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Abstract: Proportional hazards models and, in some situations, accelerated failure time models,
are not suitable for analyzing data when the failure ratio between two individuals is not constant.
We present a Weibull accelerated failure time model with covariables on the location and scale
parameters. By considering the effects of covariables not only on the location parameter, but also on
the scale, a regression should be able to adequately describe the difference between treatments. In
addition, the deviance residuals adapted for data with the interval censored and the exact time of
failure proved to be satisfactory to verify the fit of the model. This information favors the Weibull
regression as an alternative to the proportional hazards models without masking the effect of the
explanatory variables.

Keywords: interval-censored data; non-proportional hazards; regression model; residual deviance;
survival analysis

1. Introduction

Data that represent the time to event are characterized by the presence of censor-
ship. In other words, they are partial observations of the response variable caused by the
non-occurrence of the event of interest during the period under study. Interval-censored
data arise when the occurrence time of the event is only known to have occurred in an
interval. Interval censoring is a type of censorship that occurs naturally in studies in
which the sample unit is evaluated periodically [1]. Such data appear, for example, in
clinical or longitudinal experiments in which patients can be followed up only through
periodic examinations. In this case, we do not know the exact occurrence time, but only
that it occurs within an interval. Recently, some works on interval-censored data have
been reported. In Betensky et al. [2], the authors introduced proportional hazards re-
gressions, Calle and Gómez [3] used a Bayesian framework for analyzing regressions in
which one of the covariables is interval-censored, Komárek and Lesaffre [4] proposed an
accelerated failure time model, and Rodrigues et al. [5] discussed an alternative to the
Kaplan–Meier method.

However, these models [2,6–9] are defined under the proportional hazards assump-
tions, i.e., the survival curves exhibit parallel behavior. However, these assumptions do not
always hold.

In fact, what can be said is that most studies adopt the assumption of proportional
risks, i.e., the survival curves do not intersect. For example, Cox’s model considers this
assumption. In this research, the risks may be non-proportional.
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On the other hand, in a study of dairy cow herds developed by the Department of
Veterinary Medicine of the Federal University of Lavras, MG, in Brazil, to evaluate the
effect of animal supplementation on the ovulation of dairy cows (interval-censored survival
data), the survival curve of the control supplementation was crossed with the survival
curve of the new supplementation (see Figure 1a). Another example refers to breast cancer
data, where the goal is to compare the effects of radiotherapy alone versus radiotherapy
and adjuvant chemotherapy on women. In Figure 1b, we present the graph of the survival
curve with the two effects.

In both cases, proportional hazards models are not suitable for analyzing ovulation
times and compare radiotherapy and radiotherapy + chemotherapy treatments, and as
an alternative, we can consider accelerated failure time models. However, in some sit-
uations, the accelerated failure time models may not be able to capture the difference
between treatments, possibly due to interference from the crossing of survival curves, as
shown in Hashimoto et al. [1]. A solution to solve the effect of crossed survival curves
(non-proportional hazards assumption) is to consider the scale parameter as a systematic
component of the model.
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Figure 1. Estimated survival curve by Turbull method: (a) For control and new supplementation.
(b) By radiotherapy and radiotherapy + chemotherapy treatments.

In this context, we include the effects of covariables in the location and scale pa-
rameters in the Weibull accelerated model with two systematic components to analyze
interval-censored data with non-proportional hazards. We use standard likelihood theory
for inferential purposes. Another objective is to propose an extension of the deviance
residuals [1] for interval-censored survival data without considering the proportional
hazards assumption.

The paper is organized as follows. In Section 2, we propose the log-Weibull regression
with two systematic components for the location and scale parameters for interval-censored
data. The estimation of the parameters by maximum likelihood is addressed in Section 3.
We provide a simulation study to check the accuracy of the estimates and residuals in
Section 4. In Section 5, we empirically prove the utility of the new regression. We offer
some concluding remarks in Section 6.

