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Abstract: Recently, we demonstrated the validity of the anomalous numbers law, known as Newcomb–
Benford’s law, in mammalian neuromuscular transmission, considering different extracellular cal-
cium. The present work continues to examine how changes in extracellular physiological arti-
ficial solution can modulate the first digit law in the context of spontaneous acetylcholine re-
lease at the neuromuscular junction. Using intracellular measurements, we investigated if the
intervals of miniature potentials collected at the neuromuscular junction obey the law in a hy-
perkalemic environment. When bathed in standard Ringer’s solution, the experiments provided
22,582 intervals extracted from 14 recordings. On the other hand, 690,385 intervals were obtained
from 12 experiments in a modified Ringer’s solution containing a high potassium concentration.
The analysis showed that the intervals, harvested from recordings at high potassium, satisfactorily
obeyed Newcomb–Benford’s law. Furthermore, our data allowed us to uncover a conformity fluc-
tuation as a function of the number of intervals of the miniature potentials. Finally, we discuss the
biophysical implications of the present findings.

Keywords: electrophysiology; neuromuscular junction; Newcomb–Benford’s law; time series; potassium

1. Introduction

The neuromuscular junction (NMJ) is a specialized region that establishes commu-
nication between nerve and muscle. The language of this communication is chemical,
in which acetylcholine molecules, packed inside organelles called vesicles, are released
after their fusion into the synaptic cleft. Next, diffusion occurs within the synaptic cleft,
where acetylcholine binds to cholinergic receptors in the motor end-plate, promoting a
muscular response [1]. Thanks to the extensive work of Katz and collaborators, his group
systematically carried out rigorous characterization work from the 1950s onwards. In con-
junction with these investigations, the discovery of miniature end-plate potentials (MEPPs)
by Katz and Fatt represented a new perspective for understanding the biophysical nature of
neurotransmission [2]. Is there a way to quantify the spontaneous release of acetylcholine?
According to the vesicular hypothesis proposed later by Katz, the release takes place dis-
creetly in the terminal, where there would be a direct correspondence between the fusion
of a single vesicle and the generation of a MEPP [3]. Therefore, based on these studies, Katz
and Del Castillo offered a statistical pillar consistent with the physiological substrate. Ac-
cording to this proposal, the release occurs within a random regime, statistically governed
by a Poisson regime.

The technological improvement allowed the development of electrophysiological
instrumentation, raising the quality of the records. In conjunction with these empirical
advances, sophisticated statistical models were also proposed, enabling the test of the
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validity of the Poissonian premises. Within this perspective, several studies have emerged
showing a divergent scheme concerning the assumptions based on the randomness of
the neurotransmission phenomenon. Especially from the 1970s onwards, several authors
showed that neurotransmission could also obey other statistical models [4–9].

Numerical patterns are identified in many phenomena of nature. Like so many other
discoveries in the history of science, Newcomb–Benford’s law (NBL) was obtained in a
completely unexpected manner. It was the result of an accurate examination of logarithm
tables. Using them, Simon Newcomb discovered a curious numerical pattern in 1881 [10].
Nevertheless, only after decades, Frank Benford independently rediscovered Newcomb’s
findings, analyzing a large amount of data extracted from various sources, such as physical
constants, molecular weights, and the height of the American population. By studying
them, Benford reached the same conclusions previously pointed out by Newcomb [11].
The NBL is classified among the several power or scaling laws in many physical systems.
In recent years, it has emerged as a valuable tool for identifying patterns embedded in data
from different data sources [12]. Therefore, the NBL remained a curious mathematical obser-
vation until a rigorous treatment explained why it works so well for different phenomena.
Despite the functional simplicity of the law, researchers still need to understand why
the NBL works so well [13]. In the middle of the 1990s, Hill [14–16] offered a formal
understanding of two remarkable characteristics of the law: scale and basis invariance.

Various experimental data have been accumulated in many fields of knowledge,
attesting to the compliance with the NBL [17–21]. In particular, spatial invariance can have
profound morphological implications in physiology, and it is well documented in the heart,
lung, and brain [22]. In this framework, it is plausible to hypothesize that, if a given data
collection obeys the NBL, then it should exhibit base invariance behavior. Therefore, it is
unsurprising that the NBL has been confirmed in several biological systems. Studies carried
out on electrocardiogram and electroencephalogram recordings have revealed the following
of the NBL at the physiological level [23,24]. Moreover, in in vitro studies, using the NMJ
of mouse diaphragms, Silva et al. performed a detailed electrophysiological investigation
into the validity of the law at different extracellular calcium levels [25]. According to these
authors, the intervals between MEPPs obey the NBL, no matter the calcium concentration,
indicating robust conformity of their data with the law. Motivated by this work, it is
suitable to delve into investigations varying the extracellular content of other ionic species.

