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Abstract: In January 2020, the world was taken by surprise as a novel disease, COVID-19, emerged,
attributed to the new SARS-CoV-2 virus. Initial cases were reported in China, and the virus rapidly
disseminated globally, leading the World Health Organization (WHO) to declare it a pandemic on
11 March 2020. Given the novelty of this pathogen, limited information was available regarding its
infection rate and symptoms. Consequently, the necessity of employing mathematical models to
enable researchers to describe the progression of the epidemic and make accurate forecasts became
evident. This study focuses on the analysis of several dynamic growth models, including the logistics,
Gompertz, and Richards growth models, which are commonly employed to depict the spread of
infectious diseases. These models are integrated to harness their predictive capabilities, utilizing
an ensemble modeling approach. The resulting ensemble algorithm was trained using COVID-19
data from the Brazilian state of Paraíba. The proposed ensemble model approach effectively reduced
forecasting errors, showcasing itself as a promising methodology for estimating COVID-19 growth
curves, improving data forecasting accuracy, and providing rapid responses in the early stages of
the pandemic.
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1. Introduction

The World Health Organization (WHO) defines a pandemic as an epidemic that occurs
worldwide, or over a very large area, affecting many people across different countries [1].
Throughout history, humanity has been confronted with numerous pandemics. The so-
called “Black Death” afflicted Europe from 1348 to 1351, resulting in the mortality of
approximately one-third of the continent’s population [2]. In the 19th century, tuberculosis,
an infection caused by the bacterium Mycobacterium tuberculosis (MTB), accounted for nearly
25% of all deaths [3]. Another significant example was the Spanish Flu pandemic, also
known as the 1918 Flu, which caused the deaths of approximately 100 million people and
infected 3% to 5% of the world population [4,5].

In January 2020, the world was caught off guard by a novel and highly transmissi-
ble disease, subsequently named COVID-19, attributable to the SARS-CoV-2 virus. This
epidemic originated in China, specifically in the city of Wuhan, toward the end of 2019,
and swiftly disseminated to other nations, formally attaining pandemic status within a few
months [6].

Scientists have determined that the novel virus has a zoonotic origin in bats, which is
recognized as a significant viral reservoir. The genetic sequence of SARS-CoV-2 exhibits a
96% similarity to the genetic sequences of other coronaviruses found in bats in China [7].
Notably, this virus exhibits higher lethality and transmissibility compared to other res-
piratory infections. It can be transmitted through airborne particles, such as respiratory
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secretions (cough and saliva), close contact with infected individuals, and the contamina-
tion of personal items [8]. Furthermore, it possesses the capability to persist on surfaces for
extended periods [9].

In Brazil, the first case of the new coronavirus was officially reported by the Ministry
of Health on 26 February 2020, in the state of São Paulo. The patient was a 61-year-old
individual with a history of recent travel to Italy [10]. On 12 March, which was fifteen
days after the confirmation of the first case in the country, the first fatality attributed to the
disease occurred. The deceased was a 57-year-old woman who had been hospitalized with
symptoms of COVID-19 one day prior to her passing [11]. Since that time, the virus has
rapidly disseminated throughout the country, leading to a significant increase in fatal cases.

In response to this situation, governors expressed significant concern with the objective
of preventing a substantial portion of the population from becoming infected simultane-
ously. This concern stemmed from the potential to overwhelm the public health system,
which could lead to a potential increase in the mortality rate due to the infection. To
mitigate the spread of SARS-CoV-2, various measures were implemented, including strin-
gent social distancing restrictions and, in many countries worldwide, the imposition of
strict lockdowns.

Since SARS-CoV-2 was a novel pathogen, there was a lack of knowledge regarding
its behavior, causing fear and concern among citizens worldwide when the pandemic was
declared. Consequently, there was an urgent need to employ tools capable of describing
the trajectory of the epidemic, assessing the impact of restrictive measures, forecasting
potential virus spread scenarios, and ultimately assisting governments in formulating
effective policies to combat COVID-19.

In this context, numerous studies utilizing epidemiological models have been under-
taken to comprehend and depict the spread of the virus. These studies involve the estima-
tion of critical epidemiological parameters, including disease transmission rates and the ba-
sic reproductive number. For instance, in the study conducted by Ospina et al. (2022) [12],
data-driven analytical tools were employed to discern shifts in the trends of COVID-19
cases and calculate the effective reproductive numbers. Furthermore, several other research
efforts have primarily focused on growth models. These models center on the examination
of the accumulation of infected cases over a defined time frame and seek to estimate the
associated growth rates.

