. Therefore, since
the GIG probability densities are the mixing densities for the GH distribution, the variance-
gamma distribution and the skewed Student’s t distribution can be referred to as the
limiting cases of the GH ones. The variance-gamma and skewed Student’s t distributions
are very popular in financial applications. Madan and Seneta [19] modeled the indices of the
Sydney Stock Exchange using the symmetric variance-gamma distribution and introduced
a compound Poisson approximation for this distribution. Daal and Madan [20] showed that
the variance-gamma model fitted well for the exchange rate dynamics of German financial
markets. Rathgeber et al. [21] evaluated the parameters of the variance-gamma distribution
gauging Dow Jones index returns. Employing the variance-gamma model, Wallmeier and
Diethelm [22] calibrated the Swiss market for structured financial products. Alvarez and
Baixauli [23] showed that the Student’s t model for index returns provides better results in
value-at-risk estimation than the normal, the logistic, and the Edgeworth–Sargan models
for several market variables. Using maximum likelihood estimation, Aas and Haff [24]
calibrated the parameters of the skewed Student’s t distribution for international bonds and
Norwegian indices. The theoretical properties of the skewed Student’s t distribution were
investigated by Finlay and Seneta [25]. Müller and Righi [26] confirmed that the skewed
Student’s t model has good performance for value-at-risk prediction based on the Ibovespa
index statistics.

Analytical results for distribution functions, risk measures, and option prices are
obtained in the mentioned models using generalized hypergeometric functions, which are
computed very fast. For their properties and connections with other special functions, see
Rathie and de Sena Monteiro Ozelim [27], Choi et al. [28], and Srivastava [29]. We refer to
Madan et al. [30], Ano and Ivanov [31], and Ivanov [32] regarding the variance-gamma
model, to Ivanov [33] regarding the skew Student’s t model, and to Ano and Ivanov [31]
and Ivanov and Temnov [10] regarding the NIG one. At the same time, modern research
papers that analyze data from financial markets often recommend the simulation of index
returns with GH distribution as well as the above-mentioned ones.

The following works study the class of GH distribution without the suggestion that
one of the parameters of the distribution is fixed. In particular, all parameters of the
GH distribution are estimated in those papers about financial market data. Daskalaki and
Katris [34] reported that the GH distribution is the most successful choice for European stock
market modeling. Baciu [35] showed that the GH model is the best fit for Bucharest Stock
Exchange returns. Rathgeber et al. [36] extended the simplified method of moments for
the problem of the estimation of the parameters of the GH process. Balter and McNeil [37]
calibrated symmetric GH distribution based on S&P500 index statistics. An extension of
the family of GH distributions was introduced in Klebanov and Rachev [38]. Mixtures of
the GH distribution have been studied by Han and Yin [39].

Semi-hyperbolic distribution is a subclass of GH distribution, which is determined by
the parameter λ = 0 for this subclass (see Section 2 in this paper for details). In particular, as
is shown in Table 12 of Daskalaki and Katris [34], this value of λ conforms to the movements
of the OMXH25 and SAX indices. The aim of this paper is to obtain analytical results for
the theoretical characteristics of the semi-hyperbolic distribution and to apply them to the
computation of the basic monetary risk measures in the semi-hyperbolic model.

The rest of this paper is organized as follows. Section 2 describes the class of GIG
distribution, including the semi-hyperbolic inverse Gaussian (SHIG) one, which is the
mixing distribution for the semi-hyperbolic distribution. In Section 3, we present the
probability density function and the moments of the semi-hyperbolic distribution, and
formulate the main theoretical results of the work. The values of the monetary risk measures
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are given in Section 4. Examples of the calculation of the obtained formulas are presented
in Section 5.

2. Materials and Methods

As mentioned in the previous section, the semi-hyperbolic distribution is a normal
mean-variance mixture, where the mixing density is the semi-hyperbolic inverse Gaussian
(SHIG) distribution. The SHIG distribution is a member of the class of generalized inverse
Gaussian (GIG) distributions. This class introduced in Good [40], Sichel [41] and Barndorff-
Nielsen [1] for the aim of statistical modeling in variety of scientific areas. Properties of
the family of GIG distributions are summarized in Eberlein and von Hammerstein [18].
Methods of the parameter estimation for these distributions were discussed by Tsai et al. [42]
and Lee and Whitmore [43].

A generalized inverse Gaussian distribution GIG = GIG(λ, δ, α, β) has the probability
density function

fGIG(λ,δ,α,β)(x) =
(
α2 − β2) λ

2 δ−λ

2Kλ

(
δ
√

α2 − β2
) xλ−1e−

δ2
2x−

(α2−β2)x
2 , (1)

where
Kς1(ς2) (2)

is the modified Bessel function of the second kind (on its properties, see Chapters 9 and 10
of Abramowitz and Stegun [44]). The restrictions on the parameters in (1) are δ > 0 and
|β| < α.

Next, we consider important examples of the GIG distributions and their limiting
cases (see Eberlein and von Hammerstein [18] for details), which are mentioned in the
Introduction.