The potassium ion (K+) is a univalent cation commonly found in corporal fluids,
resting within 3.5–5 mM, being crucial for several physiological functions [26]. For example,
changes in the [K+]o gradient represent a potential risk for cardiac functions, and it is also
known to establish the K+-equilibrium potential, which is vital for several cell functions.
Beyond that, the membrane potential depolarization due to high [K+]o implies a dramatic
increase in MEPP frequency. The K+ traffic is mediated by several channels at the NMJ
membrane terminal [27]. Thus, beyond the health issues, modifications in K+ content in
the extracellular milieu represent fertile soil for mathematical modeling of the ionic impact
on the electrical activity of the nervous system. In this framework, the NMJ emerges as a
classical, but still essential preparation to identify numerical patterns in a biological scope.
Deviations from [K+]o could eventually represent an opportunity for uncovering specific
numerical patterns associated with the determined pathological regimes playing a role in
neurotransmission.

In summary, the present work is based on the manipulation of high extracellu-
lar potassium ([K+]o) because it approximately mimics a physiological stimulation [28].
Furthermore, the impacts exerted by the manipulation of extracellular and intracellular
[K+] over the membrane potential in muscle preparations are well characterized [29]. Next,
[K+]o triggers a strong membrane depolarization, followed by a dramatic acceleration of the
MEPP rate [30]. Third, several studies have correlated morphological cellular modifications
evoked by the accumulation of [K+]o [31]. With this justification, the present work aimed
to expand our previous study, evaluating whether the intervals between MEPPs still obey
the law in conditions of hyperkalemia. It is well accepted that the increase in extracellular
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potassium concentration increases the frequency of MEPPs. Therefore, this exacerbated
electrophysiological activity allows rigorous verification of the law’s validity for a large
amount of data, and the conformity level may be studied in more detail.

2. Mathematical Formulation of NBL

Hill introduced the probabilities for occurrences, inferred from the general equation
expressed as follows:

P(D1 = d1, · · · , Dk = dk) = log

1 +
1

k

∑
i=1

di × 10k−1

. (1)

In the equation given above, k represents all integers. It can be particularized to
analyze only the frequency of the first digits. In this case, the equation is then written as:

P(D1 = d1) = log
(

1 +
1
d1

)
, d1 ∈ {1, 2, · · · , 9}. (2)

It is worth highlighting that second digit analysis is often performed in the NBL
applications. For example, Diekmann documented that articles published in the American
Journal of Sociology are well described by taking the second digit [32]. Thus, the probabilities
for the appearance of a second digit are given by the expression:

P(D2 = d2) =
9

∑
d1=1

log
(

1 +
1

d1d2

)
, d2 ∈ {0, 1, · · · , 9}. (3)

Nigrini claims that, regardless of the usual analysis of the first or second digits,
providing important information about the compliance of the analyzed data, it is vital to
consider the analysis of the first–two digits [33]. According to this researcher, investigating
the conformity of the first–two digits makes it possible to extract a more detailed scenario
of how the phenomena obey the law. This case is written in the following functional form:

P(D1D2 = d1d2) = log
(

1 +
1

d1d2

)
, d1d2 ∈ {10, 11, · · · , 99}. (4)

The expected frequencies for the first and second digit are resumed in Table 1.

Table 1. Frequencies for the first and second digit of the NBL.

Digit 0 1 2 3 4 5 6 7 8 9

1st - 0.30103 0.17609 0.12494 0.09691 0.07918 0.06695 0.05799 0.05115 0.04576
2nd 0.11968 0.11389 0.10882 0.10433 0.10031 0.09668 0.09337 0.09035 0.08757 0.08500

Several authors have reported that fluctuations in the empirical first digit values
can also occur, despite the typically asymmetric distribution of digits. This observation
implies deviations between the data and the frequency values predicted by the NBL.
Evidence corroborating these observations comes from seismic activity and cognition
experiments [34,35]. This issue has motivated several authors to propose a generalization
of the NBL. In this framework, for instance, one may highlight the theoretical description
introduced by Pietronero et al. [36]. According to this author, assuming a probability
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distribution Pα(d) (where d is the digit(s), D represents arbitrary digits, and α is a constant
exponent related to the scale proportion), one may write:

Pα(d) =
∫ d+1

d
D−αdD, (5)

or, by the differential equation:

dPα(D)

dD
= D−α. (6)

Solving Equation (6) results in an α-logarithm:

Pα(d) =
1

1− α

[
(d + 1)(1−α) − d(1−α)

]
(7)

= d(1−α) lnα

(
d + 1

d

)
. (8)

According to Equation (8), defined as the generalized NBL (gNBL), when there is more
frequent first digits than expected by the NBL implies α > 1, while α < 1 means a first digit
frequency below the predicted percentage. As expected, when α = 1, the classical NBL
expression is recovered. Taking n = d1, Equation (8) is rewritten as:

Pα(d1) = d1−α
1 lnα

(
d1 + 1

d1

)
. (9)

From the approach developed by Pietronero et al. [36], it is also possible to obtain
expressions for the second digit:

Pα(d2) =
9

∑
d1=1

(d1d2)
1−α lnα

(
d1d2 + 1

d1d2

)
. (10)

Finally, the generalized probability for the first–two digits is presented as:

Pα(d1d2) =

[
(d1d2 + 1)1−α − (d1d2)

1−α
]

1− α
, d1d2 ∈ {10, 11, 12, . . . , 99}, (11)

normalized for each α exponent value.

