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Abstract: Estimation of time-varying autoregressive models for count-valued time series can be
computationally challenging. In this direction, we propose a time-varying Poisson autoregressive
(TV-Pois-AR) model that accounts for the changing intensity of the Poisson process. Our approach
can capture the latent dynamics of the time series and therefore make superior forecasts. To speed
up the estimation of the TV-AR process, our approach uses the Bayesian Lattice Filter. In ad-
dition, the No-U-Turn Sampler (NUTS) is used, instead of a random walk Metropolis–Hastings
algorithm, to sample intensity-related parameters without a closed-form full conditional distribu-
tion. The effectiveness of our approach is evaluated through model-based and empirical simulation
studies. Finally, we demonstrate the utility of the proposed model through an example of COVID-19
spread in New York State and an example of US COVID-19 hospitalization data.

Keywords: Bayesian hierarchical model; nonstationary time series; partial autocorrelation;
time-varying spectral density; vector autoregressive model

1. Introduction

Modeling count time series is essential in many applications such as pandemic
incidences, insurance claims, and integer financial data such as transactions. Different
types of count time series models have been broadly developed within the two classes of
observation-driven and parameter-driven models [1,2], where in an observation-driven
model, current parameters are deterministic functions of lagged dependent variables as
well as contemporaneous and lagged exogenous variables, while in parameter-driven
models, parameters vary over time as dynamic processes with idiosyncratic innovations.
The observation-driven models include the integer-valued generalized autoregressive con-
ditional heteroskedasticity (INGARCH) model [3,4], integer-valued autoregressive model,
also called Poisson autoregressive model [5], generalized linear autoregressive moving
average (GLARMA) model [6,7], and Poisson AR model [8], among others (see [9,10] for a
comprehensive overview). The parameter-driven models include the Poisson state space
model [11], Poisson exponentially weighted moving average (PEWMA) model [12], and
dynamic count mixture model [13], among others. Some of this research proceeds under a
Bayesian framework [13–15].

For nonstationary count time series with changing trends, e.g., daily new COVID
cases data, the stationary methods [3,4,8,12] may not capture local trends or give good
multi-step-ahead forecasts. The motivation for our study is to propose an efficient method
by which to capture the time-varying pattern of the means for such nonstationary count
time series and therefore make better forecasts than traditional methods. To capture the
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evolutionary properties, a parameter-driven (process-driven) model with a time-varying
coefficient latent process is a good choice. Moreover, a latent process with appropriately
modeled innovations can address the potential over-dispersion issue, which is common in
count time series modeling.

We propose a time-varying Poisson autoregressive (TV-Pois-AR) model for nonstation-
ary count time series and utilize the efficiency of the Bayesian lattice filter (BLF, [16]) and
the no-U-turn sampler (NUTS, [17,18]) together to estimate the model parameters. We use a
time-varying autoregressive (TV-AR) latent process to model the nonstationary intensity of
the Poisson process. This flexible model can capture the latent dynamics of the time series
and therefore make superior forecasts. The estimation of such a TV-AR process is greatly
sped up by using BLF. Moreover, NUTS is used to sample the intensity-related parameters
which have no analytical forms of full conditional distributions. NUTS is an extension
to the Hamilton Monte Carlo (HMC, [19–21]) algorithm via automatic tuning of the step
size and the number of steps. The use of the HMC method inside the Gibbs sampling
was investigated in [22]. According to their paper, as a self-tuned extension to HMC,
NUTS should work well as a univariate sampler inside the Gibbs sampling. Benefiting
from the joint use of the Bayesian lattice filter and no-U-turn sampler, the estimation of
the TV-Pois-AR model is efficient and fast, especially for higher model orders or longer
length time series. In short, our main contribution is computational in that we develop a
methodology for the efficient estimation of Poisson time-varying autoregressive models.

The rest of the paper is organized as follows. In Section 2, we formulate the proposed
Bayesian time-varying coefficient Poisson model. In Section 3, we present a simulation
study that illustrates the small sample properties of the proposed Bayesian estimators.
In Section 4, our proposed model is demonstrated through an example of COVID-19 spread
in New York State and an example of US COVID-19 hospitalization data. In Section 5, we
summarize the proposed method and discuss possible future research directions. In the
Appendices, the detailed algorithms are introduced.

