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Abstract: The new Ristić and Balakhrisnan or Gamma-Topp-Leone-Type II-Exponentiated Half
Logistic-G (RB-TL-TII-EHL-G) family of distributions is introduced and investigated in this paper.
This work derives and studies some of the main statistical characteristics of this new family of distri-
butions. The maximum likelihood estimation technique is used to estimate the model parameters,
and a simulation study is used to assess the consistency of the estimators. Applications to three
real-life datasets from various fields show the value and adaptability of the new RB-TL-TII-EHL-G
family of distributions. From our results, it is evident that the new proposed distribution is flexible
enough to characterize datasets from different fields compared to several other existing distributions
in the literature.

Keywords: gamma generator; Topp-Leone distribution; type II distribution; exponentiated-G distribution;
half logistic distribution; likelihood function; goodness-of-fit statistics

1. Introduction

Probability distributions play an important role in statistical modeling and analysis
in different fields including engineering, medicine, and life sciences. However, classical
lifetime distributions such as the exponential distribution, Rayleigh distribution, Pareto
distribution, and Weibull distribution have a limited range of behavior when it comes
to modeling new varieties of real datasets. Hence, researchers have been increasingly
interested in generating new families with high flexibility to act as alternatives to avail-
able distributions. Some of the newly generated distributions in the literature include the
following: the extended exponential-Weibull distribution by [1], the beta Burr-type X distri-
bution by [2], theheavy-tailed log-logistic distribution by [3], the half-Cauchy generalized
exponential distribution by [4], the novel alpha power Gumbel distribution by [5], the
Weibull-G family of probability distributions by [6], the type II quasi-Lambert-G family
of probability distributions by [7], the novel-G family of distributions by [8], thePoisson
reciprocal Rayleigh family of distributions by [9], a quasi-Poisson Topp-Leone generated-G
family of distributions by [10], the Poisson generated family of distributions by [11], the
Gompertz-G family of distributions by [12], the exponentiated Weibull-H family of distribu-
tions by [13], the power Lindley-G family of distributions by [14], the Marshall-Olkin odd
power generalized Weibull-G family of distributions by [15], the exponential T-X family of
distributions by [16], the type II exponentiated half logistic Topp-Leone-Marshall-Olkin-G
family of distributions by [17], the type II exponentiated half logistic generated family of
distributions by [18], type II exponentiated half logistic-Topp-Leone-G power series class
of distributions by [17], the type II half logistic exponential distribution by [19], and the
type II exponentiated half logistic-Gompertz Topp-Leone-G family of distributions by [20],
to mention a few.

The gamma transformation has been used to extend various distributions available
in the literature. The following are some generated distributions via the gamma trans-
formation: the unit gamma-G class of distributions by [21], the Zografos-Balakrishnan-G

Stats 2023, 6, 706–733. https://doi.org/10.3390/stats6020045 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats6020045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0002-9945-2255
https://orcid.org/0000-0002-2676-7694
https://doi.org/10.3390/stats6020045
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats6020045?type=check_update&version=1


Stats 2023, 6 707

family of distributions by [22], the gamma odd power generalized Weibull-G family of
distributions by [23], the gamma-generalized inverse Weibull distribution by [24], the
Ristić and Balakrishnan Lindley-Poisson distribution by [25], the gamma odd Burr III-G
family of distributions by [26], the Zografos-Balakrishnan Burr XII distribution by [27],
the Zografos-Balakrishnan Lindley distribution by [28], the gamma odd Burr X-G family
of distributions by [29], the gamma Lindley distribution by [30], the gamma Weibull-G
family of distributions by [31], the gamma Kumaraswamy-G family of distributions by [32],
the gamma extended Weibull family of distributions by [33], and the gamma-Rayleigh
distribution by [34], to mention a few.

Our basic motivations lie in the flexibility of the new family of distributions to model
both monotonic and non-monotonic hazard rate functions by capturing different shapes;
the ability of the new model to provide better fits than the baseline and several extended
distributions available in the literature; and the applicability of the special cases of the new
family of distributions in real-life scenarios. Another interesting part is the role played by
the extra shape parameter(s) by introducing skewness and modulating the weight of the
tails of any baseline distribution.

Throughout this paper, we will set

KG

(
x; a, ψ

)
=

(
1− G(x; ψ)

1 + G(x; ψ)

)2a

.

The cumulative distribution function (cdf) and probability density function (pdf) of the
new Topp-Leone-type II exponentiated half logistic-G family of distributions are given by

F(x; b, a, ψ) =
[
1− KG

(
x; a, ψ

)]b

and

f (x; b, a, ψ) = 4ab
[
1− KG

(
x; a, ψ

)]b−1(
1− G(x; ψ)

)2a−1

×
g(x; ψ)[

1 + G(x; ψ))
]2(a+1)−1

,

for b, a > 0 and baseline parameter vector ψ (see [35] for additional details).
The gamma generator proposed by [36] has the cdf and pdf given by

FRB(x; δ) = 1− 1
Γ(δ)

∫ − log(G(x))

0
tδ−1−tdt, δ > 0

and
fRB(x; δ) =

1
Γ(δ)

[− log(G(x))]δ−1g(x), x ∈ R,

where G(x) is the baseline cdf and δ > 0 is a shape parameter.
This article is structured as follows: Section 2 presents the proposed family and its

sub-families. Section 3 contains the linear representation of the pdf of the RB-TL-TII-EHL-G
family of distributions, the reliability function and the quantile function. We derive some of
the statistical and mathematical properties under Section 4. Monte Carlo simulation results
are given in Section 5. Some of the special cases are presented under Section 6. In Section 7,
we present results on applications using real-life data to demonstrate the applicability and
flexibility of the fitted model, and finally, we give concluding remarks under Section 8.
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2. Gamma-Topp-Leone-Type II-Exponentiated Half Logistic-G (RB-TL-TII-EHL-G)
Distribution

In this section, we introduce the new family of distributions with the cdf and pdf
given by

FRB−TL−TII−EHL−G (x; δ, a, b, ψ) = 1− 1
Γ(δ)

∫ − log
(
[1−KG(x;a,ψ)]

b)
0

tδ−1−tdt

= 1−
γ

(
δ,− log

([
1− KG

(
x; a, ψ

)]b
))

Γ(δ)
, (1)

and

fRB−TL−TII−EHL−G (x; δ, a, b, ψ) =
4ab
Γ(δ)

[
− log

([
1− KG

(
x; a, ψ

)]b
)]δ−1

×
[
1− KG

(
x; a, ψ

)]b−1(
1− G(x; ψ)

)2a−1

×
g(x; ψ)[

1 + G(x; ψ))
]2(a+1)−1

, (2)

for δ, a, b > 0 and parameter vector ψ. The parameters δ, a and b are shape parameters. The
pdf helps us visualize shape and characteristics of the distribution, while the cdf provides a
more inclusive view of probabilities and allows for various calculations and comparisons.
We set FRB−TL−TII−EHL−G (x; δ, a, b, ψ) = F(x; δ, a, b, ψ) and fRB−TL−TII−EHL−G (x; δ, a, b, ψ) =
f (x; δ, a, b, ψ), respectively.