Example 1. Inverse Gaussian distribution. Since

K± 1
2
(ς) =

√
π

2ς
e−ς (3)

with respect to formula 8.469.3 of Gradshteyn and Ryzhik [45], we have in the case of λ = − 1
2 that

fGIG(− 1
2 ,δ,α,β)(x) =

δ√
2πx3

e−

(
x
√

α2−β2−δ

)2

2x = f
IG
(√

α2−β2,δ
)(x),

where IG has the inverse Gaussian distribution, that is

IG = inf
{

t ≥ 0 : Wt + t
√

α2 − β2 = δ

}
for a Wiener process (Wt)t≥0 (see Subsection 2.2.1 of Rasmus [7] or Chapter III.1d.3 of Shiryaev [46]).

Example 2. Hyperbolic inverse Gaussian distribution. If λ = 1, then

fGIG(1,δ,α,β)(x) =
(
α2 − β2) 1

2

2δK1

(
δ
√

α2 − β2
) e−

δ2
2x−

(α2−β2)x
2 = fHIG(α2−β2,δ2)(x),

where HIG has the hyperbolic inverse Gaussian distribution with parameters α2 − β2 and δ2,
see (10) in Eberlein and Keller [13].



Stats 2023, 6 1129

Example 3. Gamma distribution. The modified Bessel function of the second kind has the asymp-
totics (see 9.6.9 of Abramowitz and Stegun [44]) for ς1 6= 0

Kς1(ς2) ∼
2|ς1|−1Γ(|ς1|)

ς
|ς1|
2

as ς2 → 0, (4)

where Γ(ς) is the gamma function. It follows immediately from (4) that if λ > 0, then

ηλδ−λ

2Kλ(δη)
→ η2λ

2λΓ(λ)
as δ→ 0. (5)

Therefore, we have from (1) and (5) that

lim
δ→0

fGIG(λ,δ,α,β)(x) =
(
α2 − β2)λ

2λΓ(λ)
xλ−1e−

(α2−β2)x
2 = f

Υ
(

λ, α2−β2
2

)(x),

where Υ has the gamma distribution with the parameters λ and α2−β2

2 .

Example 4. Inverse gamma distribution. When λ < 0, it follows from (4) that

ηλδ−λ

2Kλ(δη)
→ 2λ

δ2λΓ(−λ)
as η → 0 (6)

and we obtain from (1) and (6) that

lim
|β|→α

fGIG(λ,δ,α,β)(x) =
δ2|λ|

2|λ|Γ(|λ|)
xλ−1e−

δ2
2x = f

IΥ
(
|λ|, δ2

2

)(x),

where IΥ has the inverse gamma distribution with the parameters |λ| and δ2

2 .

In this paper, we consider the case of λ = 0 in (1). The semi-hyperbolic inverse
Gaussian distribution SHIG = SHIG(α, β, δ) has the three parameters 0 ≤ |β| < α, δ > 0
and the probability density function

fSHIG(α,β,δ)(x) = fGIG(0,δ,α,β)(x) = (7)

=
1

2K0

(
δ
√

α2 − β2
) x−1e−

δ2
2x−

(α2−β2)x
2 .

The semi-hyperbolic distribution SH = SH(µ, σ, α, β, δ) is defined as the normal
mean-variance mixture (see Barndorff-Nielsen [1], Section 3.2 of McNeil et al. [47] and
Chapter III.1d of Shiryaev [46] on the theory of mean-variance mixtures) with the SHIG
mixing density, that is

SH = µ + βSHIG + σN
√

SHIG, (8)

where µ ∈ R, σ > 0 and N = N(0, 1) is the standard normal random variable independent
with the SHIG one. Further, we study the SH distribution based on the definition (8).

3. Preliminary Formulas

In this section, we specify formulas that have been first received in general forms by
Barndorff-Nielsen and Stelzer [48], Scott et al. [49] and given in Chapters 9.4 and 9.5 of
Paolella [50] for the GIG and GH distributions. These identities are also required since the
GH distribution was defined in those works with σ = 1 in the mixtures of type (8).
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Let
C =

1

2K0

(
δ
√

α2 − β2
) . (9)

The characteristic function ϕSHIG(α,β,δ)(u) of the SHIG distribution is computed as

ϕSHIG(α,β,δ)(u) =
∫ ∞

0
eiux fSHIG(α,β,δ)(x) = C

∫ ∞

0
x−1e−

δ2
2x−

(α2−β2−2iu)x
2 dx.

Formula (3.471.9) of Gradshteyn and Ryzhik [45] includes the identity

∫ ∞

0
xς1−1e−

ς2
x −ς3xdx = 2

(
ς2

ς3

) ς1
2

Kς1(2
√

ς2ς3) (10)

for Re ς2 > 0 and Re ς3 > 0. Using (10), we find that

ϕSHIG(α,β,δ)(u) =
K0

(
δ
√

α2 − β2 − 2iu
)

K0

(
δ
√

α2 − β2
) . (11)

Similarly to (11), it is easy to find that the moments Ma,SHIG(α,β,δ) for a ∈ R of the SHIG
distribution are determined by the equality

Ma,SHIG(α,β,δ) = E(SHIGa(α, β, δ)) =

=

(
δ√

α2 − β2

)a Ka

(
δ
√

α2 − β2
)

K0

(
δ
√

α2 − β2
) . (12)

Next, let us discuss the characteristic function ϕSH(µ,σ,α,β,δ)(u) of the SH distribu-
tion. Since