When investigating epidemics, it is important to make predictions to better assist
authorities in decision-making, but these predictions are subject to errors. For example,
in [13], the authors examine the accuracy of autoregressive integrated moving average
(ARIMA) models, emphasizing their potential for short-term forecasting, even though they
are not best suited for long-term predictions. Hence, it would be ideal to find a model that
controls this uncertainty the best possible way. Ensemble models are pointed out in the
literature as an efficient approach in this regard and, according to [14–16], these models
allow for an easier determination of a curve that best fits the observed data.

In this study, we initially applied the logistic, Gompertz, and Richards growth models
to the data. Nevertheless, in pursuit of enhancing forecast accuracy, we employed ensemble
models with a bootstrap approach. This method involves the combination of individual
models, thereby integrating predictive precision among them, ultimately providing better
control over forecast errors.

The novelty of this research lies in several aspects. Firstly, it employs a comprehensive
analysis of COVID-19 cumulative deaths in the State of Paraíba, Brazil, during a critical pe-
riod, offering insights into the pandemic’s dynamics in a specific regional context. Secondly,
the study introduces an ensemble modeling approach, which combines multiple growth
models to enhance prediction accuracy, providing a novel solution to the challenges of fore-
casting the pandemic. This ensemble method’s application in epidemiological modeling is
innovative and can be adapted to different infectious diseases.
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2. Background

The origins of the utilization of mathematical models to describe the spread of infec-
tious diseases can be traced back to the 18th century when mathematician Daniel Bernoulli
employed differential equation models to investigate the smallpox epidemic that afflicted
Europe during that era [17]. Since then, numerous models for various infectious diseases
have been researched and put into practice.

In 1906, with the objective of comprehending the recurring patterns in the measles
epidemics, Hamer formulated the first model that took into consideration factors such as
the numbers of susceptible and infected individuals, as well as the contact rate between
them, in relation to the incidence rate [18]. In 1915, while investigating the incidence of
malaria, Ronald Ross highlighted the existence of a limiting value in mosquito density
below which malaria would naturally extinguish itself [19]. Ross’s hypothesis may have
foreshadowed the threshold theorem developed by Kermack and McKendrick in 1926 [20],
which denotes a critical density of individuals below which the entry of newly infectious
individuals is insufficient to sustain an epidemic [21,22].

In 1927, Kermack and McKendrick formulated the initial compartmental epidemio-
logical model, categorizing the population into distinct classes and employing differential
equations, known as the SIR model (susceptible-infected-removed/recovered). From the
SIR model, additional models emerged, including the SEIR model (susceptible-exposed-
infected-removed/recovered) and SIRD model (susceptible-infected-removed/recovered-
deceased) [23].

Growth and Ensemble Models in the Context of Infectious Diseases

During the 18th century, the world underwent profound transformations brought
about by the Industrial Revolution, including the rapid population growth and urban-
ization. It was in this context that the Malthusian theory emerged [24]. Formulated by
Malthus in 1798, this theory proposed that the population was growing more rapidly than
food production, leading to concerns about a global famine. Growth models, also known
as population dynamics models, analyze the rates of change in the quantities of individuals
within a specific population over time [25].

Growth models are applied in various studies to model growth curves, such as the
dynamics of dengue fever and tuberculosis [26], the description of the growth of citrus
black spot disease [27], the characterization of prostate tumor growth [28,29], and the
investigation of growth curves in animals [30–32].

Numerous recent examples of these models in the literature have been applied to
assess the impact of COVID-19. In [33], a predictive analysis of the number of confirmed
COVID-19 cases in Brazil and eight other countries was conducted using the Gompertz
growth model. Similarly, in [34], the authors utilized the Gompertz growth model to
forecast the maximum numbers of COVID-19 cases and deaths. A bi-logistic model was
employed in [35] to depict the temporal trends of COVID-19 among indigenous popu-
lations in the Brazilian states of Amapá and Pará. This model demonstrated statistical
significance and identified 12 May and 22 July as the dates when the disease decelerated in
this population. Lastly, References [36,37] employed a Richards generalized growth model
to analyze the COVID-19 epidemic curves in the cities of Recife and Teresina, Brazil.

Ensemble models are commonly found in the literature across various research fields
for data analysis. For instance, in [38], ensemble models were utilized to predict wind power
production, effectively addressing issues of overestimation that were present in individual
models, and achieving favorable results. In [39], the authors proposed an ensemble model for
predicting electrical demand across the four Brazilian sub-systems. A Bayesian ensemble of
models was employed in [40] to generate predictions for death rates and life expectancy.