2. Methodology
2.1. TV-Pois-AR(P) Model

For a univariate count-valued series, zt, t = 1, . . . , T, we propose a TV-Pois-AR model
of order P (TV-Pois-AR(P)) defined as

zt|Xtψ, yt ∼ Pois(exp(Xtψ + yt)),

yt =
P

∑
j=1

aj,tyt−j + ξt, ξt ∼ N (0, σ2
t ),

(1)

where exp(·) stands for the exponential function, Xt is 1× K vector of covariates, ψ is a
K× 1 vector of coefficients, and yt is the autoregressive component of the logarithm of the
Poisson intensity, which follows a TV-AR process. Depending on the specific application
case, Xtψ can be a constant term µ or removed from the model. Throughout the context,
we use a constant term µ and do not consider any covariate. We define aj,t and σ2

t to
be the time-varying AR coefficients of TV-AR(P) associated with time lag j at time t and
the innovation variance at time t, respectively. The innovations, ξt, are defined to be
independent Gaussian errors.

2.2. Bayesian Lattice Filter for the TV-AR Process

Under the Bayesian framework, a major part of the model inference is the estimation
of parameters in the latent TV-AR process of yt, the posterior distributions of which are not
conjugate. Using Monte Carlo methods to generate converged sample chains for the time-
varying parameters constitutes a large computational burden. BLF provides an efficient way
to directly obtain the posterior means of these time-varying parameters. Using the posterior
means as MC samples greatly accelerates the convergence of sample chains. According
to the Durbin–Levinson algorithm, there exists a unique correspondence between the
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partial autocorrelation (PARCOR) coefficients and the AR coefficients [16,23,24]. This
lattice structure provides an efficient way to estimate the PARCOR coefficients, which are
associated wit AR models (see [25] and the Supplemental materials [16]). The efficient
estimation of this TV-AR process can be conducted through the following P-stage lattice
filter. We denote f (P)

t and b(P)
t to be the prediction error at time t for the forward and

backward TV-AR(P) models, respectively, where

f (P)
t = yt −

P

∑
j=1

a(P)
j,t yt−j,

b(P)
t = yt −

P

∑
j=1

d(P)
j,t yt+j,

(2)

and a(P)
j,t and d(P)

j,t are the forward and backward autoregressive coefficients of the corre-
sponding TV-AR(P) models. Then, in the jth stage of the lattice filter for j = 1, . . . , P,
the forward and the backward coefficients and the forward and backward prediction errors
have the following relationship:

f (j)
t = f (j−1)

t − α
(j)
j,t b(j−1)

t−j ,

b(j)
t = b(j−1)

t − β
(j)
j,t f (j−1)

t+j ,
(3)

where α
(j)
j,t and β

(j)
j,t are the lag j forward and backward PARCOR coefficients at time t,

respectively. The initial condition, f (0)t = b(0)t = yt, can be obtained from the definition

in (3). This implies that the samples of yt are plugged in as the initial values of f (0)t and b(0)t
in the Gibbs sampling. At the jth stage of the lattice structure, we fit time-varying AR(1)
models to estimate α

(j)
j,t and β

(j)
j,t . The corresponding forward and backward autoregressive

coefficients at time t, a(j)
j,t and d(j)

j,t can be obtained according to the following equations:

a(j)
i,t = a(j−1)

i,t − a(j)
j,t d(j−1)

j−i,t ,

d(j)
i,t = d(j−1)

i,t − d(j)
j,t a(j−1)

j−i,t ,
(4)

with i = 1, . . . , j− 1, a(j)
j,t = α

(j)
j,t and d(j)

j,t = β
(j)
j,t . Finally, the distribution of a(P)

j,t and ξt for
j = 1, . . . , P are obtained. These distributions are used as conditional distributions of aj,t
and ξt in the Gibbs sampling.