3. Electrophysiological Recordings

The hemidiaphragm is a muscle that separates the thoracic from the abdominal cavity
and presents several empirical advantages. One can highlight the easy identification
and dissection, which facilitates muscle extraction. Another remarkable advantage is the
stereotypical spontaneous electrophysiological activity. The experimental paradigm in
the present work followed the same procedure used in our previous works [25,37,38].
Wild-type adult mice were euthanized by cervical dislocation, followed by diaphragm
extraction, which was quickly inserted into a physiological Ringer solution containing (in
mM): NaCl (137), NaHCO3 (26), KCl (5), NaH2PO4 (1.2), glucose (10), CaCl2 (2.4), and
MgCl2 (1.3). The pH was adjusted to 7.4 after gassing with 95% O2 and 5% CO2.

In the experiments with high [K+]o, the sodium concentration was adjusted to main-
tain the osmotic equilibrium. The muscles were maintained in solution at least 30 min
before the beginning of the electrophysiological recordings, allowing recovery from the
mechanical trauma of their extraction. Next, the tissues were transferred to a recording
chamber continuously irrigated with fresh fluid at 2–3 mL/min at room temperature
(T = 24± 1 ◦C). A standard intracellular recording technique was used to monitor the
frequency of spontaneous MEPPs by inserting a micropipette at the chosen muscle fiber.
Borosilicate glass microelectrodes had resistances of 8–15 MΩ when filled with KCl solution
(3 M). A single pipette was inserted into the fiber near the end-plate region as guided by the
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presence of MEPPs with rise times <1 ms. The control experiments provided 22,582 MEPP
intervals extracted from 14 recordings, whereas 690,385 intervals were collected from
12 experiments for [K+]o = 25 mM. Thus, our experimental paradigm afforded an enor-
mous data quantity, allowing rigorous analysis. Electrophysiology software (https://spider.
science.strath.ac.uk/sipbs/software_ses.htm, John Dempster, University of Strathclyde,
Glasgow, UK), the R Language, Origin (https://www.originlab.com, OriginLab, Northamp-
ton, MA, USA), and MATLAB (https://ww2.mathworks.cn/products/matlab.html, The
MathWorks, Inc., Natick, MA, USA) were employed for electrophysiological acquisition
and data analysis. Figure 1 illustrates two portions of electrophysiological recordings,
considering the both [K+]o concentrations, in which one can notice the exacerbated increase
in the frequency of MEPPs when [K+]o = 25 mM is used.

Figure 1. Representative electrophysiological portions collected from two experiments carried out at
physiological (left) and high [K+]o (right).

4. Conformity Analysis

There is an intense debate about NBL compliance testing. Several procedures are
available, but the validity of many of these methods has been questioned. For instance,
many investigators perform tests that manifest the “excess of power” problem, yielding in
the literature an accumulation of results with false claims of conformity. Adopting such tests
is still questionable when dealing with large data. In this sense, the “excess power” emerges
because the tests consider the sample size in their mathematical formulation. On the other
hand, while the sample size certainly confers a fundamental parameter in statistical analysis,
the tests that do not consider the sample size can be interpreted as the distance of the data
with those frequencies predicted by the NBL. Within this scheme, proposals for methods
arose in which the sample size was ignored, avoiding the “excess power” problem. To
address this issue, Nigrini and Kossovsky suggested the mean absolute deviation (MAD)
and the sum of squared difference (SSD), respectively [12,33]. The authors suggested
that, despite the importance of MAD in calculating conformity in certain situations, the
SSD is a superior test compared to the MAD. The main reason is that the SSD test does
not involve absolute value, a concept directly inspired by regression theory, which uses
the sum of squared errors. Notwithstanding the conceptual differences, the MAD and
SSD are routinely applied in different investigations. In mathematical form, the MAD is
presented as:

MAD =

n

∑
i=1
|APi − EPi|

n
, (12)

where AP and EP are the actual and expected proportion, respectively. Additionally, the
SSD is calculated with the following equation:

SSD =
n

∑
i=1

(APi − EPi)
2 × 104. (13)

https://spider.science.strath.ac.uk/sipbs/software_ses.htm
https://spider.science.strath.ac.uk/sipbs/software_ses.htm
https://www.originlab.com
https://ww2.mathworks.cn/products/matlab.html
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Once again, the AP and EP are the actual and expected proportion, respectively.
Table 2 presents the conformance range for the MAD and SSD analysis.

Table 2. Levels of conformity for the first, second, and first–two digits.