Sub-Families

• When δ = 1, we obtain the Topp-Leone-Type II-Exponentiated Half Logistic-G (TL-
TII-EHL-G) family of distributions with the cdf

F(x; b, a, ψ) =
[
1− KG

(
x; a, ψ

)]b
,

for a, b > 0, and parameter vector ψ (see [35]).
• When a = 1, we obtain the Gamma-Topp-Leone-Type II-Half Logistic-G (RB-TL-TII-

HL-G) family of distributions with the cdf

F(x; δ, b, ψ) = 1−

γ

δ,− log

[1−
(

1−G(x;ψ)
1+G(x;ψ)

)2
]b


Γ(δ)
,

for δ, b > 0, and parameter vector ψ. This is a new family of distributions.
• When b = 1, we obtain the Gamma-Type II-Exponentiated Half Logistic-G (RB-TII-

EHL-G) family of distributions with the cdf

F(x; δ, a, ψ) = 1−
γ
(

δ,− log
([

1− KG

(
x; a, ψ

)]))
Γ(δ)

,

for δ, a > 0, and parameter vector ψ. This is a new family of distributions.
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• When a = b = 1, we obtain the Gamma-Type II-Half Logistic-G (RB-TII-HL-G) family
of distributions with the cdf

F(x; δ, ψ) = 1−
γ

(
δ,− log

([
1−

(
1−G(x;ψ)
1+G(x;ψ)

)2
]))

Γ(δ)
,

for δ and parameter vector ψ. This is a new family of distributions.
• When δ = a = 1, we obtain the Topp-Leone-Type II-Half Logistic-G (TL-TII-HL-G)

family of distributions with the cdf

F(x; b, ψ) =

1−
(

1− G(x; ψ)

1 + G(x; ψ)

)2
b

,

for b > 0 and parameter vector ψ. This is a new family of distributions.
• When δ = b = 1, we obtain the Type II-Exponentiated Half Logistic-G (TII-EHL-G)

family of distributions with the cdf

F(x; a, ψ) = 1− KG

(
x; a, ψ

)
,

for a > 0 and parameter vector ψ (see [18]).
• When δ = a = b = 1, we obtain the new family of distributions with the cdf

F(x; ψ) = 1−
(

1− G(x; ψ)

1 + G(x; ψ)

)2

,

for parameter vector ψ.

3. Expansion of Density Function

In this section, we will derive the series expansion of the density function. Let

y = KG

(
x; a, ψ

)
, and consider the series expansion (− log(1− y)) = ∑∞

i=0
yi+1

i + 1
and the

following generalized binomial series expansion

(1 + z)−t =
∞

∑
k=0

(−1)k
(

t + k− 1
k

)
zk for |z| < 1, and t > 0,

and using the results on power series raised to a positive integer, by setting as =
1

s+2 , that
is (∑∞

s=0 asys)m = ∑∞
s=0 bs,mys, we obtain[

− log
([

1− KG

(
x; a, ψ

)]b
)]δ−1

= bδ−1yδ−1

[
∞

∑
m=0

(
δ− 1

m

)
ym

(
∞

∑
s=0

ys

s + 2

)m]

= bδ−1yδ−1

[
∞

∑
m=0

(
δ− 1

m

)
ym

∞

∑
s=0

bs,mys

]

= bδ−1

[
∞

∑
m,s=0

(
δ− 1

m

)
bs,mym+s+δ−1

]
,

(see [37] for details), where bs,m = (sa0)
−1 ∑s

l=1[m(l + 1)− s]albs−l,m, b0,m = am
0 . The pdf

of RB-TL-TII-EHL-G distribution can now be written as

f (x; δ, a, b, ψ) =
∞

∑
v=0

ωv+1gv+1(x; ψ), (3)
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(see Appendix A section for details of the derivation), where

ωv+1 =
4ab
Γ(δ)

bδ−1
∞

∑
m,s,i,j,k,h=0

(
δ− 1

m

)(
b− 1

i

)
bs,m(−1)i+j+p+v

×
(

2a[(m + s + δ) + i]− 1
j

)(
2a[(m + s + δ) + i] + k

k

)
×

(
j + k

h

)(
h
v

)
1

v + 1
,

(4)

and gv+1(x; ψ) = (v + 1)Gv(x; ψ)g(x; ψ) is the exponentiated-G (Exp-G) pdf with power
parameter (v + 1). Consequently, the mathematical and statistical properties of the RB-
TL-TII-EHL-G family of distributions follow directly from those of the Exp-G family of
distributions.

Reliability, Hazard Rate and Quantile Functions

The survival function gives us the overall survival probabilities over time, while
the hazard rate function (hrf) provides information about the changing risk of the event
occurrence. The survival function and hrf of the RB-TL-TII-EHL-G family of distributions
are given, respectively, by

S(x; δ, a, b, ψ) =

γ

(
δ,− log

([
1− KG

(
x; a, ψ

)]b
))

Γ(δ)
, (5)

and

h(x; δ, a, b, ψ) = 4ab
[
− log

([
1− KG

(
x; a, ψ

)]b
)]δ−1

×
[
1− KG

(
x; a, ψ

)]b−1(
1− G(x; ψ)

)2a−1

×
g(x; ψ)[

1 + G(x; ψ))
]2(a+1)−1

×
[

γ

(
δ,− log

([
1− KG

(
x; a, ψ

)]b
))]−1

, (6)

for δ, a, b > 0, and parameter vector ψ. The quantile function is a very useful statistical tool
when it comes to generating random numbers. It is also important when obtaining other
statistical measures such as median, skewness and kurtosis. It is obtained by inverting the
cdf, that is,

1−
γ

(
δ,− log

([
1− KG

(
x; a, ψ

)]b
))

Γ(δ)
= u, (7)

for 0 ≤ u ≤ 1. Note that Equation (7) can be written as

G(x; ψ) =

1−
(

1−
[
exp

(
−γ−1[δ, Γ(δ)(1− u)]

)] 1
b

) 1
2a

[
1 +

(
1− [exp(−γ−1[δ, Γ(δ)(1− u)])]

1
b
) 1

2a

] .



Stats 2023, 6 711

Therefore, the quantile function of the RB-TL-TII-EHL-G family of distributions is
given by

QX (u) = G−1


1−

(
1−

[
exp

(
−γ−1[δ, Γ(δ)(1− u)]

)] 1
b

) 1
2a

[
1 +

(
1− [exp(−γ−1[δ, Γ(δ)(1− u)])]

1
b
) 1

2a

]
. (8)

4. Mathematical Properties

In this section, we obtain several mathematical and statistical properties of the RB-TL-
TII-EHL-G family of distributions. The properties presented include moments, moment-
generating function, moments of residual and reversed residual life, Rényi Entropy, distri-
bution of rth-order statistics and stochastic ordering. Let the pdf f (x; δ, a, b, ψ) be written as
f (x) throughout this section.

4.1. Moments and Generating Function

Let Yv+1 ∼ Exponentiated− G(v + 1, ψ); then, the nth raw moment µ′n of the RB-TL-
TII-EHL-G family of distributions is given by

µ′n = E(Xn) =
∫ ∞

−∞
xn f (x)dx =

∞

∑
v=0

ωv+1 E(Yn
v+1),

where E(Yn
v+1) is the nth moment of Yv+1 and ωv+1 is given by Equation (4). The moment-

generating function (MGF), for |t| < 1, is given by:

MX(t) =
∞

∑
v=0

ωv+1 Mv+1(t),

where Mv+1(t) is the mgf of Yv+1 and ωv+1 is given by Equation (4).

4.2. Moment of Residual and Reversed Residual Life

Moments of the residual life distribution are used to obtain the mean, variance and
coefficient of variation of residual life which are extensively used in reliability analysis. The
sth moment of the residual life, say φs(t) of a random variable X, is

φs(t) = E
[
(X− t)s | X > t

]
=

1
F(t)

∫ ∞

t
(x− t)s f (x)dx.