In the realm of medical research, Reference [41] employed five machine learning models
and an ensemble of these models to evaluate the performance of traditional scores in the
European System for Cardiac Operative Risk Evaluation. The study concluded that the
ensemble model exhibited improved accuracy, enhancing decision curve analysis by 1–6%.
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In epidemiological studies, Reference [42] adopted a Bayesian ensemble approach to
forecast epidemiological curves. Similarly, in [43], three distinct prediction systems for
dengue fever outbreaks in San Juan, Puerto Rico, were developed, and an ensemble of these
predictions was created using Bayesian averaging methods. This research demonstrated
that the combined predictions yielded greater precision compared to those generated by
individual approaches.

3. Growth Models and Ensemble Algorithm

Nonlinear growth models are employed to estimate growth rates and have broad
applications in various fields, including economics, animal nutrition, the study of infectious
diseases, among others. Unlike the SIR compartmental model, growth models rely on
the cumulative number of infected cases, which encompasses the sum of the infected and
recovered compartments of the SIR model. These models are applied to analyze population
growth, specifically to investigate the behavior of S-shaped cumulative curves.

The ensemble models of [44,45] have excelled due to their robustness in prediction
and forecasting processes [46,47]. This approach combines the advantages of many models
instead of choosing the best model according to some selection criterion [44]. One of the
advantages is the reduction in prediction and forecasting errors [48]. In [16], the authors
presented an ensemble model based on bootstrapping that aims to improve precision
performance by systematically integrating the predictive precision of each model. This
methodology is employed to forecast the evolution of a dynamical growth process defined
by a system of nonlinear differential equations, producing more accurate solutions.

The analysis of nonlinear models depends on an iterative process to find solutions to
equations because, unlike the linear case, it is generally not possible to find them analytically.
The iterative process begins with initial parameter values and calculates the residual sum
of squares (RSS) based on these values. The parameters are continuously adjusted until the
RSS is minimized.

3.1. Gompertz Model

To describe the growth of solid tumors, mathematician Benjamin Gompertz developed an
equation in 1938, now known as the Gompertz equation [49,50]. Gompertz observed that, in
his model, the growth rate is higher in the earlier stages of the process and rapidly transitions to
slower growth. This model is widely applied to describe the general growth of cells, including
plants, bacteria, and tumors [51]. The Gompertz equation is expressed as follows:

dC
dt

= γ ln
(

K
C

)
, (1)

Here, C represents the cumulative total of cases, K denotes the maximum number of
cumulative cases or the final size of the epidemic, and γ is the intrinsic per capita growth
rate of the infected population.

After solving this ordinary differential equation (ODE), one obtains

C(t) = Ke−e−γt ln K
C0 , (2)

where C(t) represents the quantity of cumulative cases at time t. In this model, the growth
is typically smaller in the early and later stages of the outbreak [52].

3.2. Exponential Model

The exponential model, developed by Thomas Robert Malthus in 1798 [53], assumes
that the rate of change of a quantity C at time t is directly proportional to C. The exponential
model is described by

dC
dt

=
γ

N
C,
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where γ represents the exponential growth rate, N is the population size, and C(t) repre-
sents the cumulative number of cases at time t. Equation (3) provides the solution to this
ordinary differential equation.

C(t) = C0e
γ
N t, (3)

where C0 = C(0) is the initial number of cases.

3.3. Logistic Model

Mathematician Pierre F. Verhulst proposed a model in 1837 that presumed a population
could grow until it reaches its maximum limit, at which point it stabilizes. In this model, the
population’s effective growth rate varies with time [54]. This model serves as an alternative
to the exponential growth model, where the growth rate remains constant, and there are no
constraints on population growth [55]. The logistic model is described by the following
differential equation:

dC
dt

= γC(1− C
K
), (4)

where γ, C, and K have the same interpretations presented in the Gompertz model. The
solution of this ODE is given by Equation (5) below

C(t) =
K

1 +
(

K
C0
− 1
)

e−γt
. (5)

3.4. Richards Model

The Richards model [56] extends the logistic model by introducing a third parameter,
α, which quantifies the deviation from the growth curve. Proposed by Richards in 1959, this
model was initially developed to describe the growth of fish populations and represents a
generalization of the von Bertalanffy model [57]. The Richards equation is expressed as the
following differential equation:

dC
dt

= γC
(

1− C
K

) 1
α

. (6)

After solving this ODE, we obtain the Richards model, as shown in Equation (7):

C(t) = K

(
1− eαγt

(
1−

(
C0

K

)−α
))− 1

α
. (7)

Here, K represents the final size of the epidemic, γ is the growth rate, C0 is the number
of cases at the onset of the epidemic, and α is the shape parameter that governs the curvature
of the curve. When α = 1, Equation (6) reduces to Verhulst’s logistic growth model [54]
given in (4).