2. The Proposed Model

The Weibull and log-Weibull distributions are frequently adopted for analyzing cen-
sored data [10–13] and phenomena with monotone failure rates [14]. Let T ∼W(α, λ) be
the Weibull random variable, where α > 0 is the shape parameter and λ > 0 is the scale
parameter. The probability density function (pdf) of the log-Weibull defined by Y = log(T)
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under the re-parametrization σ = α−1 > 0 (scale) and µ = log(λ) ∈ R (location), say
Y ∼ LW(µ, σ), has the form

f (y; µ, σ) =
1
σ

exp
[(

y− µ

σ

)
− exp

(
y− µ

σ

)]
, y ∈ R. (1)

The log-exponential distribution comes with σ = 1.
The survival function corresponding to (1) is

S(y; µ, σ) = exp
[
− exp

(
y− µ

σ

)]
. (2)

Clearly, the random variable Z = (Y− µ)/σ has density

f (z) = exp[z− exp(z)], z ∈ R. (3)

The accelerated failure time parametric model, also known as the location-scale re-
gression [14], has been used for studying the effects of covariables on the response vari-
able. Let Y1, · · · , Yn be independent random variables such that Yi ∼ LW(µi, σi). In
addition, we consider the vectors of explanatory variables xi = (1, xi1, · · · , xip)

> and
wi = (1, wi1, · · · , wiq)

>. The linear location–scale regression for interval-censored data is
defined as by (for i = 1, . . . , n)

Yi = µi + σi Zi, (4)

where µi = x>i β1 and log(σi) = w>i β2, the random error Zi has density function (3), and
β1 = (β10, · · · , β1p)

> and β2 = (β20, · · · , β2q)
> are functionally independent.

Thus, we associate a systematic component with the parameter σ to allow us to model
data with non-proportional risks and the presence of heteroscedasticity. Equation (4) can
be useful for presenting such data.

For interval-censored data, the logarithms of the failure times Yi (for i = 1, . . . , n) are
not observed exactly, only that the event occurred at some moment in a interval time of the
type (log(Ui), log(Vi)], where log(Ui) < Yi < log(Vi). An exact failure time is observed if
log(Ui) = log(Vi). In practice, the values of log(Ui) and log(Vi) refer to evaluation times,
and hence for some individuals the event can occur after the last visit to the evaluator, thus
characterizing observations subject to right censoring, where the failure time Yi occurs in
the interval [log(Ui), ∞). A summary of the structure of the data is given below:

• Exact failure time → Yi = yi.
• Right-censored → Yi ∈ [log(Ui), ∞).
• Interval-censored → Yi ∈ (log(Ui), log(Vi)].

3. Estimation

We are only interested in models with an exact failure time and interval censoring. Let
(log(u1), log(v1), x1, w1), · · · (log(un), log(vn), xn, wn) be a set of interval-censored obser-
vations. The log-likelihood function of the log-Weibull regression for an exact failure time
and interval-censored data has the form

l(θ) = ∑
i∈E

{
−w>i β2 +

[
log(ui)− x>i β1

exp(w>i β2)

]
− exp

[
log(ui)− x>i β1

exp(w>i β2)

]}
−

∑
i∈R

exp

{
log(ui)− x>i β1

exp(w>i β2)

}
+

∑
i∈I

log

{
exp

[
− exp

(
log(ui)− x>i β1

exp(w>i β2)

)]
− exp

[
− exp

(
log(vi)− x>i β1

exp(w>i β2)

)]}
,

(5)



Stats 2023, 6 646

where θ = (β>1 , β>2 )
> is the vector of parameters, and E, R, and I denote sets of elements

with exact failure time, right censoring and interval censoring, respectively.
The maximum likelihood estimate (MLE) θ̂ of θ can be found by maximizing (5) in

numerical platforms such as Ox 8.00 (MaxBFGS function) or R Version 3.6.3.
Inference can be based on the (p + q + 2)× (p + q + 2) observed information matrix

J = J(θ). The asymptotic distribution of (θ̂− θ) can be considered Np+q+2(0, J(θ)−1)
under first-order asymptotes. We construct confidence intervals for the parameters based
on the approximate multivariate normal Np+q+2(0, J(θ̂)−1) distribution of θ̂.

4. Modified Deviance Residuals

Various types of residuals have been proposed in the regression literature [14]. For
some applications of censored data, see, for example, the log-Birnbaum–Saunders regres-
sion [15] and the generalized log-gamma regression [16]. Furthermore, [1] presented
martingale residuals for interval-censored data. Following these ideas, we extend these
residuals with no proportional risk assumption.

The observed sample {[log(ui), log(vi)], i = 1, . . . , n} is taken from Section 3. The
martingale residuals [1,17,18] for interval-censored data have the form

rMi =



1 + log[Ŝ(log(ui))] if i ∈ E,

log[Ŝ(log(ui))] if i ∈ R,

Ŝ(log(ui)) log[Ŝ(log(ui))]−Ŝ(log(vi)) log[Ŝ(log(vi))]

Ŝ(log(ui))−Ŝ(log(vi))
if i ∈ I,

where Ŝ(·) is the estimated survival function. So, replacing Ŝ(·) in Equation (2), we obtain
the martingale residuals for the log-Weibull regression for interval-censored data and
non-proportional hazards:

rMi =



1− exp(zui) if i ∈ E,

− exp(zui) if i ∈ R,

exp[zvi−exp(zvi)]−exp[zui−exp(zui)]
exp[− exp(zui)]−exp[− exp(zvi)]

if i ∈ I,

(6)

where

zui =
log(ui)− x>i β̂1

exp(w>i β̂2)
and zvi =

log(vi)− x>i β̂1

exp(w>i β̂2)
.