Consequently, φs(t) for the RB-TL-TII-EHL-G distribution is given as follows:

φs(t) =
1

F(t)

∞

∑
v,p=0

(
s
p

)
(−t)s−pωv+1

∫ ∞

t
xpgv+1(x; ψ)dx, (9)

where ωv+1 is as defined in Equation (4) and gv+1(x; ψ) denotes the Exp-G distribution
with power parameter (v + 1). The mean remaining life (life expectancy at age t) of the
RB-TL-TII-EHL-G family of distributions follows from the above formula with s = 1.

The sth moment of the reversed residual life, say Us(t) of a random variable X, is

Us(t) = E
[
(t− X)s | X ≤ t

]
=

1
F(t)

∫ t

0
(t− x)s f (x)dx.
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Subsequently, Us(t) for the RB-TL-TII-EHL-G distribution is given as follows:

Us(t) =
1

F(t)

∞

∑
v,p=0

(
s
p

)
(−t)s−pωv+1

∫ t

0
xpgv+1(x; ψ)dx,

where ωv+1 is as defined in Equation (4) and gv+1(x; ψ) denotes the Exp-G distribution with
power parameter (v + 1).

4.3. Rényi Entropy

In information theory, Rényi entropy is a measue of randomness or uncertainty in the
system. The Rényi entropy of the RB-TL-EHL-G family of distributions is given by

IR(q) =
1

1− q
log
(∫ ∞

0
f q(x)dx

)
, q > 0 and q 6= 1,

where

f q(x) =
(4ab)q

(Γ(δ))q

[
− log

([
1− KG

(
x; a, ψ

)]b
)]qδ−q

×
[
1− KG

(
x; a, ψ

)]qb−q(
1− G(x; ψ)

)2aq−q

×
gq(x; ψ)[

1 + G(x; ψ)
]2q(a+1)−q

.

Let y = KG

(
x; a, ψ

)
, and with the series expansion (− log(1− y)) = ∑∞

i=0
yi+1

i + 1
,

as well as the results on power series raised to a positive integer given by
(∑∞

s=0 asys)m = ∑∞
s=0 bs,mys (see [37] for details), we obtain[

− log
([

1− KG

(
x; a, ψ

)]b
)]qδ−q

= bqδ−qyqδ−q

[
∞

∑
m=0

(
qδ− q

m

)
ym

(
∞

∑
s=0

ys

s + 2

)m]

= bqδ−qyqδ−q

[
∞

∑
m=0

(
qδ− q

m

)
ym

∞

∑
s=0

bs,mys

]

= bqδ−q

[
∞

∑
m,s=0

(
qδ− q

m

)
bs,mym+s+qδ−q

]
,

where bs,m = (sa0)
−1 ∑s

l=1[m(l + 1)− s]albs−l,m, b0,m = am
0 , so that f q(x) can be written as:

f q(x) =
(4ab)q

(Γ(δ))q bqδ−q
∞

∑
m,s,i,j,k,h,v=0

(
qδ− q

m

)
bs,m(−1)i+j+h+v

(
qb− q

i

)

×
(

2a[m + s + qδ + i]− q
j

)(
2a[m + s + qδ + i] + q + k− 1

k

)
×

(
j + k

h

)(
h
v

)
gq(x; ψ)

(
G(x; ψ)

)v
.
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(see Appendix A section for details of the derivation). Consequently, the Rényi entropy for
the RB-TL-TII-EHL-G family of distributions is given by

IR(q) =
1

1− q
log
[
(4ab)q

(Γ(δ))q bqδ−q
∞

∑
m,s,i,j,k,h,v=0

(
qδ− q

m

)
bs,m(−1)i+j+h+v

×
(

qb− q
i

)(
2a[m + s + qδ + i]− q

j

)(
2a[m + s + qδ + i] + q + k− 1

k

)
×

(
j + k

h

)(
h
v

) ∫ ∞

0

([
1 +

v
q

](
G(x; ψ)

) v
q
(g(x; ψ))

)q
dx
]

=
1

1− q
log
[ ∞

∑
v=0

τv exp((1− q)IREG )

]
, (10)

for q > 0, q 6= 1, where IREG = 1
1−q log

[ ∫ ∞
0

([
1 + v

q

](
G(x; ψ)

) v
q
(g(x; ψ))

)q
dx
]

is the

Rényi entropy of Exp-G distribution with power parameter ( v
q + 1), and

τv =
(4ab)q

(Γ(δ))q bqδ−q
∞

∑
m,s,i,j,k,h=0

(
qδ− q

m

)
bs,m(−1)i+j+h+v 1[

1 + v
q

]q

(
qb− q

i

)

×
(

2a[m + s + qδ + i]− q
j

)(
2a[m + s + qδ + i] + q + k− 1

k

)(
j + k

h

)(
h
v

)
.

Therefore, the Rényi entropy of the RB-TL-TII-EHL-G family of distributions can be
obtained from those of the Exp-G family of distributions.

4.4. Order Statistics

Order statistics are a very useful statistical concept in probability and statistics. We see
its applications in several fields including modeling insurance policies, auctions, optimizing
production processes, car races, estimating parameters of distributions, and many more.
Suppose X1, X2, . . . , Xn are independent and identically distributed random variables from
the RB-TL-TII-EHL-G family of distributions. Then, the expression for the pdf of the
rth-order statistic from the RB-TL-TII-EHL-G distribution can be written as

fr:n(x) =
n! f (x)

(r− 1)!(n− r)!

n−r

∑
p=0

(−1)p
(

n− r
p

)
[F(x)]p+r−1. (11)

Note that

f (x)[F(x)]p+r−1 =
∞

∑
z=0

(
p + r− 1

z

)
(−1)z 4ab

(Γ(δ))z+1

[
− log

([
1− KG

(
x; a, ψ

)]b
)]δ−1

×
[
1− KG

(
x; a, ψ

)]b−1(
1− G(x; ψ)

)2a−1

×
g(x; ψ)[

1 + G(x; ψ))
]2(a+1)−1

[
γ

(
δ,− log

([
1− KG

(
x; a, ψ

)]b
))]z

,

and using the results on the expansion of the density and the following power series for
the incomplete gamma function (see [37]),

γ(y, δ) =
∞

∑
q=0

(−1)qyq+δ

(q + δ)q!
,
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we obtain

f (x)[F(x)]p+r−1 =
∞

∑
z=0

(
p + r− 1

z

)[ ∞

∑
q=0

(−1)q

(q + δ)q!

]z

(−1)z 4ab

(Γ(δ))z+1

×
[
− log

([
1− KG

(
x; a, ψ

)]b
)]z(q+δ)+δ−1

×
[
1− KG

(
x; a, ψ

)]b−1(
1− G(x; ψ)

)2a−1 g(x; ψ)[
1 + G(x; ψ))

]2(a+1)−1
.

Now, following the same steps leading to Equation (3), we obtain

f (x)[F(x)]p+r−1 =
∞

∑
v=0

av+1 gv+1(x; ψ), (12)

where gv+1(x; ψ) = (v + 1)[G(x; ψ)]vg(x; ψ) is the Exp-G pdf with the power parameter
(v + 1) and parameter vector ψ, and

av+1 =
∞

∑
z,m,s,i,j,k,h=0

(
p + r− 1

z

)[ ∞

∑
q=0

(−1)q

(q + δ)q!