First Digit Second Digit First–Two Digits

Range Conformity Range Conformity Range Conformity

MAD

0.000 to 0.006 Close 0.000 to 0.008 Close 0.0000 to 0.0012 Close
0.006 to 0.012 Acceptable 0.008 to 0.010 Acceptable 0.0012 to 0.0018 Acceptable
0.012 to 0.015 Marginal 0.010 to 0.012 Marginal 0.0018 to 0.0022 Marginal
Above 0.015 Nonconformity Above 0.012 Nonconformity Above 0.0022 Nonconformity

SSD

0 to 2 Close 0 to 2 Close 0 to 2 Close
2 to 25 Acceptable 2 to 10 Acceptable 2 to 10 Acceptable
25 to 100 Marginal 10 to 50 Marginal 10 to 50 Marginal
Above 100 Nonconformity Above 50 Nonconformity Above 50 Nonconformity

Recent studies showed that even the MAD has inaccuracies, which will consequently
reflect the actual compliance level. Investigating the foundations of this method, Lupi
and Cerqueti addressed the inconsistencies in the premises of the MAD, allowing these
researchers to give an alternative formulation about extracting the conformance level [39,40].
These authors presented a test, still based on the MAD, but considered the severity principle
as applicable to make adjustments to the MAD values. The excess MAD test is presented
as follows. Let us consider the following:

√
n
|APi − EPi|√
EPi(1− EPi)

d−→ N

(√
2
π

, 1− 2
π

)
, (14)

where N is a normal distribution. Furthermore, the MAD is given by:

√
nMAD d−→ N

(√
2

πk2 ι′Dι,
1
k2 ι′DRDι

)
. (15)

The symbol ′ represent the transpose; ι is a k-vector of 1s; D is a diagonal matrix
formed by D = diag(

√
EPi(1− EPi)); R is the covariance matrix, defined as:

R =


r11 r12 · · · r1k
r21 r22 · · · r2k
...

...
. . .

...
rk1 rk2 · · · rkk

, (16)

where
rij =

2
π

(
ρijarcsin(ρij) +

√
1− (ρij)2 − 1

)
, (17)

with

ρij =

 −
√

EPiEPj

(1− EPi)(1− EPj)
f or i 6= j

1 f or i = j
. (18)

For Equation (15), the MAD depends on n and k, a fact reinforced by the notation
MADn,k, which allows measuring the discrepancy of the usual MAD with respect to its
mean. This observation represents the essence of the excess MAD, which is written in
mathematical terms as follow below:

δn,k = MADn,k − E(MADn,k). (19)
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Therefore, the MAD method, given by (12), is not independent of n, but rather, it
depends on O(n−1/2) [39,40]. Thus, we will not include the excess MAD for the gNBL
because it has only been demonstrated that the MAD, under the null of conformity with
the NBL, is approximately distributed as shown in (15) [39,40]. In this sense, for the gNBL,
we will probably obtain another expression considering the α exponent values. Within this
scope, subsequent investigations is necessary to delve into this problem in order to obtain
a generalization of the MAD for the gNBL, providing a MAD as a function of α, k and n
(MADα,k,n), making possible to analyze its excess MAD as δα,k,n.

5. Results

The conformity analysis summarized in Table 3 showed that, at normal [K+]o, the
experimental MEPP intervals followed the NBL satisfactorily, considering the first and sec-
ond digits, as much as the first–two digits. All data achieved at least marginal conformity.
Moreover, it is essential to highlight that the excess MAD calculation adjusted the com-
pliance levels, especially for the first–two digits, improving conformity in all cases. The
excess MAD possibly attenuated the “excess power”, while the nonconformities obtained
even with the excess MAD may suggest that the NBL in its classic format is inadequate to
describe the MEPP intervals. This observation is also reinforced by examining Figure 2,
where representative results extracted from two electrophysiological recordings can be
observed, considering both physiological-level and high [K+]o. For the first digit, a visual
inspection enables one to observe the excellent agreement of the experimental data and
predicted values. However, taking all results given in Tables 3 and 4, the conformity pattern
revealed an exciting scenario, as different levels of compliance were observed regardless of
the test used. Figure 3 brings the statistical summary of all databases for both potassium
contents, where, in general, it is possible to observe a significant deviation of the data taken
at high [K+]o. Despite this deviation, one may note, except for the second digit for high
[K+]o, the characteristic asymmetric digits’ distribution predicted by the NBL.

Figure 2. Cont.
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(a) (b)

Figure 2. Representative examples from two recording taken for both [K+]o = 5 mM (a) and
[K+]o = 25 mM (b), showing a satisfactory conformity between the NBL and the experimental data.
To enhance the clarity, the first–two digits graphs are represented as lines.

Table 3. Summary of the NBL tests for [K+]o = 5 mM.