However, the martingale residuals are asymmetrical and have values less than or
equal to one. In contrast, [1] used an adaptation of the deviance residuals [17] for interval-
censored data. Based on a combination of these residuals, we define the modified deviance
residuals by

rDi =


sgn(rMi )

[
−2
{

rMi + log(1− rMi )
}]1/2 if i ∈ E, I

sgn(rMi )
(
−2 rMi

)1/2 if i ∈ R,
(7)

where rMi are the martingale residuals given by (6).

Simulation Studies

1. Deviance residual

A first simulation study with 1000 replications analyzed the empirical distribution
of the residuals (7) by combining n = 30, 50, 100 and 300 with the interval censoring
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percentages 100%, 90%, and 70%. For each combination, the generated data follow the
proposal by [1]:

(a) The coefficients are fixed at β10 = 3.00, β11 = 0.72, β20 = −0.71 and β21 = 0.60;
(b) The explanatory variable x1 is generated from the binomial distribution with a success

probability equal to 0.5 and 1, and µi = β10 + β11 x1 and σi = exp(β20 + β21 x1)
are computed;

(c) The variable z = log[− log(1− u)] is generated from u ∼ U(0, 1), and the logarithm
time from (4);

(d) The logarithm censoring time is generated from a uniform distribution [0, τ] by fixing
τ until right-censoring percentages of 0, 10%, or 30%;

(e) The interval length is generated from a uniform U(1, 3) distribution;
(f) The limits of the log interval time are li = y+ (1+ k)/2 and ls = y− (1+ k)/2, where

k is the length of the randomly chosen interval.

For each fit, we calculate the residuals rDi and construct the QQ plots displayed in
Figure 2. Table 1 reports the averages of the MLEs of the parameters and mean square
errors (MSEs) of the Weibull regression, respectively.

Table 1. Averages of the MLEs and MSE (in parentheses) for the parameters of the Weibull regression
model for interval-censored data.

n Parameters Actual Values 0% 10% 30%

β10 3.00 2.9158 (0.0284) 2.9313 (0.0279) 2.9354 (0.0352)
30 β11 0.72 0.7444 (0.0879) 0.7286 (0.0965) 0.7275 (0.1245)

β20 −0.71 −1.1733 (0.8250) −1.2731 (1.3701) −1.4154 (2.2010)
β21 0.60 0.8623 (0.7849) 0.9578 (1.3332) 1.0628 (2.2225)

β10 3.00 2.9260 (0.0114) 2.9304 (0.0132) 2.9411 (0.0172)
50 β11 0.72 0.7416 (0.0456) 0.7427 (0.0573) 0.7375 (0.0714)

β20 −0.71 −1.0239 (0.1120) −1.0507 (0.2259) −1.0612 (0.3456)
β21 0.60 0.7701 (0.1679) 0.7848 (0.2642) 0.7950 (0.3919)

β10 3.00 2.9401 (0.0055) 2.9443 (0.00964) 2.9571 (0.0086)
100 β11 0.72 0.7408 (0.0216) 0.7372 (0.0275) 0.7302 (0.0353)

β20 −0.71 −0.9714 (0.0390) −0.9680 (0.0382) −0.9461 (0.0429)
β21 0.60 0.7502 (0.0554) 0.7479 (0.0597) 0.7319 (0.0678)

β10 3.00 2.9437 (0.0018) 2.9468 (0.0022) 2.9603 (0.0028)
300 β11 0.72 0.7438 (0.0075) 0.7436 (0.0086) 0.7398 (0.0117)

β20 −0.71 −0.9381 (0.0098) −0.9263 (0.0102) −0.8997 (0.0112)
β21 0.60 0.7335 (0.0156) 0.7257 (0.0170) 0.7101 (0.0204)

The numbers in Table 1 indicate that the MSEs of the estimates decay toward zero
when n increases. However, for the estimate of σ, although its MSE is decreasing, the
estimated bias does not change, which may be influenced by the presence of interval
censoring. We can note in Figure 2, regardless of n, that there is a greater displacement
of the residuals when the percentage of interval censorship decreases. This is because the
sample is being contaminated by interval censoring.