]z
4ab(−1)z+i+j+p+v

(Γ(δ))z+1 bz(q+δ)+δ−1

×
(

z(q + δ) + δ− 1
m

)(
b− 1

i

)
bs,m

(
j + k

h

)(
h
v

)
1

v + 1

×
(

2a[(m + s + δ) + i]− 1
j

)(
2a[(m + s + δ) + i] + k

k

)
.

Thus, by substituting (12) into (11), the pdf of the rth-order statistic for the RB-TL-TII-
EHL-G family of distributions can be written as

fr:n(x) =
n!

(r− 1)!(n− r)!

n−r

∑
p=0

(−1)p
(

n− r
p

) ∞

∑
v=0

av+1 gv+1(x; ψ). (13)

4.5. Probability Weighted Moments (PWMs)

The PWMs of a random variable X are defined by

φw,p = E
(
Xw(F(X))p) = ∫ ∞

−∞
xwF(x)p f (x)dx.

Using the results from the derivation of the distribution of the order statistics above,
we note that

f (x)[F(x)]p =
∞

∑
z=0

(
p
z

)[ ∞

∑
q=0

(−1)q

(q + δ)q!

]z

(−1)z 4ab

(Γ(δ))z+1

×
[
− log

([
1− KG

(
x; a, ψ

)]b
)]z(q+δ)+δ−1

×
[
1− KG

(
x; a, ψ

)]b−1(
1− G(x; ψ)

)2a−1 g(x; ψ)[
1 + G(x; ψ))

]2(a+1)−1
.

Now, following the same steps leading to Equation (3), we obtain

f (x)[F(x)]p =
∞

∑
v=0

Cv+1 gv+1(x; ψ), (14)
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where gv+1(x; ψ) = (v + 1)[G(x; ψ)]vg(x; ψ) is the Exp-G pdf with the power parameter
(v + 1) and parameter vector ψ, and

Cv+1 =
∞

∑
z,m,s,i,j,k,h=0

(
p
z

)[ ∞

∑
q=0

(−1)q

(q + δ)q!

]z
4ab(−1)z+i+j+p+v

(Γ(δ))z+1 bz(q+δ)+δ−1

×
(

z(q + δ) + δ− 1
m

)(
b− 1

i

)
bs,m

(
j + k

h

)(
h
v

)
1

v + 1

×
(

2a[(m + s + δ) + i]− 1
j

)(
2a[(m + s + δ) + i] + k

k

)
.

Thus, the probability weighted moment of the RB-TL-TII-EHL-G family of distribu-
tions is given by

φw,p = E
(
Xw(F(X))p) = ∞

∑
v=0

Cv+1

∫ ∞

−∞
xwgv+1(x; ψ). (15)

4.6. Stochastic Orderings

In probability and statistics, the notion of stochastic ordering for random variables
is a useful concept. It quantifies the concept of one random variable being bigger than
another [38]. The usual stochastic order, the hazard rate order, and likelihood ratio order
are perhaps the best-known orders of distribution functions. In this subsection, we present
likelihood ratio ordering.

Suppose X and Y are two random variables with the cdfs FX(t) and FY(t), respectively,
and FX(t) = 1 − FX(t) is the survival function. The random variable X is said to be
stochastically smaller than the random variable Y if FX(t) ≤ FY(t) or FX(t) ≥ FY(t), ∀t.
This is denoted by X <st Y. The hazard rate order and likelihood ratio order are given by
X <hr Y if hX(t) ≥ hY(t) ∀t, and X <lr Y if fX(t)

fY(t)
is decreasing in t, ∀t. It is well established

that X <lr Y =⇒ X <hr Y =⇒ X <st Y [38].
Now consider two independent random variables X1 and X2 following the RB-TL-

TII-EHL-G family of distributions with X1 ∼ f1(x; δ1, a, b, ψ) and X2 ∼ f2(x; δ2, a, b, ψ), and
their pdfs are given by

f1(x) =
4ab

Γ(δ1)

[
− log

([
1− KG

(
x; a, ψ

)]b
)]δ1−1[

1− KG

(
x; a, ψ

)]b−1

×
(

1− G(x; ψ)
)2a−1 g(x; ψ)[

1 + G(x; ψ))
]2(a+1)−1

(16)

and

f2(x) =
4ab

Γ(δ2)

[
− log

([
1− KG

(
x; a, ψ

)]b
)]δ2−1[

1− KG

(
x; a, ψ

)]b−1

×
(

1− G(x; ψ)
)2a−1 g(x; ψ)[

1 + G(x; ψ))
]2(a+1)−1

, (17)

respectively. Then

f1(x)
f2(x)

=
Γ(δ2)

Γ(δ1)

[
− log

([
1− KG

(
x; a, ψ

)]b
)]δ1−δ2

. (18)



Stats 2023, 6 716

Differentiating Equation (18) with respect to x yields

d
dx

(
f1(x)
f2(x)

)
=

4ab(δ2 − δ1)Γ(δ2)

Γ(δ1)

[
− log

([
1− KG

(
x; a, ψ

)]b
)]δ1−δ2−1

×
[
1− KG

(
x; a, ψ

)]b−1(
1− G(x; ψ)

)2a−1

×
g(x; ψ)[

1 + G(x; ψ))
]2(a+1)−1

([
1− KG

(
x; a, ψ

)]b
)−1

. (19)

Consequently, d
dx

[ f1 (x)
f2 (x)

]
< 0 if δ2 < δ1. Thus, the likelihood ratio X <lr Y exists.

Subsequently, since X <lr Y =⇒ X <hr Y =⇒ X <st Y, the hazard rate order and
stochastic order also hold.

4.7. Maximum Likelihood Estimation

There are several methods available in the literature for estimating unknown param-
eters of a probability distribution. Among them, the maximum likelihood method is the
most commonly used. The maximum likelihood estimation (MLE) is a technique used
in statistics to estimate the unknown parameters of an assumed probability distribution
based on some experimental data. In this subsection, we use the maximum likelihood
estimation method to obtain estimates of the parameters of the RB-TL-TII-EHL-G family of
distributions. Suppose x1, x2, . . . . . . , xn is the random sample observed from the RB-TL-TII-
EHL-G family of distributions with the vector of model parameters ∆ = (δ, a, b, ψ)T . Then,
the log-likelihood function `n = `n(∆) for the parameters from the observed values has
the form

`n(∆) = n ln(4ab)− n ln(Γ(δ)) + (δ− 1)
n

∑
i=1

ln

− log


1−

(
1− G(xi; ψ)

1 + G(xi; ψ)

)2a
b



+ (b− 1)
n

∑
i=1

1−
(

1− G(xi; ψ)

1 + G(xi; ψ)

)2a
+ (2a− 1)

n

∑
i=1

ln
(

1− G(xi; ψ)
)

− (2(a + 1)− 1)
n

∑
i=1

ln
[
1 + G(xi; ψ))

]
+

n

∑
i=1

ln(g(xi; ψ)). (20)

The elements of the score vector U =
(

∂`
∂δ , ∂`

∂a , ∂`
∂b , ∂`

∂ψ
k

)
are given in Appendix A.

The maximum likelihood estimates of the parameters, denoted by ∆̂, are obtained
by solving the nonlinear equation

(
∂`
∂δ , ∂`

∂a , ∂`
∂b , ∂`

∂ψ
k

)T
= 0. However, these equations are

not in closed form; hence, they are solved by a numerical method such as the Newton–
Raphson procedure.