ϕSH(µ,σ,α,β,δ)(u) = E
(

E
(

eiuSH|SHIG
))

and
E
(

eiuSH|SHIG
)
= eiuµ ϕN(βSHIG,σ

√
SHIG) = eiu(µ+βSHIG)− 1

2 σ2u2SHIG,

we find that

ϕSH(µ,σ,α,β,δ)(u) = eiuµ ϕSHIG(α,β,δ)

(
βu +

iσ2u2

2

)
. (13)

Applying (8), we find that the moments Mn,SH(µ,σ,α,β,δ) for n ∈ N of the SH distribution
can be derived as

Mn,SH(µ,σ,α,β,δ) = E
(

µ + βSHIG + σN
√

SHIG
)n

=

=
n

∑
k=0

Ck
nµn−kE

(
βSHIG + σN

√
SHIG

)k
=

=
n

∑
k=0

Ck
nµn−k

k

∑
m=0

Cm
k σmβk−mE

(
SHIGk−m

2

)
E(Nm) =

=
n

∑
k=0

Ck
nµn−k

[k/2]

∑
l=0

C2l
k σ2l βk−2l Mk−l,SHIG(α,β,δ)(max{2l − 1, 1})!!, (14)

where [ς] is the integer part of ς and the moments of the SHIG distribution are determined
by (12).
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Furthermore, we have from (7)–(9) that

fSH(µ,σ,α,β,δ)(x) =
1

σ
√

2π

∫ ∞

0
y−

1
2 e
− (x−µ−βy)2

2σ2y fSHIG(α,β,δ)(y)dy

=
Ce

β(x−µ)

σ2

σ
√

2π

∫ ∞

0
y−

3
2 e
− (x−µ)2+σ2δ2

2σ2y
−

β2+σ2(α2−β2)
2σ2 y

dy. (15)

Employing (10) to (15), we find that

fSH(µ,σ,α,β,δ)(x) =
Ce

β(x−µ)

σ2
√

2
σ
√

π

(
β2 + σ2(α2 − β2)
(x− µ)2 + σ2δ2

) 1
4

×

×K 1
2

((x− µ)2 + σ2δ2) 1
2
(

β2 + σ2(α2 − β2)) 1
2

σ2

.

Using (3), we find that

fSH(µ,σ,α,β,δ)(x) =
C√

(x− µ)2 + σ2δ2
e

β(x−µ)−
√

((x−µ)2+σ2δ2)(β2+σ2(α2−β2))
σ2 .

Set
δ̂ = σδ, β̂ =

β

σ2

and

α̂ =

√
β2 + σ2(α2 − β2)

σ2 ≥ |β̂|.

Then we can rewrite fSH(µ,σ,α,β,δ)(x) as

fSH(µ,σ,α,β,δ)(x) =
C√

(x− µ)2 + δ̂2
eβ̂(x−µ)−α̂

√
(x−µ)2+δ̂2

=

= fSH(µ,α̂,β̂,δ̂)(x). (16)

The identity (16) is used onwards for the computation of the characteristics of the SH distri-
bution.

4. Main Results

The main results of this paper give us the formulas for the cumulative semi-hyperbolic
distribution functions and the first and second lower partial moments of the semi-hyperbolic
distribution. To formulate the results, we should introduce extra notations.

We set

sgn−(ς) =

{
1 if ς > 0,
−1 if ς ≤ 0

and sgn+(ς) =

{
1 if ς ≥ 0,
−1 if ς < 0.

Together with it, we employ a designation (see (16) at p.25 of Srivastava and
Karlsson [51])

Φ1(ς1, ς2, ς3; ς4, ς5) (17)
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for the degenerate generalized hypergeometric function (the confluent Appell function or
the Humbert series), which is the double sum

∞

∑
m=0

∞

∑
n=0

(ς1)m+n(ς2)m

m!n!(ς3)m+n
ςm

4 ςn
5

for |ς4| < 1, where (ς)l , l ∈ N∪ {0}, is the Pochhammer’s symbol. For more information
on the generalized hypergeometric functions and their integral representations, we refer to
Sections 1.2 and 1.3 of Srivastava and Karlsson [51], Section 4.22 of Erdélyi et al. [52] and
Srivastava et al. [53]. Hypergeometric functions on the complex plane are considered in
Sadykov [54,55]. Generalized hypergeometric series of matrix variables are discussed by
Cuchta et al. [56,57].

The next theorem yields an analytical expression for the cumulative semi-hyperbolic
distribution function.

Theorem 1. The semi-hyperbolic distribution function can be calculated for u ∈ R by the identity

FSH(µ,σ,α,0,δ)(u) = I{u>µ} −
sgn−(u− µ)

2K0(αδ)
I
(

u− µ

σδ

)
(18)

with the modified Bessel function of the second kind (2), where

I(x) = K0(αδ)−

(
2
(√

1 + x2 − 1
)) 1

2

eαδ
×

×Φ1

(
1
2

,
1
2

,
3
2

;
1−
√

1 + x2

2
, αδ
(

1−
√

1 + x2
))

for the Appell function (17).