2.3. Model Specification and Bayesian Inference

We assume that each coefficient in β has a conjugate normal prior distribution, i.e.,

βk
i.i.d.∼ N(µ0, τ2

0 ), and the initial state of the latent variable y0 follows a normal distribution,
s.t., y0 ∼ N(m0, s2

0). In Gibbs sampling, µ is sampled efficiently by NUTS, and this speeds
up the mixing of the sample chains. Compared to the Metropolis–Hastings algorithm,
which uses a Gaussian random walk as proposal distribution, NUTS generates samples
converging to the target distribution. The target distribution of yt, for t = 1, . . . , T, is its
conditional distribution with the density function

p(yt|zt, y−t, θ) = p(zt|µ, yt)p(yt|y−t, θ)

∝ p(zt|µ + yt)p(yt|yt−1, θ)p(yt+1|yt, θ),

where yt = (yt, . . . , yt−P+1)
′, θ denotes aj,t, and σ2

t for all t and y−t denotes yi for all i but t.
According to the previous assumptions, the conditional distributions of zt is Poisson and



Stats 2023, 6 1040

the conditional distributions of yt and yt+1 are Gaussian. Having the target distribution,
NUTS can adaptively draw samples of yt conditional on all other variables for all t.

To use the BLF to derive the conditional distributions of the parameters in the latent
autoregressive process of yt, we define the distribution of its coefficients a(P)

j,t by defining
the distributions of the forward and backward PARCOR coefficients in (3). To give time-
varying structures to the forward and backward PARCOR coefficients, we consider random
walks for the PARCOR coefficients. The PARCOR coefficients are modeled as

α
(j)
j,t = α

(j)
j,t−1 + εα,j,t, εα,j,t ∼ N(0, ωα,j,t),

β
(j)
j,t = β

(j)
j,t−1 + εβ,j,t, εβ,j,t ∼ N(0, ωβ,j,t),

where ωα,j,t and ωβ,j,t are time dependent evolution variance. These evolution variances are
defined via the standard discount method in terms of the discount factors γ f ,j and γb,j within
the range (0, 1), respectively (see Appendices A–D and [26] for details). The discount factor
γ controls the smoothness of PARCOR coefficients. Here, we assume γ f ,j = γb,j = γj
at each stage j. Similarly, the innovation variances are assumed to follow multiplicative
random walks and modeled as

σ2
f ,j,t = σ2

f ,j,t−1(δ f ,j/η f ,j,t), η f ,j,t ∼ β(g f ,j,t, h f ,j,t),

σ2
b,j,t = σ2

b,j,t−1(δb,j/ηb,j,t), ηb,j,t ∼ β(gb,j,t, h f ,j,t),

where δ f ,jand δb,j are also discount factors in the range (0, 1), and the multiplicative
innovations, η f ,j,t and ηb,j,t, follow beta distributions with hyperparameters (g f ,j,t, h f ,j,t)
and (gb,j,t, h f ,j,t) (see Appendices A–D and [26] for details). The smoothness of innovation
variance is controlled by both γ and δ. Similar to the PARCOR coefficients, we assume
δ f ,j = δb,j = δj at each stage. Note that εα,j,t, εβ,j,t, η f ,j,t, and ηb,j,t are mutually independent
and are also independent of any other variables in the model. The discount factors γ and δ
are selected adaptively through a grid-search based on the likelihood (see the Appendices
A–D for details) in each iteration of MCMC.

We specify conjugate initial priors for the forward and backward PARCOR coefficients,
so that

p(αj,0|D f ,j,0, σf ,j,0) ∼ N(µ f ,j,0, C f ,j,0),

p(β j,0|Db,j,0, σb,j,0) ∼ N(µb,j,0, Cb,j,0),

where p = 1, . . . , P, D f ,j,0, Db,j,0 denotes the information available at the initial time t = 0,
and µ f ,j,0 and C f ,j,0 are the mean and the variance of the normal prior distribution. We also
specify conjugate initial priors for the forward and backward innovation variance, so that

p(σ2
f ,j,0|D f ,j,0) ∼ G(ν f ,j,0/2, κ f ,j,0/2),

p(σ2
b,j,0|Db,j,0) ∼ G(νb,j,0/2, κb,j,0/2),

where G(·, ·) is the gamma distribution, and ν f ,j,0/2 and κ f ,j,0/2 are the shape and rate
parameters for the gamma prior distribution. Usually, we treat these starting values as
constants over all stages. In order to reduce the effect of the prior distribution, we choose
µ f ,j,0/2 and C f ,j,0 to be zero and one, respectively, and fixed ν f ,j,0 = 1 and set κ f ,j,0 equal
to ν f ,j,0 divided by the sample variance of the initial part of each series according to the
formula for the expectation of the gamma distribution. The conjugate initial priors for β j,0