5. Monte Carlo Simulation Results

In this section, a simulation study is used to assess the estimators of the parameters
of the Gamma-Topp-Leone-type II-Exponentiated Half Logistic-Weibull (RB-TL-TII-EHL-
W) distribution. Here, N = 3000 samples of size n = 25, 50, 100, 200, 400, 800, 1600 are
generated from the RB-TL-TII-EHL-W distribution for different parameter values. For
example, in Table 1, the true parameter values are chosen arbitrary to be (0.4, 2.0, 1.0, 0.6)
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and (1.0, 1.0, 2.0, 0.6). The average bias (ABIAS) and root mean square errors (RMSE) for
the estimated parameter, say, θ̂, for the MLE are calculated as follows:

ABias(θ̂) = ∑N
i=1 θ̂i

N
− θ, and RMSE(θ̂) =

√
∑N

i=1(θ̂i − θ)2

N
,

respectively. The simulation results are presented in Tables 1 and 2.
It can be observed in Tables 1 and 2 that the mean MLEs are close to the true values

of the parameters, and the RMSEs decay toward zero as the sample size increases. This
indicates that the maximum likelihood method works well for obtaining estimate of the
model parameters of the RB-TL-TII-EHL-W distribution.

Table 1. Monte Carlo Simulation Results.

(0.4, 2.0, 1.0, 0.6) (1.0, 1.0, 2.0, 0.6)

Parameter Sample Size Mean RMSE ABIAS Mean RMSE ABIAS

δ 25 0.6877 3.1506 0.2877 1.3229 0.8782 0.3229
50 0.3709 0.1177 0.0290 1.2402 0.6605 0.2402

100 0.3787 0.0802 0.0212 1.1232 0.3570 0.1232
200 0.3822 0.0603 0.0177 1.1006 0.2738 0.1006
400 0.3922 0.0433 0.0077 1.0952 0.2100 0.0952
800 0.3951 0.0365 0.0048 1.0925 0.2000 0.0925
1600 0.3981 0.0274 0.0018 1.0491 0.1333 0.0491

a 25 2.5400 1.3914 0.5400 1.1886 0.6130 0.1886
50 2.3977 0.9355 0.3977 1.1187 0.4540 0.1187

100 2.2693 0.7333 0.2693 1.0664 0.2516 0.0664
200 2.2078 0.5503 0.2078 1.0298 0.1603 0.0298
400 2.1536 0.4217 0.1536 1.0125 0.0996 0.0125
800 2.1325 0.3502 0.1325 1.0010 0.0549 0.0010
1600 2.0891 0.2558 0.0891 0.9990 0.0295 -0.0009

b 25 1.3057 0.8845 0.3057 2.7881 2.8433 0.7881
50 1.2950 0.6806 0.2950 2.6862 1.5921 0.6862

100 1.2521 0.4924 0.2521 2.6663 1.5291 0.6663
200 1.2051 0.3896 0.2051 2.5486 1.2348 0.5486
400 1.1270 0.2615 0.1270 2.3736 0.9899 0.3736
800 1.0838 0.1916 0.0838 2.3047 0.8254 0.3047
1600 1.0497 0.1160 0.0497 2.1826 0.5966 0.1826

λ 25 1.6935 2.4098 1.0935 1.1408 1.4770 0.5408
50 1.5659 2.1364 0.9659 1.0127 1.2357 0.4127

100 1.4300 1.8248 0.8300 0.9742 1.1543 0.3742
200 0.9253 1.0925 0.3253 0.7660 0.9116 0.1660
400 0.8234 0.8786 0.2234 0.7619 0.8445 0.1619
800 0.6774 0.5516 0.0774 0.6842 0.6534 0.0842
1600 0.5944 0.3520 0.0055 0.6821 0.5891 0.0821
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Table 2. Monte Carlo Simulation Results.

(1.3, 2.5, 1.3, 0.2) (0.4, 2.0, 0.4, 0.6)

Parameter Sample Size Mean RMSE ABIAS Mean RMSE ABIAS

δ 25 1.8712 1.0697 0.5712 0.5461 0.5260 0.1461
50 1.5872 0.8045 0.2872 0.4494 0.2333 0.0494

100 1.5855 0.7239 0.2855 0.4226 0.1363 0.0226
200 1.4840 0.5620 0.1840 0.4178 0.0899 0.0178
400 1.4472 0.4748 0.1472 0.4112 0.0667 0.0112
800 1.3721 0.3075 0.0721 0.4102 0.0397 0.0102
1600 1.3202 0.1560 0.0202 0.4070 0.0292 0.0070

a 25 1.8861 1.2069 0.6138 2.5733 1.1101 0.5733
50 1.9280 1.2898 0.5719 2.4370 0.8351 0.4370

100 2.0105 1.2688 0.4894 2.3850 0.6897 0.3850
200 2.1445 1.2661 0.3554 2.2559 0.5008 0.2559
400 2.2502 1.1785 0.2497 2.1381 0.2995 0.1381
800 2.4325 1.0837 0.0674 2.0626 0.1716 0.0626
1600 2.5389 0.7505 0.0389 2.0387 0.1308 0.0387

b 25 1.6020 2.0325 0.3020 1.1007 1.2914 0.7007
50 1.5671 1.0407 0.2671 0.8581 0.8695 0.4581

100 1.5539 0.7707 0.2539 0.7758 0.6698 0.3758
200 1.5071 0.5967 0.2071 0.6940 0.5466 0.2940
400 1.4872 0.5199 0.1872 0.5694 0.3332 0.1694
800 1.4103 0.3495 0.1103 0.4961 0.2103 0.0961
1600 1.3553 0.2097 0.0553 0.4691 0.1741 0.0691

λ 25 1.9015 1.8505 1.7015 3.1446 3.9098 2.5446
50 0.5098 1.6226 0.3098 2.0028 2.9795 1.4028

100 0.2969 0.3970 0.0969 1.2378 1.6666 0.6378
200 0.2472 0.1398 0.0472 0.8019 0.6485 0.2019
400 0.2255 0.0846 0.0255 0.6875 0.2265 0.0875
800 0.2169 0.0568 0.0169 0.6418 0.1240 0.0418
1600 0.2132 0.0374 0.0132 0.6250 0.0722 0.0250

6. Special Cases

In this section, we specify the baseline distribution and define some special cases of
the RB-TL-TII-EHL-G family of distributions.

6.1. Gamma-Topp-Leone-Type II-Exponentiated Half Logistic-Weibull (RB-TL-TII-EHL-W)
Distribution

Consider the Weibull distribution with cdf and pdf given by G(x; λ) = 1− exp(−xλ)
and g(x; λ) = λxλ−1 exp(−xλ), respectively, for λ > 0 and x > 0, as the baseline distribu-
tion; then, we obtain the RB-TL-TII-EHL-W distribution with cdf and pdf given by

FRB−TL−TII−EHL−W (x; δ, a, b, λ) = 1−

γ

δ,− log

[1−
(

exp(−xλ)

1+(1−exp(−xλ))

)2a
]b


Γ(δ)
,

and

fRB−TL−TII−EHL−W (x; δ, a, b, λ) =
4ab
Γ(δ)

− log

[1−
(

exp(−xλ)

1 + (1− exp(−xλ))

)2a]b
δ−1

×
[

1−
(

exp(−xλ)

1 + (1− exp(−xλ))

)2a]b−1(
exp(−xλ)

)2a−1

× λxλ−1 exp(−xλ)

[1 + (1− exp(−xλ))]
2(a+1)−1

,

for δ, a, b, λ > 0.
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Figure 1 shows the plots of the pdf and the hrf of the RB-TL-TII-EHL-W distribution
for different parameter values. The pdf can take several shapes including right-skewed,
left-skewed, unimodal, J and reverse-J shapes. The RB-TL-TII-EHL-W hazard displays
increasing, decreasing, bathtub, and upside-down bathtub shapes.