The introduction of the shape parameter in this model provides greater flexibility in
selecting the curve’s shape. The model assumes that the daily incidence curve exhibits a
unique peak of high incidence, which corresponds to the inflection point of the epidemic,
marking the transition from increasing to decreasing accumulation rates or vice versa.
These inflection points can be determined by observing when the epidemic curve begins to
decline [58]. The inflection point Ninf for this model is a function of α and K and is given by

Ninf =

(
1

1 + α

) 1
α

K.

This quantity holds significant relevance in epidemiology, as it indicates the begin-
ning or end of a phase, representing the moment of acceleration after deceleration or
vice versa [58].
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3.5. Performance Metrics

The performance of a particular model can be evaluated using various metrics, in-
cluding the adjusted coefficient of determination R2, the mean square error (MSE), and the
absolute square error (ASE). These performance criteria all share the common characteristic
of considering the model’s residuals, which indicate how closely the fitted results align
with the data.

The determination coefficient R2, also known as the square of Pearson’s correlation
coefficient, is a widely used performance metric in the literature for assessing the quality
of a model’s fit to the data. This coefficient ranges from 0 to 1, and the closer it is to 1,
the better the fit. This implies that the model can effectively explain most of the response
variables [59,60]. The calculation of R2 requires the residual sum of squares (RSS) and the
total sum of squares (TSS) as inputs, which are defined as

RSS =
n

∑
i=1

(yi − ŷi)
2

and

TSS =
n

∑
i=1

(yi − ȳ)2 ,

respectively. Here, n is the number of observations, yi represents the i-th observed value, ŷi
is the i-th fitted value, and ȳ is the mean of all the observations. The adjusted coefficient of
determination is then calculated as

R2 = 1− RSS
TSS

.

The mean absolute error (MAE) is calculated as the average of the absolute differences
between the actual parameters and their estimated values. Similarly, the mean square error
(MSE) is determined as the average of the squared differences between these values, as
expressed in Equations (8) and (9), respectively.

MAE =
1
n

n

∑
i=1
| yi − ŷi | (8)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

The IFMS (interval forecast mean score) assesses the width of the forecast interval by
taking into account forecast uncertainty. This is different from metrics such as MAE, MSE,
and R2, which primarily focus on the discrepancies between the model and the data [61].
The IFMS is calculated as follows:

IFMS =
1
h

h

∑
i=1

[
(Uti − Lti) +

2
0, 05

(Lti − yti)I{yti < Lti}
2

0, 05
(yti −Uti)I{yti > Uti}

]
,

where Lti and Uti are, respectively, the lower and upper bounds of the forecast interval at
time t at 95% confidence and I{·} is an indicator function.

3.6. Ensemble Method

The ensemble approach combines the strengths of multiple models through a weighted
average, essentially creating a linear combination of nonlinear models. Numerous meth-
ods for constructing ensemble models exist in the literature, including neural networks,
Bayesian averaging, among others [62]. However, the method described here is based on
the weighted combination of individual models, as proposed in [16].

Indeed, we can consider a set of I parametric models, such as
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I = {Gompertz, Exponential, Logistic, Richards} = { f1(t, θ1), f2(t, θ2), f3(t, θ3), f4(t, θ4)}, (10)

where θi represents the parameters that describe the i-th model. Using the training dataset,
the parameter set, and the average ensemble incidence curve for each model i, estimated
for i = 1, . . . , I, we calculate the weight wi of each model based on the quality of its fit. The
quality is assessed using metrics like the mean square error (MSE) or other criteria such as
the AIC. In this work, we use MSE to evaluate the quality of the fit. Therefore, the weight
for each model is computed as follows:

wi =

1
MSEi

1
MSE1

+ 1
MSE2

+ . . . + 1
MSEI

, i = 1, . . . , I,

where

MSEi =
1
n

n

∑
j=1

( fi(tj, θ̂i)− ytj)
2,

with the constraint that ∑I
i=1 wi = 1, ensuring a convex linear combination of models.