and σ2
b,j,0 are specified in manner analogous to those of αj,0 and σ2

f ,j,0. A sensitivity analysis
was conducted and showed that the simulation studies in Section 3 and the case studies
in Section 4 are not sensitive to the choice of the priors and the hyperparameters. In such
prior settings, we can use the DLM sequential filtering and smoothing algorithms [26] to
derive the joint conditional posterior distributions of the forward and backward PARCOR
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coefficients and innovation variances in (3). Conditional on the other variables and the data,
the full conditional distribution of the latent variable yt can easily be obtained individually.
To efficiently draw samples from the individual full conditional distribution for the yts, we
use the NUTS algorithm [17] instead of a traditional random walk Metropolis. The detailed
algorithms for the Gibbs sampling, the BLF and the sequential filtering and smoothing are
given in Appendices A–C.

2.4. Model Selection

In order to determine the model order, we set a maximal order Pmax and fit TV-Pois-
AR(P) for P = 1, . . . , Pmax. The model selection criteria are computed one by one for
any specified order. By comparing model selection criteria, we can select the best model
order. Since Bayesian inference for the TV-Pois-AR model is conducted through MCMC
simulations, we choose the deviance information criterion (DIC) [27,28] and the widely
applicable information criterion (WAIC) [29,30].

2.5. Forecasting

Having estimated all parameters, we consider 1-step-ahead forecasts of the TV-Pois-
AR(P) model. Then, the 1-step-ahead predictive posterior distribution of the PARCOR coef-
ficients and innovation variance can be obtained according to [26]. The samples of the PAR-
COR coefficients and innovation variance can be drawn from their predictive distribution.
The samples of the 1-step-ahead prediction of the parameters aT+1 = (a1,T+1, . . . , aP,T+1)

′

can be obtained through the Durbin–Levinson algorithm from the samples of the PARCOR
coefficients. After drawing the samples of innovation variance σ2

T+1 from its predictive
distribution, the samples of yT+1 are drawn from its predictive distribution, such that

y(j)
T+1|y1:T , a(j)

T+1, σ
2(j)
T+1 ∼ N(

P

∑
p=1

a(j)
p,T+1yT+1−p, σ

2(j)
T+1), j = 1, . . . , J.

with the samples of µ from its posterior distribution, the samples of the 1-step-ahead
forecast are given as

z(j)
T+1|y

(j)
T+1, µ(j) ∼ Pois(exp(y(j)

T+1 + µ(j))), j = 1, . . . , J. (5)

We use the posterior median of zT+1 obtained through the samples in (5) as the
1-step-ahead forecast. This forecast can be easily extended to h-steps ahead. The details of
forecasting up to h-steps ahead can be found in the Appendices A–D.

3. Simulation Study

In this section, first, we simulate the nonstationary Poisson time series from the
exact TV-Pois-AR(P) model to evaluate the parameter estimation of the latent TV-AR
process. Second, we generate a nonstationary Poisson time series based on a known time-
dependent intensity parameter in order to compare our TV-Pois-AR model with other
models. This constitutes an empirical simulation.

3.1. Simulation 1

We simulated 100 time series for each of the lengths T = 200, 300, 400 from the
following Poisson TV-AR(6) model, for t = 1, . . . , T,

zt|µ, yt ∼ Pois(exp(µ + yt)),

yt =
6

∑
j=1

φj,tyt−j + ξt, ξt ∼ N (0, 1),

where µ = 3, which gives a constant mean level to the intensity. The latent process of yt is
the same time-varying TV-AR(6) process as in [31]. This TV-AR(6) process can be defined
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as φt(B)yt = ξt, t = 1, . . . , T, through a characteristic polynomial function φt(B), with B
as the backshift operator (i.e., Bpyt = yt−p). In this TV-AR(6) process, the characteristic
polynomial function is factorized as