Proof Sketch. The proof of Theorem 1 can be divided into three steps.
Step 1. We show that the computation of the required probability can be cut to the

calculation of the integral

I(w) =
∫ ∞

w

e−φ(
√

1+x2)
√

1 + x2
dx.

Step 2. For w = 0, the integral I(w) is transformed so that formula 3.383.8 of Grad-
shteyn and Ryzhik [45] can be applied to it.

Step 3. For w > 0, we convert I(w) to a special form so that formula 4.3.24 of
Erdélyi et al. [52] can be used to it.

The complete proof is set in Appendix A (see Proof of Theorem 1 therein).
The following example illustrates how Theorem 1 works for the simplest case u = µ.

Example 5. We immediately have from (18) that

FSH(µ,σ,α,0,δ)(µ) =
I(0)

2K0(αδ)
=

1
2

.

Since the semi-hyperbolic distribution function is continuous, the identity

FSH(µ,σ,α,0,δ)(u) = I{u≥µ} −
sgn+(u− µ)

2K0(αδ)
I
(

u− µ

σδ

)
(19)
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should be satisfied as well. Indeed, we obtain from (19) that

FSH(µ,σ,α,0,δ)(µ) = 1− I(0)
2K0(αδ)

=
1
2

again.

The lower partial moments of the semi-hyperbolic distribution are defined by the
identity

Mn,SH(µ,σ,α,0,δ)(u) = E
(

SHn(µ, σ, α, 0, δ)I{SH(µ,σ,α,0,δ)≤u}

)
.

The theorem below provides explicit formulas for the first and second lower partial mo-
ments of the SH distribution.

Theorem 2. For u ∈ R, the lower partial moments

M1,SH(µ,σ,α,0,δ)(u) = µFSH(µ,σ,α,0,δ)(u)−
1

2α̂K0(αδ)
e−α̂
√

δ̂2+(u−µ)2
(20)

and

M2,SH(µ,σ,α,0,δ)(u) = (21)

=µ2FSH(µ,σ,α,0,δ)(u)−
µe−α̂
√

δ̂2+(u−µ)2

α̂K0(αδ)
+

M2,SH(0,σ,α,0,δ)

2
+

+
sgn(u− µ)

2α̂K0(αδ)

(
δ̂J
(

u− µ

δ̂

)
− |u− µ|e−α̂

√
δ̂2+(u−µ)2

)

with α̂ = σ−1α, δ̂ = σδ and

J (x) =

√
2x̂

eαδ

(
Φ1

(
1
2

,
1
2

,
3
2

;− x̂
2

,−αδx̂
)
+

x̂
3

Φ1

(
3
2

,
1
2

,
5
2

;− x̂
2

,−αδx̂
))

,

where x̂ =
√

1 + x2 − 1.

Proof Sketch. The proof of Theorem 2 can be divided into four steps.
Step 1. The general formula for the nth lower partial moment is received.
Step 2. The value of the first lower partial moment is obtained using the result of

Theorem 1.
Step 3. It is shown that the computation of the second lower partial moment can be

reduced to the calculation of the integral

J (w) =
∫ w

0
e−φ
√

1+x2
dx.

Step 4. The integral J (w) is transformed so that formula 4.3.24 of Erdélyi et al. [52]
can be employed to it.

The full proof is given in Appendix A (see Proof of Theorem 2 therein).

Example 6. Let u→ ∞ in (20). Then,

lim
u→∞

M1,SH(µ,σ,α,0,δ)(u) = µ lim
u→∞

FSH(µ,σ,α,0,δ)(u) = µ = M1,SH(µ,σ,α,0,δ).
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Furthermore, apparently

M2,SH(0,σ,α,0,δ)(0) =
1
2

M2,SH(0,σ,α,0,δ).

Employing (21), we have the same result.

5. Applications

The standards of Basel III regulations order the use of monetary risk measures to
control the market risk to banks. The main risk measure is called the value-at-risk (VaR). In-
formally, the p-VaR can be defined as the maximum possible loss of the final net worth after
excluding all worse outcomes whose combined probability is at most p. In an appropriate
probabilistic model, the p-VaR is defined as the upper p-quantile of the loss distribution
with the minus sign. That is, if the loss is modeled by a random variable ς, the p-VaR of ς is

VaRp(ς) = −u+
p , where u+

p = inf{u ∈ R : P(ς ≤ u) ≥ p},

see Definition 3.3 in Artzner et al. [58] or Definition 4.40 in Föllmer and Schied [59]. Let us
note that this definition of the VaR implies small values of the parameter p. An alternative
definition, with a large p, is given in McNeil et al. [47], see Definition 2.10 therein.

The expected shortfall (ES) monetary risk measure can be suggested as a substitution
of the VaR since the ES takes into account the tail risk. Because of it, the ES is recommended
to banks by the Basel III regulations instead of the VaR, which had been ordered by Basel II.
Mathematically, the ES of level p is defined for a random outcome ς as

ESp(ς) = −
1
p

[
E
(

ςI{ς≤u+
p }
)
+ u+

p

(
p− P

(
ς ≤ u+

p

))]
.