If fi(tj, θ̂i) represents the fitted curve by the i-th model, the average incidence curve of the
ensemble model is given by

fens(t) =
I

∑
i=1

wi fi(t, θ̂i).

In the context of this work, it can be assumed that the observed data (cases) follow a
probabilistic structure, which adheres to a Poisson distribution [16] with a mean of fens(t).
To obtain a 95% confidence interval (or forecast interval) for the incidence curve at time t,
the parametric bootstrap method can be employed. To do this, consider that the training
sample consists of n data points: t1, t2, . . . tn. A bootstrap sample is created by generating
a random variable yi from the Poisson distribution with a mean of fens(tj) for each data
point tj, where j = 1, 2, . . . , n:

yj ∼ Poisson( fens(tj)), j = 1, 2, . . . , n.

Therefore, {y1, y2, . . . , yn} forms a bootstrap sample. This sample is then used to refit
each of the I models, calculate weights for each refitted model, estimate parameters, and
generate forecasts for the ensemble model. By repeating this process B times, it becomes
possible to construct a 95% confidence interval (or forecast interval) based on the 2.5th and
97.5th percentiles.

As an example, consider four individual models given in (10) from which we will
build the ensemble model. Assume n = 100, which corresponds to 100 time points. Here is
the step-by-step process:

1. Fit each of the four models to the original series and estimate the parameters;
2. Calculate the MSE of each model and find the corresponding weight wi based on

the MSE;
3. Find the ensemble average incidence curve

fens(t) =
4

∑
i=1

wi fi(t, θ̂i);

4. Assume that the data follow a Poisson distribution with mean fens(t), to build a 95%
confidence interval (or forecast interval) for the incidence curve at time t using the
parametric bootstrap method;

5. Generate a random variable yj for the incidence at each point tj, j = 1, . . . , 100 via the
Poisson distribution with mean fens(tj), i.e.,

yj ∼ Poisson( fens(tj)), j = 1, . . . , 100;
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6. Repeat the process described in the previous step B times to generate B bootstrap
replicas and construct the confidence interval;

7. Refit the I growth models for each replica, calculate the respective MSEs and weights
of the refit models, and construct the prediction and forecast intervals for each one;

8. Obtain B ensemble mean incidence curves using the process described in the previous
item, calculate the MSE, and build confidence intervals for each of these mean curves.

4. Results

The exponential, Gompertz, logistic, and Richards models were fitted to the COVID-19
data from the State of Paraíba, Brazil, to study the disease’s growth rates in the State.
Subsequently, an ensemble model was constructed using the results from these individual
models to produce forecasts ranging from 15 to 30 days ahead. Confidence intervals were
also established for each forecasting approach.

The first confirmed COVID-19 case in the State of Paraíba was reported on 18 March
2020. This case involved a 60-year-old man from João Pessoa, who had returned from a trip
to Europe on 29 February. Following this initial case, the virus began to spread throughout
the State. In response, the Government of Paraíba declared a state of emergency to prevent
and combat the pandemic.

Given that the under-reporting of deaths due to COVID-19 is typically less severe than
the under-reporting of cases (as case reporting often depends on testing availability), this
study utilizes the cumulative death curve attributed to the disease in the State of Paraíba.
The first COVID-19-related death in Paraíba was recorded on 31 March 2020, exactly 14 days
after the first confirmed case in the State. The deceased individual was a 36-year-old man
with diabetes residing in the city of Patos, located in the Sertão region of the State. This
man exhibited initial symptoms on 25 March, just six days prior to his passing.

The scope of the pandemic period analyzed in this study encompasses the year 2020, as
2021 was marked by a second wave of the outbreak. Figure 1 illustrates the daily number of
COVID-19 deaths in Paraíba, commencing from the first recorded death until 31 December
2020. Notably, the highest death counts occurred on 25 May and 5 June.

Following this, four growth models were fitted, and an ensemble model was con-
structed to analyze the death curve in Paraíba and the associated growth rates. The model
fitting process considered data spanning from 31 March to 16 December, encompassing a
total of 261 days, with the last 15 days of the year reserved for forecasting 15 days ahead.
The selected individual models included the exponential, logistic, Gompertz, and Richards
growth models.

Figure 1. Epidemic curve for Paraíba, Brazil, with temporal evolution of recorded daily COVID-19
deaths during epidemic up to 31 to December 2020 (First wave).
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Figure 2 visually compares the observed cumulative data curve (in orange) with
the fitted curve generated by the exponential model (in red). It is evident that the expo-
nential model does not align well with the data, as its curve exhibits a notably different
behavior. This discrepancy is likely due to the fact that genuine exponential growth is
unattainable in reality, as it would result in unbounded growth, while the total population
is inherently limited.