φt(B) = (1− φt,1B)(1− φ∗t,1B)(1− φt,2B)(1− φ∗t,2B)(1− φt,3B)(1− φ∗t,3B),

where the superscript ∗ denotes the complex conjugate of a complex number. Moreover, let
φ−1

t,j = Apexp(2πidt,j) for p = 1, 2, 3, where the dt,js are defined by dt,1 = 0.05 + (0.1/(T −
1))t, dt,2 = 0.25, and dt,3 = 0.45− (0.1/(T − 1))t, and the values of A1, A2, and A3 are
equal to 1.1, 1.12, and 1.1, respectively. Here, we take T = 200, 300, and 400 to be of a
similar order to our case study in Section 4.1. According to DIC and WAIC, 98% of the
simulated datasets are identified to follow an order-6 model (TV-Pois-AR). To evaluate the
parameter estimation of time-varying parameters, we use the mean squared error (MSE);
that is, the average of the squared difference between the estimated parameter value and
its true value at each observed time point. Table 1 and Figures 1 and 2 show the MSEs of
6 time-varying autoregressive coefficients, the time-varying innovation variance, the mean
level µ, and the latent variable yt over 100 simulated datasets. As expected, when the series
length increases, the TV-Pois-AR model gives a more accurate estimation of each parameter.
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Figure 1. Boxplots of the MSEs of each of the six time-varying coefficients a1,t through a6,t for
100 simulated datasets of different lengths: 200, 300, 400.
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Figure 2. Boxplots of the MSEs of the intensity and the parameters in the latent process for 100 simu-
lated datasets of different lengths. For each of them, three boxplots of length 200, 300, 400 are put side
by side from left to right. The left plot shows the MSEs of the innovation variance. The middle plot
shows the MSEs of the mean level µ. The right plot shows the MSEs of the latent variable y.

Table 1. Average and standard deviation (s.d.) of MSEs of each of the six time-varying coefficients
a1,t through a6,t for 100 simulated datasets of different length: 200, 300, 400.s.

Average of MSEs (s.d. of MSEs)

200 300 400

a1t 0.0086 (0.0136) 0.0055 (0.0070) 0.0040 (0.0063)
a2t 0.0404 (0.0165) 0.0254 (0.0119) 0.0183 (0.0083)
a3t 0.0061 (0.0080) 0.0039 (0.0052) 0.0030 (0.0042)
a4t 0.0307 (0.0139) 0.0212 (0.0121) 0.0136 (0.0086)
a5t 0.0058 (0.0068) 0.0047 (0.0047) 0.0031 (0.0039)
a6t 0.0091 (0.0117) 0.0058 (0.0081) 0.0044 (0.0049)

3.2. Simulation 2—An Empirical Simulation

In this study, we simulated the signals based on the COVID-19 data in New York
State (see Section 3.1 for a complete discussion) so that they exhibit similar properties. We
generated 100 time series of length T = 278 from a Poisson process:

zt|λt ∼ Pois(λt), t = 1, . . . , T,

where λt was the 7-day moving average of the estimated intensity of daily new COVID-19
cases in New York State from 3/3/2020 to 12/5/2020. With this type of nonstationary
signal, different models are compared by the estimation of the known time-varying inten-
sity parameter λt, including the INGARCH and GLARMA model. The INGARCH and
GLARMA models are conducted via tsglm from R package tscount. Although these models
have different underlying assumptions, they are sometimes used in practices as they can
still provide reasonable forecasts. Using the Akaike information criterion (AIC) and the
quasi information criterion (QIC) [32], INGARCH(1,0) and GLARMA(1,0) are selected.
Both DIC and WAIC indicate that TV-Pois-AR(1) is the best model for these simulated
datasets (see details in Section 2.4). To compare the estimation from the frequentist and
Bayesian models, the average MSE (AMSE) of the Poisson intensity parameter is computed

and shown in Table 2 and Figure 3, where AMSE = 1
100T

100
∑

s=1

T
∑

t=1
(λt − λ̂t)2. The boxplots in

Figure 4 summarize the MSEs of 100 simulated datasets. The estimated intensity figure
shows the mean and 90% coverage interval by the three models. As shown, TV-Pois-AR
makes better forecasts on these simulated datasets. We expect the TV-Pois-AR model to
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give a better performance than INGARCH and GLARMA on similar pandemic data and
other nonstationary count time series that show similar characteristics.
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Table 2. Average mean squared error (AMSE) of the estimated intensity over the 100 simulated
datasets using different methods.

Model INGARCH GLARMA TV-Pois-AR

AMSE 597,041.3 621,732.5 2568.6

4. Case Studies

To illustrate our proposed methodology, we provide two case studies. The first case
study considers COVID-19 case in the New York State; whereas the second case study
considers COVID-19 hospitalizations in the U.S. Both case studies are meant to be an
illustration of the methodology and thus do not represent a substantive analysis of the
COVID-19 pandemic.