First Digit

Data n MAD Excess MAD SSD

1 730 0.00837 −0.00032 12.28475
2 869 0.01995 0.01198 86.45288
3 2181 0.00989 0.00486 16.56178
4 928 0.00858 0.00087 10.08629
5 2973 0.01305 0.00874 21.54770
6 642 0.00986 0.00060 9.91123
7 1349 0.00887 0.00248 10.38188
8 1162 0.01270 0.00581 18.13111
9 1685 0.00845 0.00273 11.65409
10 1009 0.01137 0.00398 16.06490
11 2048 0.00807 0.00288 7.53752
12 3060 0.00722 0.00298 8.61009
13 1510 0.01192 0.00588 27.89886
14 2436 0.00916 0.00440 9.96616

Second Digit

Data n MAD Excess MAD SSD

1 730 0.00683 −0.00202 8.19079
2 869 0.00950 0.00139 12.32210
3 2181 0.00544 0.00033 4.28136
4 928 0.00851 0.00067 12.11295
5 2973 0.00318 −0.00120 1.80299
6 642 0.00558 −0.00385 4.44022
7 1349 0.00466 −0.00184 3.15052
8 1162 0.00785 0.00084 8.96622
9 1685 0.00692 0.00110 7.73984
10 1009 0.00494 −0.00258 3.72527
11 2048 0.00525 −0.00003 3.96622
12 3060 0.00495 0.00063 3.65075
13 1510 0.00612 −0.00003 5.18546
14 2436 0.00529 0.00045 4.44622
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Table 3. Cont.

First-Two Digits

Data n MAD Excess MAD SSD

1 730 0.00253 −0.00040 10.83412
2 869 0.00366 0.00097 21.72249
3 2181 0.00232 0.00062 8.81407
4 928 0.00276 0.00016 12.93240
5 2973 0.00177 0.00031 5.02102
6 642 0.00268 −0.00045 9.19816
7 1349 0.00225 0.00009 7.40826
8 1162 0.00244 0.00012 8.78088
9 1685 0.00225 0.00031 8.69891
10 1009 0.00240 −0.00010 7.84890
11 2048 0.00169 −0.00006 4.39289
12 3060 0.00141 −0.00002 4.12983
13 1510 0.00263 0.00059 10.24864
14 2436 0.00167 0.00007 4.34060

Table 4. Summary of the NBL tests for [K+]o = 25 mM.

First Digit

Data n MAD Excess MAD SSD

1 56,853 0.02687 0.02589 117.77678
2 40,951 0.02383 0.02267 102.72734
3 72,519 0.01827 0.01740 69.91262
4 51,207 0.00910 0.00807 11.41064
5 112,330 0.01375 0.01305 36.17818
6 107,801 0.01952 0.01881 52.04470
7 36,330 0.00619 0.00496 4.52025
8 37,758 0.00117 −0.00004 0.25865
9 37,703 0.00732 0.00611 7.98955
10 72,787 0.02064 0.01977 92.09016
11 34,833 0.01054 0.00928 19.34788
12 29,313 0.00318 0.00180 1.77512

Second Digit

Data n MAD Excess MAD SSD

1 56,853 0.00995 0.00895 16.15754
2 40,951 0.00705 0.00586 6.48468
3 72,519 0.02088 0.02000 46.27171
4 51,207 0.01589 0.01484 26.70868
5 112,330 0.01601 0.01530 29.43487
6 107,801 0.02213 0.02140 52.58192
7 36,330 0.01576 0.01450 26.28400
8 37,758 0.01441 0.01318 21.98806
9 37,703 0.01253 0.01130 16.74141
10 72,787 0.02409 0.02320 61.55550
11 34,833 0.01854 0.01726 37.01945
12 29,313 0.01897 0.01757 38.09396
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Table 4. Cont.

First-Two Digits

Data n MAD Excess MAD SSD

1 56,853 0.00301 0.00268 15.60049
2 40,951 0.00249 0.00209 12.89166
3 72,519 0.00308 0.00278 13.89474
4 51,207 0.00181 0.00146 4.98217
5 112,330 0.00231 0.00207 8.19403
6 107,801 0.00318 0.00294 14.78929
7 36,330 0.00192 0.00150 3.94064
8 37,758 0.00163 0.00122 2.85762
9 37,703 0.00160 0.00119 3.65519
10 72,787 0.00349 0.00320 17.89426
11 34,833 0.00243 0.00200 6.71510
12 29,313 0.00217 0.00171 5.13421

(a) (b)

Figure 3. Statistical summary for [K+]o = 5 mM (n = 14) (a) and [K+]o = 25 mM (n = 12) (b), using the
NBL. Note that, on average, all experimental data collected for [K+]o = 5 mM adhere satisfactorily to
the NBL, in the three situations examined, while for [K+]o = 25 mM, the adjustments become poorer,
indicating the possibility of using a general version of the NBL. To enhance the clarity, the first–two
digits graphs are represented as lines. Values are expressed as the mean ± standard deviation.
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The conformity levels obtained at high [K+]o highlighted that, although using the NBL
gave more-frequent nonconformities, the overall results suggested that the law was mostly
obeyed. Despite these results, we decided to give our attention to these deviations from
the NBL proportions, especially for high [K+]o recordings, where we verified whether the
NBL generalization might be more appropriate in the data adjustments. In this scheme,
the results in Table 5 show for [K+]o = 5 mM that the gNBL is followed, which generally
implies conformity improvement. This observation is readily confirmed by comparing the
SSD results of Tables 3 and 5. The conformity analysis for [K+]o = 25 mM, summarized in
Tables 4 and 6, also suggested a better adherence of the gNBL to the data as compared to
the NBL calculations. In fact, according to these results, the compliance level improved in
several cases.