Figure 2. Daily cumulative incidence of death counts and exponential model fit.

Figure 3 presents the fitted curves generated by the logistic, Gompertz, and Richards
models, alongside the cumulative death count reported by the Health Ministry. Addition-
ally, 15-day forecasts were produced for each of these models, with a vertical dashed line
indicating the point from which the forecasting starts, relative to 17 December 2020. Upon
observing the behavior of these curves, it becomes evident that both the Gompertz and
Richards models offer a better fit to the data compared to the logistic model. However,
when it comes to forecasting, all three models consistently underestimate the observed
death curve. These plots highlight a significant change in the death curve’s behavior just
prior to 17 December, making accurate forecasting challenging.

Figure 3. Daily cumulative incidence of deaths counts and logistics, Gompertz, and Richards model fit.

From the fitted growth models, the ensemble model was constructed using the logistic,
Gompertz, and Richards models (excluding the exponential model due to its drastically
different behavior compared to the data). To create the ensemble model, we calculated the
weighted average curve for the growth models based on the mean square error. Next, we
generated one thousand (1000) bootstrap replicates using the ensemble model, assuming a
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Poisson distribution as the counts structure for the weighted average. For each of these
replicates, we performed the following steps:

1. Reconstructed the 95% confidence intervals.
2. Refitted the logistic, Gompertz, and Richards models.
3. Built an ensemble model for each replica.
4. Calculated a new ensemble average curve using the models refitted to the replicas.

Thiscomprehensive process allowed us to generate a robust ensemble model and
assess its performance under various conditions and uncertainties.

Table 1 provides the estimated parameters for each growth model and the ensemble
model. These parameters include the final size of the pandemic (K), the growth rate (γ),
the shape parameter (α), and the corresponding standard errors. Additionally, the table
displays the weights assigned to each model based on the mean square error, as explained
in Section 3. The Gompertz model carries the highest weight in the ensemble model due to
its lower mean square error (MSQ) compared to the logistic and Richards models. However,
the logistic model receives a relatively small weight. Regarding the growth rates, the
logistic model estimates a 3.99% growth rate, while the Gompertz model estimates a 1.73%
growth rate. In contrast, the Richards model estimates a high growth rate of 8%. The
ensemble model’s estimated growth rate falls in between, at 3.54%.

Table 1. Estimated parameters by growth model and ensemble model.

Model K S.E.(K) γ S.E.(γ) α S.E.(α) Weight

Logistic 3550 0.1056 0.0399 4.3107× 10−6 − − 0.0329

Gompertz 3700 0.2182 0.0173 2.3139× 10−6 − − 0.6902

Richards 3672 0.2937 0.0800 5.7843× 10−4 0.2585 0.0006 0.2769

Ensemble 3687 0.2354 0.0354 1.6191× 10−4 − − 1

For comparative purposes, we also generated 1000 replicas of the Gompertz, logistic,
and Richards models to build the respective confidence intervals and calculate the interval
forecast mean score (IFMS). Table 2 presents forecast performance metrics for each model:
the determination coefficient R2, the mean absolute error (MAE), the mean square error
(MSE), and the IFMS with a 95% confidence level for the cumulative number of deaths. The
results indicate that the logistic model had a smaller determination coefficient, with larger
MAE and MSE compared to the other models, consistent with the observations in Figure 3
and the weights assigned to this model (Table 1). The Gompertz, Richards, and ensemble
models showed high determination coefficients (above 0.99), indicating a good fit to the
data. Notably, the Gompertz model had the smallest MAE and MSE, outperforming even
the ensemble model. Additionally, the confidence intervals constructed using the Gompertz
and ensemble models exhibited the smallest IFMS, indicating superior performance in
these intervals.

Table 2. Determination coefficient, mean absolute error, mean square error, and interval forecast
mean score to assess forecast performance.

Model R2 MAE MSE IFMS

Logistic 0.9614 205.8528 59,393.680 5640

Gompertz 0.9982 46.1195 2831.737 205.9703

Richards 0.9955 71.0488 7058.065 608.7089

Ensemble 0.9963 52.0208 3914.654 234.8977
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Table 3 displays forecast performance metrics and IFMS for each model. The results
indicate that the logistic and Richards models exhibited better fitting performance as
measured by MAE and MSE. Additionally, these models had the smallest IFMS, indicating
superior interval estimation performance. In Figure 4, you can see a comparison between
the curve fitted by the ensemble model using the original data and the average ensemble
curve for the 1000 replicas. It is evident that the ensemble curve and the average ensemble
curve for the replicas are very close and fit the data well. However, there is a noticeable
deviation in the predictions after the month of October and in the forecast. This difficulty
in forecasting deaths may be attributed to the sudden change in the curve toward the end
of 2020.