Figure 1. Plots of the pdf and hrf of the RB-TL-TII-EHL-W distribution.

Figure 2 shows the plots of skewness and kurtosis for the TL-TII-EHL-W distribu-
tion. We can see that the skewness become right-skewed and kurtosis is leptokurtic with
increasing values of a and b and also with increasing values of a and λ.
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Figure 2. Three-dimensional (3D) plots of skewness and kurtosis for RB-TL-TII-EHL-W distribution.
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6.2. Gamma-Topp-Leone-Type II-Exponentiated Half Logistic-Log Logistic (RB-TL-TII-EHL-LLoG)
Distribution

Suppose the cdf and pdf of the baseline distribution are given by G(x; c) = 1− (1+ xc)−1

and g(x; λ, c) = cxc−1(1 + xc)−2 for c > 0 and x > 0; then, the new RB-TL-TII-EHL-LLoG
distribution has cdf and pdf given by

FRB−TL−TII−EHL−LLoG (x; δ, a, b, c) = 1−

γ

δ,− log

[1−
(

(1+xc)−1

1+(1−(1+xc)−1)

)2a
]b


Γ(δ)
,

and

fRB−TL−TII−EHL−LLoG (x; δ, a, b, c) =
4ab
Γ(δ)

− log

[1−
(

(1 + xc)−1

1 + (1− (1 + xc)−1)

)2a]b
δ−1

×
[

1−
(

(1 + xc)−1

1 + (1− (1 + xc)−1)

)2a]b−1(
(1 + xc)−1

)2a−1

× cxc−1(1 + xc)−2

[1 + (1− (1 + xc)−1)]
2(a+1)−1

,

respectively, for δ, a, b, c > 0.
Figure 3 shows the plots of pdf and hrf of RB-TL-TII-EHL-LLoG distribution, respec-

tively. The pdf can take several shapes including right-skewed, left-skewed, unimodal
and reverse-J shapes. The RB-TL-TII-EHL-LLoG hazard displays increasing, decreasing,
upside-down bathtub, and bathtub followed by upside-down bathtub shapes.

Figure 3. Plots of the pdf and hrf of the RB-TL-TII-EHL-LLoG distribution.

Figure 4 shows the plots of skewness and kurtosis for the RB-TL-TII-EHL-LLoG
distribution. We can see that the skewness become right-skewed and kurtosis is leptokurtic
with increasing values of a and b and also with increasing values of a and c.
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Figure 4. Three-dimensional (3D) plots of skewness and kurtosis for RB-TL-TII-EHL-LLoG distribution.

6.3. Gamma-Topp-Leone-Type II-Exponentiated Half Logistic-Kumaraswamy
(RB-TL-TII-EHL-Kum) Distribution

If we consider the Kumaraswamy distribution with cdf and pdf given by
G(x; λ, γ) = 1−

(
1− xλ

)γ and g(x; λ, γ) = λγxλ−1(1− xλ
)γ−1, respectively, for λ, γ > 0

and x > 0, as the baseline distribution, then we obtain the RB-TL-TII-EHL-Kum distribution
with cdf and pdf given by

FRB−TL−TII−EHL−Kum(x; δ, a, b, λ, γ) = 1−

γ

δ,− log


1−

(
(1−xλ)

γ

1+
(

1−(1−xλ)
γ
)
)2a

b



Γ(δ)
,

and

fRB−TL−TII−EHL−Kum(x; δ, a, b, λ, γ) =
4ab
Γ(δ)

− log


1−

 (
1− xλ

)γ

1 +
(

1−
(
1− xλ

)γ
)
2a


b



δ−1

×

1−

 (
1− xλ

)γ

1 +
(

1−
(
1− xλ

)γ
)
2a


b−1((

1− xλ
)γ)2a−1

×
λγxλ−1(1− xλ

)γ−1[
1 +

(
1−

(
1− xλ

)γ
)]2(a+1)−1

,
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for δ, a, b, λ, γ > 0.
Figure 5 shows the plots of the pdf and the hrf of the RB-TL-TII-EHL-Kum distribution

for different parameter values. The pdf can take several shapes including right-skewed,
left-skewed, U-shape and reverse-J shape. The hrf of the RB-TL-TII-EHL-Kum distri-
bution displays increasing, decreasing, bathtub, and upside-down bathtub followed by
bathtub shapes.

Figure 5. Plots of the pdf and hrf of the RB-TL-TII-EHL-Kum distribution.

7. Applications

In this section, three real datasets are analyzed to illustrate the flexibility, importance
and modeling ability of the RB-TL-TII-EHL-G family of distibutions by using its special
case, namely RB-TL-TII-EHL-W distribution. We also compare the RB-TL-TII-EHL-W
distribution with the well-known models generated via the gamma transformation and
modified forms of Weibull models in the literature including the gamma odd power
generalized Weibull-Lomax (RB-OPGW-Lx) distribution by [23], the gamma-generalized
inverse Weibull (GGIW) distribution by [24], the gamma odd Burr III-log-logistic (RB-BII-
LLoG) distribution by [26], the Topp-Leone-Marshall–Olkin Weibull (TLMOW) distribution
by [39], the alpha power Topp-Leone-Weibull (APTLW) distribution by [40], the type II
exponentiated half logistic Weibull (TIIEHLW) distribution by [18], the odd generalized half
logistic Weibull–Weibull (OGHLW-W) distribution by [41], the Marshall–Olkin exponential
Weibull (MOEW) distribution by [42], and the odd Lomax generalized exponential (OLGE)
distribution by [43].

To compare the fitted models, we used well-known goodness-of-fit statistics such as
-2log-likelihood statistic (−2 ln(L)), Akaike Information Criterion (AIC = 2p− 2 ln(L)),
Consistent Akaike Information Criterion (CAIC = AIC + 2 p(p+1)

n−p−1 ), Bayesian Information
Criterion (BIC = p ln(n)− 2 ln(L)) (n is the number of observations, and p is the number
of estimated parameters), Cramér-von Mises statistic (W∗), Anderson–Darling statistics
(A∗), Kolmogorov–Smirnov (K-S) statistic, and its p-value. Generally, a fitted distribution
can be considered as the proper fitting model for a certain dataset if it is asscociated with
smaller values of all the goodness-of-fit statistics except for the p-value of the K-S statistic.

7.1. COVID-19 Data

These data are about COVID-19 collected from Holland. The data were analyzed
by [44,45]. This dataset consists of 30 observations and is recorded between 31 March 2020
and 30 April 2020. (See the data in the Appendix A).

Figure 6 shows the profile likelihood plots for parameters of the RB-TL-TII-EHL-W
distribution on the COVID-19 data. It can be seen that the MLEs obtained for the RB-TL-TII-
EHL-W distribution are unique. This shows that the parameters of the RB-TL-TII-EHL-W
distribution are identifiable.
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Figure 6. Profile likelihood function plots for parameters of RB-TL-TII-EHL-W distribution on the
COVID-19 data.

The data analysis results for the COVID-19 data are given in Table 3. Table 3 indicates
that the RB-TL-TII-EHL-W distribution has the lowest values of the −2 ln(L), AIC, CAIC,
BIC, W∗, A∗, K − S and largest p-value of the K − S statistic among other fitted models.
This implies that the RB-TL-TII-EHL-W can be chosen as the best model for modeling the
COVID-19 data. The fitted density plots and the probability plots (Figure 7) show that the
RB-TL-TII-EHL-W distribution adequately fits the COVID-19 data.