Table 5. Summary of gNBL tests for [K+]o = 5 mM.

First Digit

Data n Alpha MAD SSD

1 730 1.09734 0.00636 5.35810
2 869 1.30536 0.01065 16.90700
3 2181 0.85783 0.00349 1.97250
4 928 0.98698 0.00828 9.96370
5 2973 0.87338 0.00851 9.87620
6 642 1.07180 0.00713 5.96820
7 1349 0.96904 0.00844 9.65490
8 1162 1.08773 0.01008 12.10020
9 1685 0.93251 0.00728 8.23990
10 1009 0.89552 0.00824 8.04460
11 2048 1.05146 0.00661 5.51620
12 3060 1.09466 0.00368 1.97250
13 1510 0.86705 0.01149 14.54340
14 2436 1.06165 0.00794 7.02810

Second Digit

Data n Alpha MAD SSD

1 730 0.88315 0.00703 7.88420
2 869 1.20207 0.00977 11.27090
3 2181 0.76299 0.00480 3.19950
4 928 0.56741 0.00699 8.74690
5 2973 0.96940 0.00328 1.78210
6 642 0.82057 0.00565 3.79340
7 1349 0.83357 0.00431 2.57830
8 1162 1.14257 0.00794 8.44120
9 1685 1.14975 0.00653 7.19650
10 1009 1.04217 0.00485 3.68420
11 2048 0.82621 0.00465 3.33970
12 3060 1.08013 0.00531 3.49580
13 1510 0.61821 0.00425 2.57810
14 2436 0.98519 0.00538 4.44090

First-Two Digits

Data n Alpha MAD SSD

1 730 1.11785 0.00241 9.63330
2 869 1.24452 0.00329 16.11180
3 2181 0.86327 0.00214 7.27660
4 928 0.97734 0.00276 12.88900
5 2973 0.87317 0.00157 3.66930
6 642 1.06433 0.00259 8.82400
7 1349 0.94217 0.00219 7.11010
8 1162 1.07238 0.00236 8.29090
9 1685 0.91808 0.00223 8.10760
10 1009 0.90327 0.00230 7.05690
11 2048 1.05125 0.00166 4.15790
12 3060 1.09810 0.00129 3.28490
13 1510 0.84443 0.00248 8.13420
14 2436 1.03307 0.00165 4.23940
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Table 6. Summary of gNBL tests for [K+]o = 25 mM.

First Digit

Data n Alpha MAD SSD

1 56,853 0.68616 0.01982 45.09730
2 40,951 0.73411 0.02093 47.66000
3 72,519 0.75305 0.01487 23.73950
4 51,207 1.10501 0.00427 3.05230
5 112,330 0.83126 0.01152 14.63950
6 107,801 0.87603 0.01860 39.84270
7 36,330 0.92700 0.00228 0.68170
8 37,758 1.00437 0.00123 0.24450
9 37,703 1.02816 0.00712 7.37960
10 72,787 0.70165 0.01540 25.51630
11 34,833 0.84972 0.00475 2.89430
12 29,313 0.96620 0.00265 0.92750

Second Digit

Data n Alpha MAD SSD

1 56,853 1.26913 0.00928 14.27730
2 40,951 0.95827 0.00709 6.44590
3 72,519 1.26304 0.01965 44.44780
4 51,207 1.30622 0.01444 24.16300
5 112,330 1.28374 0.01468 27.29740
6 107,801 1.32020 0.02061 49.80040
7 36,330 1.29637 0.01436 23.90470
8 37,758 1.27543 0.01312 19.94300
9 37,703 1.21247 0.01155 15.56480
10 72,787 1.29532 0.02269 59.22550
11 34,833 1.38829 0.01666 32.80310
12 29,313 1.31114 0.01749 35.45490

First-Two Digits

Data n Alpha MAD SSD

1 56,853 0.71868 0.00249 9.14370
2 40,951 0.73705 0.00220 6.82500
3 72,519 0.76779 0.00272 9.27860
4 51,207 1.08779 0.00183 4.27770
5 112,330 0.84541 0.00215 6.12730
6 107,801 0.87479 0.00314 13.35130
7 36,330 0.95909 0.00189 3.80170
8 37,758 1.00499 0.00164 2.85540
9 37,703 1.00683 0.00160 3.65090
10 72,787 0.72606 0.00309 11.62400
11 34,833 0.88760 0.00224 5.66890
12 29,313 0.97453 0.00214 5.07780