Figure 4. Daily cumulative incidence of death counts, ensemble model, and average of the ensemble
models based on replicas.

Table 3. Mean absolute error, mean square error, and interval forecast mean score to assess the
forecast performance.

Model MAE MSE IFMS

Logistic 55.6799 4860.5070 278.7717

Gompertz 106.8016 12,591.6100 642.5833

Richards 69.2534 6162.4490 270.2633

Ensemble 73.2892 6629.3380 293.6600

Figure 5 provides a visual representation of the 95% confidence interval constructed
for the cumulative number of deaths using the ensemble model. The vertical line marks
the starting point of the forecast. It is evident that the interval has a small width, indicating
good precision in the interval estimation. While there are a few data points outside the
interval boundaries, the distance between these points and the interval is not substantial.
Overall, the interval appears to satisfactorily capture the observed death curve.

After generating the ensemble model replicas, the growth models were refitted to
each of the 1000 replicas, resulting in 1000 fitted curves for each of the three models.
Subsequently, the MSE, MAE, and model weights were recalculated for each replica, and
an ensemble curve was constructed for each of them. Table 4 presents the means of the
estimates obtained from these fittings, including the final size of the pandemic K, growth
rate γ, shape parameter α, their respective standard errors, and the weights of each model.
Notably, the estimates for the final size of the pandemic and the growth rate for the ensemble
model were slightly larger than those in Table 1. This variation is due to changes in the
weights assigned to the growth models. The weight for the Gompertz model decreased
from 0.6902 (Table 1) to 0.5649, while the weight of the Richards model increased from
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0.2669 to 0.4123. The estimated growth rate was 4.35%, slightly higher than that found for
the model with a direct fit to the data.

Figure 5. Daily cumulative incidence of death counts and ensemble model. The shaded region
indicates the 95% uncertainty intervals.

Table 4. Replicates: Parameter estimates for each growth model and the ensemble model.

Model K S.E.(K) γ S.E.(γ) α S.E.(α) Weight

Logistic 3550 0.1078 0.0274 2.7990× 10−6 − − 0.0228

Gompertz 3730 0.2188 0.0175 2.4002× 10−6 − − 0.5649

Richards 3672 0.2935 0.0801 1.5098× 10−4 0.2586 5.7834× 10−4 0.4123

Ensemble 3702 0.2471 0.0435 6.3664× 10−5 − − 1

Table 5 presents the mean performance metrics obtained from the refitted models.
These metrics include the determination coefficient R2, MAE, and MSE. To calculate the
MSE for the ensemble model, each growth model’s weight was multiplied by the respective
MSE for the b-th replica, where b = 1, 2, . . . , 1000. The average of these MSE values was
then computed. The same process was applied to calculate the determination coefficient
and MAE. The high MSE value for the logistic model resulted in a significantly lower
weight compared to the Gompertz and Richards models. Additionally, it is worth noting
that the models refitted to the replicas exhibited a lower average MSE compared to the
models fitted directly from the data, including the ensemble model.

Table 5. Ensemble replicas results: determination coefficient, mean absolute error, and mean square
error to assess the prediction performance.

Model R2 MAE MSE

Logistic 0.9707 206.7985 45,501.1777

Gompertz 0.9988 48.2287 1846.1060

Richards 0.9984 71.0308 2528.5940

Ensemble 0.9979 61.2420 3123.2370

Table 6 provides the average values of MAE and MSE for the forecasts produced by
fitting the models to the 1000 replicas. The Gompertz model showed the highest MAE and
MSE values, contrary to the results observed in the predictions.
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Table 6. Ensemble replicas results: mean absolute error and mean square error to assess the forecast
performance.

Model MAE MSE

Logistic 56.2020 4950.2090

Gompertz 74.5657 6830.1650

Richards 65.9720 5740.0720

Ensemble 70.6751 6349.1710

It is evident that the forecasts generated by the growth models and the ensemble
model did not perform well. Despite the second wave of COVID-19 occurring in 2021, it is
noticeable in Figure 1 that the number of deaths began to increase again around November
and December 2020. Consequently, the ensemble model was fitted to the data of registered
deaths until 30 September 2020, and forecasts of 15 and 30 days ahead were carried out.