4.1. Case Study 1: COVID-19 in New York State

We obtained the 278 daily numbers of confirmed COVID-19 cases in New York State
from 3/3/2020 to 12/5/2020 from The COVID Tracking Project (https://covidtracking.com
(accessed on 2/7/2021)). We picked New York State data as New York city remained an epi-
center in the U.S. for about a month. Our research is motivated by the time-varying nature
of the COVID-19 data. Inferences on the trend of the data may give us some insight into
the spread of COVID-19 and, possibly, insight into the effect of government interventions.

A TV-Pois-AR model was applied without the fix effect, Xβ, because we do not have
scientific information about any potential covariates. By setting a maximum order of 5,
order 2 was considered as the best based on DIC and WAIC. The difference between the
estimated exponential of the intensity parameter, exp(λt), and the observed series is shown
in Figure 5. Figure 6 shows the estimated parameters. Table 3 shows the model selection
results. A series of restrictions in New York State began on 3/12/2020, and a state-wide
stay-at-home order was declared on 3/20/2020. The number of new cases reached its peak
about two weeks after the lockdown. In Figure 6, the first dashed line in the first two plots
denotes 3/20/2020, the time when the state-wide stay-at-home order was declared. We
can see that the estimated autoregressive coefficients keep changing significantly after this
date. This change in the autoregressive coefficients coincides with the lockdown process.
The second dashed line in the first two plots denotes 9/26/2020. On that day, the number
showed an uptick in cases, with more than 1000 daily COVID-19 cases, which was the
first time since early June. About two weeks before this date, the coefficients show some
evidence of pattern change. This may be an indication that the lockdown affected the
spread of COVID-19. The innovation variance of the intensity is becoming smaller and
smaller, probably due to the improvement in testing and reporting. The dashed line in the
third plot denotes the date when the peak number of new cases occurred. Since then, the
innovation variance has stabilized at a low level.

To evaluate the performance of forecasting, we conducted a rolling one-day-ahead
prediction and compared the mean squared prediction errors (MSPE). We picked a starting
date and made a one-day-ahead prediction based on the data up to this date. Then, we
moved to the next day and made a one-day-ahead prediction based on the data up to
the new date. By repeating this until one day before the last day, we obtained the rolling
one-day-ahead prediction. Additionally, we conducted a 20-day prediction to evaluate the
performance of the long-term forecast.

Table 3. Model selection of Poisson TV-AR model for the daily new COVID-19 cases in New York
State. Each column gives the model order P and the value of the model selection criteron.

P 1 2 3 4 5

DIC 1738.540 1735.748 1783.484 1779.946 1796.255
WAIC 303.004 295.531 317.326 316.626 320.476

https://covidtracking.com
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We compare the forecast performance of four methods, where Naive denotes the naive
forecast; that is, using the previous period to forecast for the next period (carry-forward).
The average MSPE over these days is used for comparison. Table 4 presents the performance
of the rolling one-day-ahead prediction. The TV-Pois-AR forecasting outperforms the two
existing models and the Naive forecasting. Figure 7 shows an example of a 20-day forecast
of the daily new COVID-19 cases from 10/18/2020 to 11/6/2020 in New York State. The
example demonstrates how the TV-Pois-AR model captures the time-varying trend.
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Figure 5. The difference between daily new COVID-19 cases in New York State and the estimated
expected values. The black line is the difference and the grey region shows the corresponding 90%
credible intervals. The top plot shows the difference in the original scale and the bottom plot shows
the difference in the log scale.
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Figure 6. The estimated a1,t, a2,t, and σ2
t of the Poisson TV-VAR(2) model applied to daily new

COVID-19 cases in New York State from top to bottom, respectively. The grey region shows the
corresponding 90% credible intervals.

Table 4. One-step-ahead predictive performance of TV-Pois-AR(2) and other models on COVID-19
data in New York State from 7/19/2020. There are two start dates for the rolling predictions.

Model MPSE

TV-Pois-AR(2) 2.277 × 105

GLARMA(6,2) 2.363 × 105

INGARCH(1,0) 2.675 × 105

Naive 2.286 × 105
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Figure 7. The 20-day forecast of the daily new COVID-19 cases of the last 20 days in New York State.
The black overplotted points and lines are the observed daily new cases used for model fitting from
3/3/2020 to 10/17/2020. The black dots are the true daily new cases in the forecast region from
10/18/2020 to 11/6/2020. The blue line shows the 20-day forecast. The light blue region is the 90%
prediction interval.