A number of research papers were set to calculate the basic risk measures in various
models. The computations of the measures in semi-analytical forms by the Fourier trans-
form technique are given in Armenti et al. [60] and Drapeu et al. [61]. Analytical formulas
for some specific models are provided by Ivanov [62,63] and Rockafellar and Uryasev [64].
Monte Carlo simulations of the VAR and ES were made by Chun et al. [65] and Mafusalov
and Uryasev [66]. Nonparametric methods for the estimation of these basic monetary risk
measures were developed in Cai and Wang [67], Chen and Tang [68] and Scailett [69].

An advanced risk measurement can be used by banks for the aim of the management
and control. Although the variance is often employed for the portfolio optimization
problems (see, for example, Fontana and Schweizer [70] and Schweizer et al. [71]), it is not
the appropriate choice if the underlying distribution is asymmetric. Because of it, the target
semivariance risk measure is applied. The target u semivariance of ς is defined as

TSu(ς) = E
[
(ς− u)2 I{ς≤u}

]
. (22)

A summary of early studies about the semivariance is given in Nawrocki [72]. Per-
formance risk measures based on the semivariance were introduced by van der Meer
and Sortino [73] and van der Meer et al. [74]. The realized semivariance was studied
in Barndorff-Nielsen et al. [75]. An empirical analysis was produced by Ang et al. [76].
Computations for non-Gaussian cases were made by Jarrow and Zhao [77] and Ivanov [78].

In this section, we assume that there are n assets A1,t, . . . , An,t in the investment
portfolio whose dynamics are determined as

Al,1 − Al,0 = µl + σl
√

SHIGNl ,

where µl ∈ R, σl > 0, SHIG = SHIG(α, 0, δ) is the semi-hyperbolic inverse Gaussian
variable and Nl , l = 1, 2, . . . , n are the standard normal random variables with correlation
coefficients ρij between Ni and Nj. It is supposed that the normal distributions are inde-
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pendent with the semi-hyperbolic inverse Gaussian one. Also, we propose that a non-risk
asset is included in the portfolio. Namely, A0,t with the dynamic

A0,1 − A0,0 = r, r ∈ R.

As mentioned in the Introduction, Daskalaki and Katris [34] have made a detailed
calibration of the GH distribution for different market indices. It is found by them that the
estimations of the parameter λ are −0.098 and −0.037 for the OMXH25 and SAX indices,
respectively (see Table 12 therein). We assume that the considered portfolio consists of
stocks from the indices with λ ≈ 0. Such portfolios should be modeled by the semi-
hyperbolic distribution.

To assess the risks of portfolio v = (x0, ..., xn) ∈ Rn+1 at the time t = 1, it is enough to
discuss the random variable

Xv =
n

∑
l=0

xl4Al,1 = x0r +
n

∑
l=1

xlµl +

(
n

∑
l=1

xlσlNl

)
√

SHIG.

Set

M = x0r +
n

∑
l=1

xlµl and Ξ =

√√√√ n

∑
i,j=1

ρijxixjσiσj.

Because of

n

∑
l=1

xlσl Nl
Law
= ΞN,

where N is again the standard normal distribution, we have that

Xv Law
= M+ ΞN

√
SHIG = SH(M, Ξ, α, 0, δ). (23)

To compute the p-VaR of Xv , we have to find the quantile u+
p = up solving an equation

P
(
Xv ≤ up

)
− p = 0

with one of the zero-finding algorithms, see Brent [79] for details. Once again, since Xv has
a continuous distribution, we have that

ESp
(
Xv
)
= − 1

p
E
(

Xv I{Xv≤up}
)

.

It issues immediately from (22) that

TSu
(
Xv
)
= E

((
Xv
)2 I{Xv≤u}

)
− 2uE

(
Xv I{Xv≤u}

)
+ u2P

(
Xv ≤ u

)
.

Implementing (23), we obtain the following corollary of Theorems 1 and 2.

Corollary 1. The value-at-risk VaRp(Xv) is determined as the solution up of the equation

FSH(M,Ξ,α,0,δ)(u)− p = 0

with the minus sign. The expected shortfall ESp(Xv) is calculated with respect to the formula

ESp(Xv) = − 1
p

M1,SH(M,Ξ,α,0,δ)(up).
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The target u semivariance TSu(Xv) is computed as

TSu
(
Xv
)
= M2,SH(M,Ξ,α,0,δ) − 2uM1,SH(M,Ξ,α,0,δ) + u2FSH(M,Ξ,α,0,δ)(u).

6. Numerical Analysis

In this section, we compare the normal and semi-hyperbolic distributions. The idea
is to adjust the parameters of the SH distribution so that the second moments of the
distributions match each other.

It is easy to see from (12) and (14) that

M2,SH(0,σ,α,0,δ) = σ2M1,SHIG(α,0,δ) =
δσ2K1(αδ)

αK0(αδ)
.

The identity
M2,SH(0,σ,α,0,δ) = M2,N(0,σ)

holds if
δK1(αδ)

αK0(αδ)
= 1.

Set α = 1. Then, the sought δ∗ should solve the equation

δ =
K0(δ)

K1(δ)
.

The tables of the values of the modified Bessel function of the second kind give us the
solution

δ∗ ≈ 0.595.