Table 7 provides the results for each growth model, as well as the ensemble model.
Among the three growth models, the Richards model had the largest weight in the construction
of the ensemble model, which estimated that the growth rate in Paraíba is approximately
8.3%, with a final number of deaths in the state projected to be 3281. (Using the official data,
the model estimated that the pandemic would end around 27 November 2020).

Table 7. Estimated parameters for each growth model and the ensemble model for the number of
registered deaths due to COVID-19 in Paraíba until 30 September.

Model K S.E.(K) γ S.E.(γ) α S.E.(α) Weight

Logistic 2775 0.2019 0.0458 8.1582× 10−6 − − 0.0380

Gompertz 3444 0.5655 0.0203 5.1910× 10−6 − − 0.2765

Richards 3244 0.8318 0.1102 3.9789× 10−4 0.2239 9.7707× 10−4 0.6855

Ensemble 3281 0.7342 0.0829 2.7450× 10−4 − − 1

Tables 8 and 9 display the performance metrics for the predictions and the 15-day
ahead forecasts. The determination coefficient suggests that all four models provide a
satisfactory fit to the data. The Richards and ensemble models outperformed the others in
terms of MAE and MSE for both predictions and 15-day ahead forecasts, which aligns with
the higher weight assigned to the Richards model. It is worth noting that the ensemble
model exhibited superior forecast performance compared to the individual models.

Table 8. Performance metrics of the predictions for each model fitted to the registered number
of deaths up to 30 September 2020: determination coefficient, mean absolute error, and mean
square error.

Model R2 MAE MSE

Logistic 0.9970 43.7131 3003

Gompertz 0.9996 17.1538 412

Richards 0.9998 9.7566 166

Ensemble 0.9997 10.4711 183
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Table 9. Performance metrics of the forecasts for each model fitted to the registered number of deaths
up to 30 September 2020: determination coefficient, mean absolute error, and mean square error.

Model MAE MSE

Logistic 181.4285 33,874

Gompertz 25.9068 698

Richards 9.7615 160

Ensemble 7.0135 75

Figure 6 presents the death curve simulated by the ensemble model and the 15- and
30-day ahead forecasts. The model fits the data perfectly and generates excellent forecasts
in both cases. Therefore, it is evident that using data up to the point where the real curve
started to accelerate again resulted in better prediction and forecast performance.

(a) 15 days ahead forecast.

(b) 30-day ahead forecast.

Figure 6. Daily cumulative incidence of death counts and ensemble model.

Figure 7 displays the confidence interval produced by the ensemble model for the
number of registered deaths up to 30 September and the 30-day ahead forecast. The
interval performs exceptionally well and closely aligns with the death curve provided by
the Ministry of Health.
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Figure 7. Daily cumulative incidence of death counts up to 30 September 2020 and ensemble model.
The shaded regions indicate the 95% uncertainty intervals.

5. Conclusions

In the early stages of the pandemic, when our understanding of SARS-CoV-2 was
limited, numerous scientific studies emerged to address the challenges posed by COVID-19.
Among these challenges, the under-reporting of cases has been a significant concern,
prompting researchers to explore alternative approaches. To enhance our data analysis, we
focused on cumulative death numbers, which offer more stability than daily death counts
and are less reliant on the notification of infected cases.

In our study, we employed the logistic, Richards, and Gompertz models to fit COVID-19
death data spanning from March to December 2020. These models were then used to construct
an ensemble model. The logistic model exhibited poor performance in fitting the data, while
the Richards and Gompertz models displayed better predictive capabilities. However, despite
their strong fit to historical data, these models struggled to provide precise forecasts. This
challenge became particularly evident in November 2020 when the death curve displayed an
unexpected upward trend that the models could not anticipate.

In light of the challenges faced by the individual growth models in accurately fore-
casting the COVID-19 death data, we turned to the development of an ensemble model.
This ensemble approach demonstrated remarkable prediction performance and generated
forecasts that closely resembled those produced by the growth models.

It is worth noting that, although the second wave of COVID-19 in Brazil emerged in
2021, there was already an acceleration in the number of deaths during the later months
of 2020. As a result, we trained the models using data up to 30 September and conducted
forecasts for 15 and 30 days ahead. The ensemble model outperformed the individual
growth models in both prediction and forecasting, proving its effectiveness in modeling a
single wave of COVID-19 data.
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