4.2. Case Study 2: COVID-19 hospitalization in the U.S.

Since the number of daily new COVID-19 cases is no longer systematically collected
(starting from early 2022), we use the 739 daily numbers of COVID-19 patients in hospitals
in the US from 7/15/2020 to 7/23/2022 (shown in Figure 8) from Our World in Data
(https://ourworldindata.org/ (accessed on 11/29/2022)) as another data example. A TV-
Pois-AR model is applied, with the model order selected based on DIC and WAIC. By setting
a maximum order of 10, order 4 is considered the best, as shown in Table 5. To evaluate
the forecasting performance, we make a rolling one-day-ahead prediction and compare
the mean squared prediction error (MSPE), as in Case Study 1. The rolling prediction start
dates are from 8/19/2021 to 6/14/2022. We compare the forecast performance of four
methods, as in Case Study 1. Table 6 shows the rolling one-day-ahead forecast performance
of each method in terms of MSPE over the rolling observed COVID data.

Table 5. Model selection of Poisson TV-AR model for the daily COVID-19 hospitalization in the U.S.
Each column gives the model order P and the value of the model selection criteron

P 1 2 3 4 5

DIC 24,481.39 23,898.07 23,248.08 22,726.58 23,278.76
WAIC 6518.81 6190.746 5863.422 5612.337 5881.701

https://ourworldindata.org/
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Table 6. Percentage of TV-Pois-AR(4) giving better forecasts of one-step-ahead rolling predictions
on US COVID-19 hospitalization data from 11/27/2021 to 9/22/2022. The posterior medians of the
future observations are used as the forecast values.

Model MSPE

Pois-TVAR 1.51 × 106

GLARMA(6,2) 16.00 × 106

INGARCH(1,0) 11.10 × 106

Naive 3.20 × 106
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Figure 8. The daily number of COVID-19 patients in hospital in the US.

5. Discussion

We develop a novel hierarchical Bayesian model to model the nonstationary count
time-varying models and propose an efficient estimation approach using an MCMC sam-
pling scheme with embedded NUTS algorithm. We also provide a model selection method
by which to choose the discount factors and the optimal model order. The simulation
cases show that the parameter estimates have a small mean squared error that, as expected,
decreases as the sample size increases. The data example shows that the time-varying coeffi-
cients and innovation covariance can reveal the changing pattern over time. The proposed
method can be applied not only to the confirmed cases of COVID-19 but also to the number
of deaths, number of recovered cases, number of critical cases, and many other parameters
for different diseases. Such studies may provide important insights into the spread and the
measures required.

The current study is limited to univariate nonstationary count-valued time series. One
subject for future research is an extension of the model to multivariate and/or spatiotempo-
ral cases by adding some region-specific effects and jointly modeling the series in multiple
regions. Modeling multivariate count-valued time series data is an important research
topic in ecology and climatology. Moreover, regarding univariate applications on epidemic
disease data, we can consider different government interventions as covariates, which
usually have an essential impact on the spread of any infectious disease.
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Appendix A. Algorithm of Fitting Poisson TV-AR Time Series

To fit a TV-Pois-AR model, we use Gibbs sampling to generate samples from the
full conditional distribution of each of the parameters and the latent variables iteratively.
After burn-in, the sample distributions of these parameters and latent variables are the
estimated posterior distributions. These samples are generated via Gibbs sampling with
the following steps:

• Draw samples of y = (y1, . . . , yT)
′ from the full conditional distritbution p(y|z, µ, a, σ2)

∝ p(z|y, µ)p(y|a, σ2) using a No-U-Turn Sampler [17,18];
• Use the posterior means of a and σ2 obtained from the BLF (see Appendix B) as

samples, where a = (a1, . . . , aT)
′ and σ2 = (σ2

1 , . . . , σ2
T)
′;

• Draw samples of µ from the full conditional distribution p(µ|z, y) ∝ p(z|y, µ)p(µ)
using a a no-U-turn sampler.