The high number of intervals obtained in some electrophysiological recordings at
high [K+]o offered the possibility of investigating how the level of compliance could
be regulated as a function of the number of MEPP intervals. To address this issue, we
performed an analysis based on the data cumulative frequency. This procedure divided
the experimental data into equal portions within the time series. Next, we successively
calculated the conformance level for each data portion. Figure 4 illustrates an analysis
made of 112,330 intervals, which gives the conformity behavior considering the adopted
tests. In general, for both [K+]o, the tests revealed fluctuations given by the presence of
local conformities and nonconformities until achieving the last interval value, giving the
final compliance level. The data studied with the NBL gradually improved the first digit
compliance level. This behavior was analogously observed when using the gNBL, where
conformity also improved despite the pronounced oscillations. For the second digit, there
was a tendency for the level of compliance to be more unstable when the MEPP intervals
quantity increased. On the other hand, the results for the first–two digits presented a slight
conformity variation, suggesting an attenuated sensitivity concerning the data size.
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Figure 4 revealed that the α exponent also exhibited an interesting oscillatory behavior,
especially for the second digit compared to the first and first–two digits. Regarding the
tests used to verify the conformity of the experimental data with the gNBL, a significant
variation in the results of the second digit can be noticed, confirming the tendency observed
in the NBL analysis. In addition, adopting the gNBL improved the compliance level.
It is worth mentioning that this fluctuation was noted in all electrophysiological recordings,
being evidently more pronounced in those obtained at high [K+]o. In summary, these
results strongly suggest that, at least for MEPP intervals recorded at mammalian NMJ, the
conformity level may be modulated by the MEPP frequency and time series length.

(a) (b)

Figure 4. Analysis carried out on a specific recording (Data 5), during [K+]o = 25 mM administration,
studied with NBL (a) and gNBL (b). The results highlight a heterogeneous profile in the conformity
level as well as an unexpected oscillation α exponent values.

As stated above, the more pronounced deviations from NBL, observed at high [K+]o in
the Figure 3 and Table 4, motivated us to verify the data disposition considering the gNBL.
Figure 5 provides the statistical summary comparing the distribution of all digits of the
experiments carried out at high [K+]o, in which one can verify a satisfactory enhancement
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of the gNBL with the experimental data. This observation may be visually confirmed
by inspecting the first and first–two digits adjustments. The gNBL relevance was also
highlighted by examining the α exponent, in which values close to 1, taken at physiological
[K+]o, indicate that the NBL was sufficiently satisfactory to describe the MEPP intervals
(Figure 6). Moreover, based on α exponent, one may indicate the importance of the gNBL
in modeling data extracted from high [K+]o.

Figure 5. Statistical summary for recordings (n = 12) taken with [K+]o = 25 mM, using the gNBL. On
average, compared to the NBL results, the experimental data adhered more satisfactorily to the gNBL
for the three situations examined. To enhance the clarity, the first–two digits graphs are represented
as lines. Values are expressed as the mean ± standard deviation.
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(a) (b)

Figure 6. Statistical summary for the α exponent for the experiments considering [K+]o = 5 mM
(n = 14) (a) and [K+]o = 25 mM (n = 12) (b). The pronounced deviation of the α exponent from the
median of 1 underscores the usefulness of the gNBL for adjustments of the hyperkalemic conditions.

6. Discussion

The present study expanded our previous investigation on how changes in the ionic
concentration of artificial physiological solution can modulate the level of compliance of
intervals between MEPPs. In this framework, this report confirmed the validity of the
NBL in a hyperkalemic environment. As already expected, the analysis initially showed
that the intervals of MEPPs, recorded at normal [K+]o, agreed with the first, second, and
first–two digits frequencies. We achieved this conclusion by assuming three different
conformity tests. In [K+]o = 5 mM, the excess MAD test enabled improved conformity for
both the first and second digits results. At the same time, for the first–two digits of data, all
nonconformities were converted into conformities. These findings suggest how “excess
power” may influence the results and data interpretation.

According to our analysis, at [K+]o = 25 mM, a heterogeneous conformity scenario
emerged, in which nonconformity abundantly appeared as compared to the results for a
physiological solution. Besides this observation, the SSD generally pointed out that the
distribution of the digits obeyed the NBL. In most cases, the level of compliance predicted by
this test relied on an acceptable and marginal level. On the other hand, the results obtained
from the MAD and excess MAD calculations provided several nonconformities, showing
the necessity of adopting a generalized NBL version to understand the applicability and
limitations for [K+]o = 25 mM. Furthermore, the strong depolarization, promoted by the
high [K+]o, resulted in the loss of conformity. In this framework, the gNBL assumption
brought the MEPP interval to adhere to the law, especially when quantified by the SSD
test. In addition, the α exponent values emerged as a helpful parameter for verifying
if the data were better described by the gNBL or NBL. When the gNBL was used, the
results for [K+]o within the physiological content showed that the median α exponent
was close to 1. In contrast, at high [K+]o, they deviated more significantly from α = 1,
highlighting the importance of the gNBL to data harvested for higher concentrations.
It is worth mentioning that a relevant issue concerns expanding the excess MAD used
here to include analyses involving the gNBL. Consequently, within this scheme, it would
be possible to more adequately assess the compliance levels using the MAD test in the
generalized NBL version.