Figure 7. Fitted density superimposed on the histogram and observed probability vs. expected
probability plots for the COVID-19 data.



Stats 2023, 6 724

Table 3. MLEs and Goodness-of-Fit Statistics of COVID-19 Data.

Estimates Statistics

Model δ a b λ −2 log L AIC AICC BIC W∗ A∗ K-S p-Value

RB-TL-TII-EHL-W 31.5910 0.0119 12.0320 1.0019 375.7258 383.7257 384.1218 394.3795 0.0460 0.2574 0.0646 0.7669
(7.4281 × 10−04) (8.8791 × 10−04) (4.3483 × 10−03) (6.3719 × 10−02)

α β δ k
RB-OPGW-Lx 2.3656 53.9060 1.0790 0.0999 383.0791 391.0791 391.4751 401.7328 0.1156 0.7575 0.0733 0.6187

(1.6820 × 10−01) (1.3300 × 10−04) (×10−15) (1.0572 × 10−02)

k β λ δ
GGIW 7.3731 0.2671 0.0026 1.5621 376.2939 384.2939 384.6900 394.9477 0.0515 0.2869 0.0670 0.7269

(0.0012) (0.0259) (0.00048) (0.0035)

α β δ λ
RB-BIII-LLoG 0.0146 36.9600 18.3780 34.8890 378.785 386.7852 387.1812 397.439 0.0759 0.4398 0.0706 0.6656

(1.0707 × 10−03) (2.8804 × 10−01) (4.9356 × 10−01) (6.2419 × 10−04)

b δ λ γ
TLMOW 2.5861 0.5294 0.1205 1.3825 376.4293 384.4293 384.8254 395.0831 0.0535 0.2981 0.0678 0.7133

(2.3351) (0.6827) (0.2658) (0.7581)

θ α β λ
APTLW 5.8553 2.7609 × 10−05 0.5942 0.2816 377.9029 385.903 386.299 396.5567 0.0637 0.3624 0.0673 0.7215

(4.5983 × 10−03) (2.2908 × 10−04) (0.0985) (0.0475)

a λ δ γ
TIIEHLW 21.7121 197.2789 3.4401 0.1250 376.5885 384.5885 384.9845 395.2423 0.0540 0.3030 0.0693 0.6885

(37.3034) (1.0424) (0.2509) (0.0413)

α β λ γ
OGHLW 2.4469 × 10−05 1.0482 8.8095 0.1456 390.3392 398.3391 398.7351 408.9928 0.1887 1.2185 0.0801 0.5044

(4.6219 × 10−06) (1.0925 × 10−03) (1.2995 × 10−04) (9.3622 × 10−03)

α λ β k
MOEW 2.8837 × 1007 1.7441 × 10−01 1.4516 × 1001 1.4997 × 10−01) 380.8861 388.8859 389.2819 399.5396 0.0912 0.528 0.0722 0.6367

(9.7681 × 10−09) (2.4798 × 10−01) (2.8610 × 10−01) (3.6792 × 10−02)

δ α b θ
OGLE 106.3274 0.3341 2.7092 0.2189 380.4094 388.4094 388.8054 399.0631 0.0869 0.4843 0.0738 0.6097

(158.6800) (0.4618) (0.8918) (0.0922)
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Figure 8 shows the observed and the fitted Kaplan–Meier (K-M) survival curves, theo-
retical and empirical cumulative distribution (ECDF), total test on time (TTT) scaled plots,
and hazard rate function (hrf) plots. We can see that the RB-TL-TII-EHL-W distribution
follows the empirical cdf and Kaplan–Meier survival curves very closely. The TTT scaled
plot shows an increasing hrf. Furthermore, the estimated hrf in is agreement with the TTT
scaled plot, as it also displays an increasing shape for the COVID-19 dataset.

Figure 8. Fitted Kaplan–Meier survival curve, empirical cumulative distribution functions, the total
time on the test scaled plot, and the fitted hazard rate function for the COVID-19 data.

7.2. Vehicle Fatalities Data

The data consist of the number of vehicle fatalities for 39 cities in South Carolina for
2012 collected by the National Highway Traffic Safety Administration (www-fars.nhtsa.
dot.gov/States, accessed on 11 May 2023). The data were analyzed by [46] (see the data in
Appendix A).

Figure 9 shows the profile likelihood plots for parameters of the RB-TL-TII-EHL-W
distribution on the vehicle fatalities data. From the plots, we can see that the MLEs for the
parameters of the RB-TL-TII-EHL-W distribution are achieved at single and different points.

Table 4 gives the MLEs of the fitted distributions together with the standard errors (in
parenthesis) and all the values of the considered goodness-of-fit statistics. It is evident that
the RB-TL-TII-EHL-W distribution provides the best fit among the competitors, since it
has the lowest value of −2 ln(L), AIC, CAIC, BIC, W∗, A∗ and K-S statistic. Furthermore,
the p-value of the K − S statistic is the largest for the new model, suggesting that the
proposed RB-TL-TII-EHL-W model provides the best fit for the vehicle fatalities data. The
fitted density plots and the probability plots (Figure 10) show that the RB-TL-TII-EHL-W
distribution adequately fits the vehicle fatalities data.

www-fars.nhtsa.dot.gov/States
www-fars.nhtsa.dot.gov/States
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Table 4. MLEs and Goodness-of-Fit Statistics of Vehicle Fatalities Data.

Estimates Statistics

Model δ a b λ −2 log L AIC AICC BIC W∗ A∗ K-S p-Value

RB-TL-TII-EHL-W 12.2752 0.0057 5.3660 0.8217 305.9453 313.9453 315.1218 320.5995 0.0368 0.2677 0.0886 0.9192
(0.0018) (0.0014) (0.0095) (0.0826)

α β δ k
RB-OPGW-Lx 3.9177 5.1996 × 10−02 2.6947 × 1001 1.0968 × 10−03 380.0707 388.0708 389.2473 394.7251 0.1403 0.8925 0.3341 0.0003

(4.3035 × 10−01) (2.8295 × 10−02) ( 2.5178 × 10−01) (4.6193 × 10−04)

k β λ δ
GGIW 1.6099 × 10−04 1.0006 8.0186 × 10−02 1.4139 × 1002 309.3782 317.378 318.5545 324.0322 0.0606 0.42001 0.1132 0.6993

(1.7939 × 10−04) (5.3681 × 10−04) (7.9390 × 10−03) (2.6831 × 10−06)

α β δ λ
RB-BIII-LLoG 8.1979 × 1001 9.4819 × 10−02 4.0700 × 10−02 8.6497 × 10−02 709.0801 717.0806 718.257 723.7348 0.2085 1.3047 0.3004 0.0017

(8.0682 × 10−05) ( 7.7779 × 10−02) (8.4369 × 10−03) (1.4133 × 10−02)

b δ λ γ
TLMOW 35.1447 0.2747 0.3352 0.4224 310.2705 318.2705 319.447 324.9248 0.0716 0.4849 0.1230 0.5966

(0.0010) (0.2166) (0.2353) (0.0900)

θ α β λ
APTLW 5.8809 × 1001 4.7573 × 10−04 1.5583 × 10−01 1.0793 308.4781 316.4766 317.653 323.1308 0.0402 0.3019 0.1178 0.6514

(5.2275 × 10−04) (2.4522 × 10−03) (3.4123 × 10−02) (6.4652 × 10−02)

a λ δ γ
TIIEHLW 0.0597 0.0789 3.0136 0.5026 360.9537 368.9538 370.1302 375.608 0.0371 0.2727 0.3485 0.0002

(0.0157) (0.0452) (0.7527) (0.0691)

α β λ γ
OGHLW 2.3879 × 10−05 0.6967 11.8160 0.0952 309.7039 317.7039 318.8804 324.3582 0.1143 0.7240 0.1221 0.6053

(9.7110 × 10−06) (1.0280 × 10−03) (6.0584 × 10−05) (9.2143 × 10−03)

α λ β k
MOEW 54.1287 0.0192 1.3654 0.3773 309.2931 317.2931 318.4696 323.9473 0.0670 0.4676 0.0973 0.8539

(49.8948) (0.0476) (0.7965) (0.1854)

δ α b θ
OGLE 0.1170 10.025 0.4439 0.1237 315.6349 323.6372 324.8136 330.2914 0.1351 0.8479 0.1408 0.4217

(0.3395) (18.7865) (0.3848) (0.1274)
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Figure 9. Profile likelihood function plots for parameters of RB-TL-TII-EHL-W distribution on the
vehicle fatalities data.