Appendix B. Bayesian Lattice Filter

• Step 1. Repeat Step 2 for stage p = 1, . . . , P;
• Step 2. Apply the sequential filtering and smoothing algorithm (see Appendix C)

to the prediction errors of last stage, f (p−1)
t and b(p−1)

t , to obtain α̂
(p)
t = µ

(p)
t and

σ̂2(p)
t = s(p)

t of the forward and backward equations, and the forward and backward

prediction errors, f (p)
t and b(p)

t , for t = 1, . . . , T;

• Step 3. The posterior mean of at and σ2
t are α̂

(P)
t = µ

(P)
t and σ̂2(P)

t = s(P)
t obtained

from the Pth stage Step 2.

Appendix C. Sequential Filtering and Smoothing Algorithm

The filtering and smoothing algorithm can be obtained for the backward case in a
similar manner. For any series, any stage, we denote the posterior distribution at time
t as (αt|Dt) ∼ Tνt(µt, Ct), a multivariate T distribution with νt df, location parameter µt,
and scale matrix Ct, and (σ−2

t |Dt) ∼ G(νt/2, κt/2), a gamma distribution with shape
parameter νt/2 and scale parameter κt/2. These parameters can be computed for all t using
the filtering equations below. Note that we use st = κt/νt to denote the usual point estimate
of σ2

t . ft in the equation is the forward prediction error. For t = 2, . . . , T, we have

µt = µt−1 + ztet,

Ct = (Rt − ztz′tqt)(st/st−1),

and

νt = δνt−1 + 1,

κt = δκt−1 + st−1e2
t /qt,
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where

et = ft − z′t−1mt−1,

qt = z′t−1Rtz′t−1 + st−1,

and

zt = Rt ft−1/qt,

Rt = Ct−1 + Gt,

Gt = Ct(1− β)/β.

After applying the filtering equations up to T, we compute the full marginal pos-
terior distribution (αt|DT) ∼ Tνt(µt,T , Ct) and (σ−2

t |DT) ∼ G(νt,T/2, κt,T/2) through the
smoothing equations

µt,T = (1− β)µt + βµt+1,T

Ct,T = [(1− β)Ct + β2Ct+1,T ](st,T/st)

νt,T = (1− δ)νt + δνt+1,T

1/st,T = (1− δ)/st + δst+1,T

and κt,T = νt,Tst,T for t = T − 1, . . . , 1.

Appendix D. Forecasting

We can undertake h-step-ahead forecasting by following these steps.

• For stage p, compute the h-step-ahead predictive distribution of the PARCOR coef-

ficients following [26] (α(p)
p,T+h|DT) ∼ N(µ

(p)
T (h), C(p)

T (h)) where µT(h) = µ
(p)
T and

C(p)
T (h) = C(p)

T + hG(p)
T+h with G(p)

T+1 = C(p)
t (1− β)/β;

• Draw J samples of {α(p)
p,T+h, p = 1, . . . , P} from their predictive distribution;

• For stage p, compute the h-step-ahead predictive distribution of innovation variance

following [26]: (σ
2(p)
T+h|DT) ∼ G(ν

(p)
T (h)/2, κ

(p)
T (h)/2), where ν

(p)
T (h) = δhν

(p)
T and

κ
(p)
T (h) = δhκ

(p)
T ;

• For stage p, draw J samples of σ
2(p)
T+h from its predictive distribution

G(ν
(p)
k+(T−1)K(h)/2, κ

(p)
k+(T−1)K(h)/2);

• Compute the samples of the AR coefficients {a(P)
p,T+h, p = 1, . . . , P} through the

Durbin–Levinson algorithm from the samples of {α(P)
p,T+h, p = 1, . . . , P};

• The samples of yT+h are generated from its predictive distribution, such that

y(j)
T+h|y1:T , y(j)

T:(T+h−1), a(j)
T+h, σ

2(j)
T+h ∼ N(

P

∑
p=1

a(j)
p,T+hy(j)

T+h−p, σ
2(j)
T+h), j = 1, . . . , J,

where y(j)
T+h−p = yT+h−p if h− p ≤ 0;

• With the samples of µ from its posterior distribution, the samples of the h-step-ahead
forecast are drawn as

z(j)
T+h|y

(j)
T+h, µ(j) ∼ Pois(exp(y(j)

T+h + µ(j))), j =, . . . , J; (A1)

• We use the posterior median of zT+h obtained through the samples in (A1) as the
h-step-ahead forecast.
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