Based on the present findings, one may formulate the following questions: What neural
substrate might be associated with law validation at high [K+]o? Is there a relationship
between morphological modifications and the rate of discharge of MEPPs? Therefore, is
the gNBL, given by its α exponent, a possible indicator of the structural changes in the
NMJ? Previous research suggested that a high [K+]o is related to morphological alterations
as observed in a series of pathologies. Although our approach to tackle this question was
indirect, focusing only on the electrical response, further combinations of morphological
and electrophysiological studies are required to investigate how changes in the NMJ
morphology can be associated with the α exponent. Yet, within this scope, it would also
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be essential to investigate the validity of the law in situations of injury, in which it is well
accepted that the NMJ terminal undergoes morphological restructuring as well. Examining
these issues may confirm the utility of the gNBL in quantifying numerical patterns in
pathologies known to modify the NMJ architecture. If such a correspondence could be
finally confirmed, the gNBL would arise as a suitable form for detecting the presence of an
anomalous regime beyond those associated with hyperkalemia diseases.

In this work, the experiments were performed considering the ambient temperature.
Besides the [K+]o increment, the increase in the thermal level is another critical parameter
that promotes MEPPs frequency modulations. It is evident that thermal fluctuations
modify the resting potential of the nerve terminal, depolarizing and hyperpolarizing as the
biological membrane temperature is raised and lowered, respectively [41]. Consequently,
although temperature changes and [K+]o have different synaptic mechanisms, a rising
temperature similarly reflects an increment of the MEPP frequency [42,43]. Thus, one
may hypothesize that, at higher temperatures, such as observed for the hyperkalemic
environment, the gNBL would emerge as the most-appropriate formulation to study
the first digit phenomenon at mammalian physiological temperature. In that case, the
resting potential might be governed by physiological mechanisms ruled by a generalized
formalism. This conjecture is based on the following arguments. Firstly, Procopio and
Fornés, inspired by the fluctuation–dissipation theorem, showed how voltage fluctuations
impose a mechanism responsible for regulating the gating channel behavior [44]. Secondly,
influenced by generalized thermodynamics statistics (GTS), Chame and Mello generalized
the fluctuation–dissipation theorem [45]. Thirdly, a direct mathematical relation between
the NBL and GTS was deduced by Shao and Ma [46]. Finally, studies of the mammalian
NMJ performed by da Silva et al. showed that synaptic transmission statistics are best
understood within an approach inspired by the GTS [37,47]. Altogether, these arguments
form a theoretical pillar to hypothesize about the existence of a relation between the gNBL
within a generalized resting potential, likely valid at mammalian temperatures. In this
scheme, α 6= 1 would imply a resting potential regulated by the GTS formalism and its
famous q-index. Therefore, the discussion given above offers a thermodynamic scenario for
explaining the decrement or even conformity failures, computed for the first digits at high
[K+]o. However, future investigations are required to comprehend a possible relationship
between the temperature, the gNBL, and the GTS theory in the neurotransmission context.

Finally, it is essential to mention that large amounts of data, like those extracted at high
[K+]o, represent an excellent way to assess how compliance can be changed as a function
of the size of the data. This observation became significant for the second and first–two
digits. Such a discussion allowed us to elaborate on these final profound questions: Will
the validity of the law reported here in in vitro conditions still be verified at the systemic
level, where the junction is intact and attached to the animal? Does the validity of the
NBL change throughout the rodent’s life? Although taken using an artificial hyperkalemic
physiological solution, our results showed local variations in the conformity level. Is this
compliance behavior sensitive to the sampling rate or the size of the time series? Our
results showed that, at least at the NMJ, the conformity level has a very dynamic behavior.
Could our findings be equally extrapolated to the human NMJ? This last question remains
a conundrum within many application possibilities of the NBL in neurophysiology. Further
experimental investigations are welcome to assess these intriguing questions.

7. Conclusions

In this work, we examined MEEP time series to confirm the validity of the NBL in
hyperkalemic conditions. This strategy validated the NBL in a scenario characterized by a
high release rate of neurotransmitters, induced by manipulating an artificial physiological
solution. In this framework, our work highlighted the usefulness of adopting a generalized
NBL version. In addition, these results reinforced our previous findings, pointing to a
possible ubiquity of the law at the NMJ, at least in electrophysiological signals collected
from in vitro experiments. In fact, the assumption of a high potassium concentration
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allowed us to assess the robustness of the law for a large amount of data. We also observed
an interesting pattern of fluctuation in the level of conformity as a function of the size of
the number of intervals.

In the future, we hope to use the same experimental protocols to investigate the validity
of this law in electrical signals collected from synapses in the brain. Moreover, it is tempting
to suggest that the gNBL may be employed to detect and quantify numerical patterns
associated with abnormal physiological situations. We emphasize the importance of consid-
ering further electrophysiological recordings at different temperatures, allowing them to be
combined with theoretical studies investigating a possible connection between the gNBL
and generalized statistical mechanics. If successful, this study could show more precisely
the relationship between the level of membrane potential fluctuation and the gNBL.
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