Figure 10. Fitted density superimposed on the histogram and observed probability vs. expected
probability plots for the vehicle fatalities data.

Figure 11 shows the observed and the fitted Kaplan–Meier survival curves, ECDF
plots, TTT scaled plot and hrf plot. We can see that the RB-TL-TII-EHL-W distribution
follows the empirical cdf and Kaplan–Meier survival curves very closely. The TTT scaled
plot and hrf plot show that the hrf for the vehicle fatalities data is non-monotonic.
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Figure 11. Fitted Kaplan–Meier survival curve, empirical cumulative distribution functions, the total
time on the test scaled plot, and the fitted hazard rate function for the vehicle fatalities data.

7.3. Remission Times Data

The dataset is on remission times (months) of 128 bladder cancer patients by [47] (see
the data in Appendix A).

The profile likelihood plots for parameters of the RB-TL-TII-EHL-W distribution can
be used to check for the identifiability of parameters. From the plots in Figure 12, we can
see that the MLEs for the RB-TL-TII-EHL-W distribution are unique; hence, we conclude
that the parameters are identifiable.

The results are presented in Table 5. From Table 5, it is quite visible that the values of
−2 ln(L), AIC, CAIC, BIC, W∗, A∗, K− S are smaller and the p-value of the K-S statistic
is largest under the RB-TL-TII-EHL-W distribution, indicating that the RB-TL-TII-EHL-
W distribution fits the remission times data better than other fitted distributions. The
fitted density plots and the probability plots (Figure 13) show that the RB-TL-TII-EHL-W
distribution adequately fits the remission times.

The observed and the fitted Kaplan–Meier survival curves, observed and fitted ECDF,
TTT scaled plots and hrf plots of the RB-TL-TII-EHL-W distribution are shown in Figure 14.
From the Kaplan–Meier and ECDF plots, it is clear that the RB-TL-TII-EHL-W distribution
is a good candidate for modeling the remission times data. The TTT scaled and hrf
plots indicate that indeed, the RB-TL-TII-EHL-W distribution is suitable for modeling
the remission times data, as they both estimate the hazard rate of the data to be upside-
down bathtub.



Stats 2023, 6 729

Table 5. MLEs and Goodness-of-Fit Statistics of Remission Times Data.

Estimates Statistics

Model δ a b λ −2 log L AIC AICC BIC W∗ A∗ K-S p-Value

RB-TL-TII-EHL-W 24.6260 0.00010 4.0077 1.2704 822.8816 830.8816 831.2068 842.2897 0.0579 0.3833 0.0522 0.8752
(0.0015) (1.5862 × 10−05)) (0.0189) (0.0665)

α β δ k
RB-OPGW-Lx 1.8034 592.3000 1.0001 0.0100 825.8694 833.8694 834.1946 845.2776 0.0916 0.5778 0.0690 0.5744

(1.2081 × 10−01) (2.1182 × 10−06) (1.8869 × 10−15) (2.2921 × 10−03)

k β λ δ
GGIW 12.7271 0.1990 0.0016 0.2197 877.5066 836.542 836.8672 847.9502 0.1316 0.8126 0.0702 0.552

(1.0673) (0.0206) (0.0012) (0.0241)

α β δ λ
RB-BIII-LLoG 0.2066 35.6475 17.4118 1.3549 832.1743 840.1743 840.4995 851.5824 0.1428 0.9589 0.0676 0.6004

(0.2573) (23.6792) (13.7133) (1.6875)

b δ λ γ
TLMOW 16.1350 0.2540 0.3205 0.4398 837.4597 845.4595 845.7847 856.8676 0.1979 1.2993 0.0811 0.3679

(32.4118) (0.1033) (0.4540) (0.2468)

θ α β λ
APTLW 0.3632 2.6272 × 1002 0.8610 0.1120 827.4507 835.4507 835.7759 846.8588 0.1275 0.7620 0.0727 0.5065

(0.1239) (4.8767 × 10−05) (0.1241) (0.0540)

a λ δ γ
TIIEHLW 1.0297 × 1003 1.0759 × 1002 2.4004 0.0500 823.0934 831.0934 831.4186 842.5015 0.0710 0.4392 0.0549 0.8351

(1.8761 × 10−06) (1.9066 × 10−04) (2.1528 × 10−02) (3.2111 × 10−03)

α β λ γ
OGHLWW 2.1269 × 10−05 0.6471 14.4550 0.0774 838.0349 846.0347 846.3599 857.4428 0.2477 1.4603 0.0952 0.1962

(3.4793 × 10−06) (4.2738 × 10−04) (1.9132 × 10−05) (4.3136 × 10−03)

α λ β k
MOEW 2.3544 0.0714 1.0415 0.2405 948.2204 956.2204 956.5456 967.6285 0.2321 1.3721 0.4481 0.0000

(1.2446) (0.0372) (1.0080) (0.2691)

δ α b θ
OGLE 8.8103 0.2220 0.3397 0.3668 836.6097 844.6097 844.9349 856.0178 0.2298 1.3899 0.0880 0.2745

(8.3076) (0.1826) (0.0966) (0.1147)
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Figure 12. Profile likelihood function plots for parameters of RB-TL-TII-EHL-W distribution on the
remission times dataset.

Figure 13. Fitted density superimposed on the histogram and observed probability vs. expected
probability plots for the remission times data.
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Figure 14. Fitted Kaplan–Meier survival curve, empirical cumulative distribution functions, the total
time on the test scaled plot, and the fitted hazard rate function for the remission times data.

8. Conclusions

We have proposed and developed a new generalized family of distributions called
the Gamma-Topp-Leone-Type II-Exponentiated Half Logistic-G (RB-TL-TII-EHL-G) dis-
tribution. It has been shown that this new family of distributions can be expressed as an
infinite linear combination of the exponentiated-G distributions. The maximum likelihood
estimation technique was used to estimate the model parameters. Some of the mathemati-
cal and statistical properties have been derived and established. The RB-TL-TII-EHL-W
model as a special case to this new family of distributions was applied to three datasets,
and from the results, it is evident that the new proposed model performs better than
several equal-parameter models. In the future, we will seek to use different estimation
methods to estimate the unknown parameters and also also apply the new distribution to
censored data.
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Appendix A

Click on the link below for results in the appendix. https://drive.google.com/file/d/
1Hpx6TJPNKBAcyP71BTaHjWGBJ6orInmI/view?usp=share_link, accessed on 11 May 2023.
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