2. Estimating the survival function

We construct a second simulation study with 200 replicates to estimate the survival
functions with covariables on the parameters µ and σ simultaneously and on the parame-
ter µ.

For the simulation scenarios, we set the sample size n = 100 combined with the same
censoring percentages of the previous study. The data are also generated in the same way
given in the item a. However, using the same generated data, the estimation is conducted
as follows:

(a) Effects of the covariables on the parameters µ and σ simultaneously:
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i Initial values β10 = 3.00, β11 = 0.72, β20 = −0.71 and β21 = 0.60;
ii Estimate the survival function by

Ŝ(yi) = exp

{
− exp

[
yi − (β̂10 + β̂11x1i)

exp(β̂20 + β̂21x1i)

]}
, i = 1, . . . 100,

where x1 is generated from a binomial distribution with a success probability 0.5
and 1.

(b) Effects of the covariables on the parameter µ:

i Initial values β10 = 3.00, β11 = 0.72, and σ = 0.6129, where the initial value for σ
is the estimate given in Table 2;

ii Estimate the survival function by

Ŝ(yi) = exp

{
− exp

[
yi − (β̂10 + β̂11x1i)

σ̂

]}
, i = 1, . . . 100,

where x1 is generated from a binomial distribution with a success probability
equal to 0.5 and 1.
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Figure 2. QQ plots for the residuals.
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Table 2. Some findings from the fitted regressions.

One Component for µ Two Components for µ and σ

Parameter Estimate SE p-Value B Estimate SE p-Value

β10 3.3311 0.1053 <0.0001 β10 3.3329 0.0852 <0.0001
β11 0.5648 0.1738 0.0016 β11 0.7193 0.2418 0.0037
σ 0.6129 0.0721 - β20 −0.7088 0.1407 <0.0001

β21 0.5952 0.2558 0.0221

−2 l(θ) = 286.0 AIC = 292.0 −2l(θ) = 280.2 AIC = 288.2

Figure 3 shows that the systematic components for both parameters µ and σ can model
the non-proportional hazards well. Figure 4 clearly reveals that we cannot model the
non-proportional hazards by taking only the systematic component for µ.
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Figure 3. Estimated survival function with covariables on the parameters µ and σ: (a) Interval-
censored 100%. (b) Interval-censored 90%. (c) Interval-censored 70%.
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Figure 4. Estimated survival function with covariables on the parameter µ: (a) Interval-censored
100%. (b) Interval-censored 90%. (c) Interval-censored 70%.

5. Applications

We present two applications in different areas. The first application refers to experi-
ments in veterinary science and the second in medicine.

5.1. Regression for the Supplementation Animal Data

The dataset refers to a study of dairy herds developed by the Department of Vet-
erinary Medicine of the Federal University of Lavras. The objective was to verify if the
supplementation offered to the herd was influencing the ovulation time of the animals.
The experiment was carried out with fifty dairy cows divided into two groups: the con-
trol group corresponds to the animals without supplementation and the treatment group
corresponds to the animals treated with supplementation to induce ovulation.

The response variable is the time (in days) after delivery until the first ovulation, but
only for some animals was it possible to know the exact time of the first ovulation. For
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the other animals, the only information is the exact time that failure occurred in a time
interval, which characterizes the presence of interval censoring. The following variables
are considered (for i = 1, . . . , 50):

• yi: Logarithm time after delivery until the first ovulation;
• xi1: Treatment (0 = control, 1 = supplementation);
• xi2: Ovary (0 = right, 1 = left);
• xi3: Number of pups (0 = two pups, 1 = two more pups).

The dataset is formed by dichotomous covariables. The estimated survival curves
in Figure 5 created using the Turnbull method examine the behavior of the covariables in
relation to the logs of ovulation times. Figure 5 indicates that the assumption of proportional
risks is not satisfied for the current dataset. So, we adopt the regression in Equation (4) to
explain these data.

(a) (b) (c)

2.0 2.5 3.0 3.5 4.0 4.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

S
(y

)

Control

Suplementation

2.0 2.5 3.0 3.5 4.0 4.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

S
(y

)

Left

Right

2.0 2.5 3.0 3.5 4.0 4.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y
S

(y
)

Two pups

Two more pups

Figure 5. Estimated survival curve by the Turbull method for supplementation animal data: (a) Treat-
ment (x1). (b) Ovary (x2). (c) Number of pups (x3).