Therefore, we compare the distributions

N(0, σ) and SH(0, σ, 1, 0, 0.595). (24)

Set σ = 1. Then, the probability density functions of these normal and semi-hyperbolic
distributions are

fN(0,1) =
1√
2π

e−
x2
2 and fSH(0,1,1,0,δ∗) =

e−
√

x2+(δ∗)2

2K0(δ∗)
√

x2 + (δ∗)2
,

respectively. The density functions are plotted at Figure 1.
Furthermore, it follows from (18) that

FSH(0,1,1,0,δ∗)(u) = I{u>0} −
sgn−(u)
2K0(δ∗)

I
( u

δ∗

)
with

I
( u

δ∗

)
= K0(δ

∗)−

(
2
(√

1 +
( u

δ∗
)2 − 1

)) 1
2

eδ∗
×

×Φ

1
2

,
1
2

,
3
2

;
1−

√
1 +

( u
δ∗
)2

2
, δ∗
(

1−
√

1 +
( u

δ∗

)2
).
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Formula (4.3.24) of Erdélyi et al. [52] includes the identity

Φ(ς1, ς2, ς3; ς4, ς5) = (25)

=
1

B(ς1, ς3 − ς1)

∫ 1

0
xς1−1(1− x)ς3−ς1−1(1− ς4x)−ς2 eς5xdx

for ς1 > 0, ς3 > u1 and ς4 < 1. We have from (25) that

Φ
(

1
2

,
1
2

,
3
2

; A, B
)
=

1
2

J(A, B),

where

J(A, B) =
∫ 1

0
x−

1
2 (1− Ax)−

1
2 eBxdx.

Hence, we find that for u ≤ 0

FSH(0,1,1,0,δ∗)(u) =
1
2
−

J
(
− u∗

2 ,−δ∗u∗
)√

u∗

2eδ∗K0(δ∗)
√

2
,

where

u∗ =

√
1 +

( u
δ∗

)2
− 1.

Figure 1. The normal (red) and semi-hyperbolic (blue) probability density functions.

Based on the calculations above, Table 1 provides the comparison of the symmetric
normal and semi-hyperbolic distributions (24) with the same mean and variance for variant
arguments.
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Table 1. The comparison of the cumulative distribution functions.

F�u −3 −2 −1 −0.5 −0.2 0

N 0.00135 0.02275 0.15866 0.30854 0.42074 0.5

SH 0.00783 0.02841 0.11551 0.2535 0.38514 0.5

7. Discussion

The obtained results show that the analytical expressions based on values of general-
ized hypergeometric functions (Sections 1.2 and 1.3 of Srivastava and Karlsson [51]) are
approachable for the GH models besides the NIG one (Ivanov and Temnov [10]). The de-
rived formulas use the modified Bessel function of the second kind, the Appell function,
and can be computed under one second with the modern software. As in the VG model
(Madan et al. [30], Ivanov [63]), the explicit solutions are obtained for the cumulative distri-
bution function, the first and second lower partial moments of the SH distribution, and the
received formulas are applied to the problem of computation of the VAR, the ES, and the
semivariance in the related investment portfolio model with dependent asset returns.

Numerical computations, which are provided for the symmetric normal and SH distri-
butions with the same mean and variance have discovered that the cumulative distribution
functions significantly differ at the tails and mid part. The SH distribution has the tails for
the arguments −3 and 3, which are six times larger than the idem tails of the normal one.
And at the same time, the mid part (between −0.5 and 0.5) of the SH distribution relates
to the similar part of the normal one as 5 to 4. Therefore, we deduce that the SH model
distinguishes better phenomena with a larger number of extreme events and events close
to the mean value.

A future study should yield the computation of the nth lower partial moments of SH
distribution together with the calculation of the prices of option contracts in the SH model
since such results are available in the VG model, see Madan et al. [30] and Ivanov [78].
The SH Lévy process with drift switching (Ivanov [63]) can be studied. Together with
it, the next investigations should relate to the obtaining of analytical solutions for the
GH hyperbolic distributions with integer λ including the hyperbolic one of Eberlein and
Keller [13]. Although the standard stochastic simulation methods (Chapter XII of Asmussen
and Glynn [80]) can be applied to the semi-hyperbolic distribution, it is necessary to notice
that their speed is often insufficient. Because of this, an interesting problem is to develop
fast quasi-Monte Carlo procedures for the SH distribution similarly to the methods that
are developed for the variance-gamma distribution (Avramidis et al. [81], Avaramidis and
L’Ecuyer [82] and Chapter 6.2 of Lemieux [83]).

8. Conclusions

Taking into account the review of the related literature, the results of this paper,
including the applications and the numerical analysis, and the discussion of the results, we
can make the following conclusions.

– The review of the literature about the class of GH distribution confirms the necessity
of the development of the mathematical methods of its analysis.

– The subclass of the family of GH distributions, the semi-hyperbolic distributions, is
analytically tractable similarly to the VG distributions.

– The obtained formulas depend on the values of degenerate generalized hypergeomet-
ric functions and can be computed very fast.

– The numerical analysis shows that the SH distribution discerns better than the normal
data with heavy tails and a central part.

– Keeping in mind the amount of work, we look forward to the future studies of the
whole class of GH distribution.
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Appendix A

Proof of Theorem 1. Using (16) with C defined by (9), it is easy to notice that

FSH(µ,σ,α,0,δ)(u) =
∫ u

−∞
fSH(µ,σ,α,0,δ)(x)dx =

=
∫ u

−∞
fSH(µ,α̂,0,δ̂)(x)dx = C

∫ u

−∞

e−α̂
√

(x−µ)2+δ̂2√
(x− µ)2 + δ̂2

dx =

= C
∫ u−µ

−∞

e−α̂
√

x2+δ̂2√
x2 + δ̂2

dx = CJ(µ− u), (A1)

where

J(v) =
∫ ∞

v

e−α̂
√

x2+δ̂2√
x2 + δ̂2

dx.

Next, we compute J(v) for variant values of v.
Case 1. v ≥ 0. Set

w =
v
δ̂

and φ = α̂δ̂.

Then,
J(v) = I(w), (A2)

where

I(w) =
∫ ∞

w

e−φ(
√

1+x2)
√

1 + x2
dx

with w ≥ 0. Therefore,

FSH(µ,σ,α,0,δ)(u) = CI
(

µ− u
δ̂

)
(A3)

when u ≤ µ.
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Put y =
√

1 + x2. Thereat

x =
√

y2 − 1, dx =
y√

y2 − 1
dy

and therefore

I(w) =
∫ ∞
√

1+w2

e−φy√
y2 − 1

dy = e−φ
∫ ∞
√

1+w2−1
e−φyy−

1
2 (y + 2)−

1
2 dy. (A4)

Case 1.1. w = 0. Then,

I(w) = I(0) = e−φ
∫ ∞

0
e−φyy−

1
2 (y + 2)−

1
2 dy. (A5)

Formula (3.383.8) of Gradshteyn and Ryzhik [45] includes the identity∫ ∞

0
xς1−1(x + ς2)

ς1−1e−ς3xdx = (A6)

=
1√
π

(
ς2

ς3

)ς1− 1
2
e

ς2ς3
2 Γ(ς1)K 1

2−ς1

( ς2ς3

2

)
for ς1 > 0, ς2 > 0, ς3 > 0. Applying (A6) to (A5), we find that

I(0) = 1√
π

Γ
(

1
2

)
K0(φ) = K0(φ). (A7)

Case 1.2. w > 0. Let
z =

y√
1 + w2 − 1

.

Then it follows from (A4) that

I(w) =e−φ
∫ ∞

1
z−

1
2

(
z +

2√
1 + w2 − 1

)− 1
2
e−φ(

√
1+w2−1)zdz =

=I1(w)− I2(w), (A8)

where

I1(w) = e−φ
∫ ∞

0
z−

1
2

(
z +

2√
1 + w2 − 1

)− 1
2
e−φ(

√
1+w2−1)zdz

and

I2(w) = e−φ
∫ 1

0
z−

1
2

(
z +

2√
1 + w2 − 1

)− 1
2
e−φ(

√
1+w2−1)zdz.

According to (A6), we find that

I1(w) = K0(φ). (A9)

Next, we find that

I2(w) = (A10)

=e−φ

(√
1 + w2 − 1

2

) 1
2 ∫ 1

0
z−

1
2

(
1 +

z
(√

1 + w2 − 1
)

2

)− 1
2

e−φ(
√

1+w2−1)zdz.
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Formula (4.3.24) of Erdélyi et al. [52] comprises the identity∫ 1

0
xς1−1(1− x)ς2−1(1− ς4x)−ς3 eς5xdx = (A11)

= B(ς1, ς2)Φ1(ς1, ς3, ς1 + ς2; ς4, ς5)

for ς1 > 0, ς2 > 0 and ς4 < 1. Employing (A11) to (A10), we find that

I2(w) = e−φ

(√
1 + w2 − 1

2

) 1
2

B
(1

2
, 1
)
×

×Φ
(

1
2

,
1
2

,
3
2

;
1−
√

1 + w2

2
, φ
(
1−

√
1 + w2

))
. (A12)

Case 2. v < 0. Then,

J(v) = C−1 −
∫ v

−∞

e−α̂
√

x2+δ̂2√
x2 + δ̂2

dx = C−1 − J(−v)

and we can use Case 1 herein. Then,

FSH(µ,σ,α,0,δ)(u) = 1− CI
(

u− µ

δ̂

)
(A13)

if u > µ.
Finally, we summarize (A3) and (A13) employing (A7)–(A9) and (A12). We elicit that

FSH(µ,σ,α,0,δ)(u) = CI
(

µ− u
δ̂

)
I{u≤µ} +

(
1− CI

(
u− µ

δ̂

))
I{u>µ}, (A14)

where

I(x) = K0(φ)I{x=0} +

(
K0(φ)− e−φ

(√
1 + x2 − 1

2

) 1
2

×

×B
(1

2
, 1
)

Φ
(

1
2

,
1
2

,
3
2

;
1−
√

1 + x2

2
, φ
(
1−

√
1 + x2

)))
I{x>0}

for x ≥ 0. We have (18) immediately from (A14).

Proof of Theorem 2. At first, let us discuss the nth lower partial moment of the semi-
hyperbolic distribution for n ∈ N∪ {0}. We have from (16) that

Mn,SH(µ,σ,α,0,δ)(u) =
∫ u

−∞
xn fSH(µ,α̂,0,δ̂)(x)dx =

= C
∫ u

−∞

xne−α̂
√

δ̂2+(x−µ)2√
δ̂2 + (x− µ)2

dx = C
∫ u

−∞

(x− µ + µ)ne−α̂
√

δ̂2+(x−µ)2√
δ̂2 + (x− µ)2

dx =

= C
n

∑
k=0

Ck
nµk Hn−k(u− µ), (A15)

where

Hm(v) =
∫ v

−∞

xme−α̂
√

δ̂2+x2√
δ̂2 + x2

dx,

m ∈ N∪ {0}.
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Next, we pass to the computation of the first lower partial moment. We find that

H0(v) = C−1FSH(0,σ,α,0,δ)(v). (A16)

Since (
e−α̂
√

δ̂2+x2
)′

x
= − α̂xe−α̂

√
δ̂2+x2√

δ̂2 + x2
,

it is easy to notice that

H1(v) = −
e−α̂
√

δ̂2+v2

α̂
. (A17)

Therefore, we find that

M1,SH(µ,σ,α,0,δ)(u) =µFSH(0,σ,α,0,δ)(u− µ)− C
α̂

e−α̂
√

δ̂2+(u−µ)2
=

=µFSH(µ,σ,α,0,δ)(u)−
C
α̂

e−α̂
√

δ̂2+(u−µ)2
(A18)

and obtain (20).
Furthermore, we calculate the second lower partial moment of the semi-hyperbolic

distribution. We find that

H2(v) =
C−1

2
M2,SH(0,σ,α,0,δ) + sgn(v)Ĥ2(v) (A19)

with

Ĥ2(v) =
∫ |v|

0

x2e−α̂
√

δ̂2+x2√
δ̂2 + x2

dx.

Integrating by parts, we find that

Ĥ2(v) = −
1
α̂

∫ |v|
0

xde−α̂
√

δ̂2+x2
=

1
α̂

∫ |v|
0

e−α̂
√

δ̂2+x2
dx−

− |v|e
−α̂
√

δ̂2+v2

α̂
=

δ̂

α̂
J
(
|v|
δ̂

)
− |v|e

−α̂
√

δ̂2+v2

α̂
(A20)

with
J (w) =

∫ w

0
e−φ
√

1+x2
dx,

where w ≥ 0.
Let y =

√
1 + x2. Then,

x =
√

y2 − 1, dx =
ydy√
y2 − 1

and hence

J (w) =
∫ √1+w2

1
y(y2 − 1)−

1
2 e−φydy.

Set z = y− 1. Then,

J (w) = e−φ
∫ √1+w2−1

0
(z + 1)(z + 2)−

1
2 z−

1
2 e−φzdz = J1(w) + J2(w), (A21)

where

J1(w) = e−φ
∫ ŵ

0
(z + 2)−

1
2 z−

1
2 e−φzdz
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and

J2(w) = e−φ
∫ ŵ

0
(z + 2)−

1
2 z

1
2 e−φzdz

with
ŵ =

√
1 + w2 − 1. (A22)

Put h = zŵ−1 for ŵ > 0. Thereat

J1(w) = e−φ

(
ŵ
2

) 1
2 ∫ 1

0
h−

1
2

(
1 +

ŵ
2

h
)− 1

2
e−φŵhdh (A23)

and

J2(w) = e−φŵ
(

ŵ
2

) 1
2 ∫ 1

0
h

1
2

(
1 +

ŵ
2

h
)− 1

2
e−φŵhdh. (A24)

Employing (A11) to (A23) and (A24), we deduce that

J1(w) = e−φ

(
ŵ
2

) 1
2
B
(

1
2

, 1
)

Φ1

(
1
2

,
1
2

,
3
2

;− ŵ
2

,−φŵ
)

(A25)

and

J2(w) = e−φŵ
(

ŵ
2

) 1
2
B
(

3
2

, 1
)

Φ1

(
3
2

,
1
2

,
5
2

;− ŵ
2

,−φŵ
)

. (A26)

Hence, we have from (A21), (A25) and (A26) that

J (w) = (A27)

=

√
2ŵ

eφ

(
Φ1

(
1
2

,
1
2

,
3
2

;− ŵ
2

,−φŵ
)
+

ŵ
3

Φ1

(
3
2

,
1
2

,
5
2

;− ŵ
2

,−φŵ
))

.

Combining together (A19), (A20) and (A27), we find that

H2(v) =
C−1

2
M2,SH(0,σ,α,0,δ)+ (A28)

+
sgn(v)

α̂

(
δ̂J
(
|v|
δ̂

)
− |v|e−α̂

√
δ̂2+v2

)
I{v 6=0}.

Now, we conclude from (A15)–(A17) and (A28) that

M2,SH(µ,σ,α,0,δ)(u) = C
(

H2(u− µ) + 2µH1(u− µ) + µ2H0(u− µ)
)
=

= µ2FSH(0,σ,α,0,δ)(u− µ)− 2µCe−α̂
√

δ̂2+(u−µ)2

α̂
+

M2,SH(0,σ,α,0,δ)

2
+

+
sgn(u− µ)C

α̂

(
δ̂J
(
|u− µ|

δ̂

)
− |u− µ|e−α̂

√
δ̂2+(u−µ)2

)
I{u 6=µ}

and obtain (21).
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