Consider the log-Weibull regression

yi = µi + σi zi,

for the current data, where zi has the density function (3) and

µi = β10 + β11xi1 + β12xi2 + β13xi3 and σi = exp(β20 + β21xi1 + β22xi2 + β23xi3).

The MLEs from the two regressions are reported in Table 3. The p-value of 0.003 for
the estimate of β21 indicates a significant difference between the levels of the treatment to
explain the variability of the logs of the failure times.

Table 3. Some findings from the fitted log-Weibull regression.

Only One Component for µ Two Components for µ and σ

Parameter Estimate SE p-Value Parameter Estimate SE p-Value

β10 3.649 0.159 <0.001 β10 3.601 0.105 <0.001
β11 0.123 0.146 0.401 β11 -0.002 0.154 0.991
β12 0.045 0.145 0.759 β12 0.230 0.131 0.085
β13 −0.186 0.144 0.202 β13 −0.132 0.131 0.320
σ 0.497 0.062 - β20 −1.304 0.275 <0.001

β21 0.867 0.274 0.003
β22 −0.304 0.276 0.276
β23 0.293 0.313 0.353

−2 l(θ̂) = 157.700 AIC = 167.700 −2 l(θ̂) = 148.000 AIC = 164.000
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Figure 6a displays the random residuals within the interval (−3, 3). The QQ plot with
a generated envelope is reported in Figure 6b to verify the response distribution. Both
plots support that the two components of the fitted regression are necessary to explain
these data.
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Figure 6. (a) Index plot of the residuals. (b) QQ plot with an envelope.

Plots of the empirical and estimated survival functions and the estimated hazard rates
are given in Figures 7 and 8, respectively. We note an increasing curve for the ovulation
time data and the non-proportionality of the hazards, which supports the new regression
with two components.
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Figure 7. Estimated survival curve by the Turbull method for ovulation time data: (a) Systematic
component for µ. (b) Systematic components for µ and σ.

Interpretations

• The levels of the control and supplementation of the treatment are different, explaining
the variability in the log ovulation time.

• From Figure 7b, we note that before exp(3.5) = 33 days (approximately), the treatment
control level has a longer survival time than the supplementation level.

• After 33 days, we note the opposite, i.e., the survival time of the supplementation
level is longer than the control level in relation to the time of ovulation.

• Thus, if the supplement is applied at longer intervals, the supplement level would
have a longer survival time compared with the control.

• We can also note that this change in 33 days is captured by the systematic part of the
parameter σ.
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Figure 8. Estimated hazard rate curve for ovulation time data: (a) Systematic component for µ.
(b) Systematic components for µ and σ.

5.2. Regression for Breast Cancer Data

We investigate the log-Weibull regression in the presence of interval-censored data
[19] when proportional risks are not satisfied. These data are taken from a retrospective
study reported by [20,21] to compare the cosmetic effects of radiotherapy alone versus
radiotherapy and adjuvant chemotherapy on women with early breast cancer.

In this study, we consider the following variables (for i = 1, . . . , 94):

• yi1: Logarithm of time (in months) to first appearance of moderate or severe breast
retraction;

• xi1: Type of treatment (0 = radiotherapy and chemotherapy, 1 = radiotherapy).

The dataset is composed of a dichotomous covariable. Figure 9 displays the estimated
survival curves obtained using the Turnbull method to verify the behavior of this covariable
in relation to the log retraction time.
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Figure 9. Estimated survival curve by the Turbull method for the breast cancer data by treatment:
radiotherapy and radiotherapy + chemotherapy.
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The proposed regression for the breast cancer data takes the form

yi = µi + σi zi,

where zi has the density function (3) and the parameters are

µi = β10 + β11 xi1 and σi = exp(β20 + β21 xi1).

Table 2 provides some results from the fitted regressions. For a 5% significance level,
the retraction time has significantly different effects from radiotherapy and radiotherapy
plus chemotherapy, considering both location and dispersion parameters.

Figure 10a gives the plots of the modified deviance residuals against the index.
Figure 10b provides the QQ plot and generated envelope. These plots support the wider
log-Weibull regression for the current data.
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Figure 10. (a) Index plot of the residuals. (b) QQ plot with envelope.

In Figure 11, we present the plots for the empirical and estimated survival functions
for the log-Weibull regression. Figure 11a considers only the systematic component for µ,
whereas Figure 11b considers the systematic components for µ and σ.

The estimated hrf displayed in Figure 12 indicates increasing shapes for the ovulation
time. Figure 12a refers to just one component for µ, whereas Figure 12b refers to two
components for µ and σ. These plots support the non-proportionality of the hrf and a
regression with two components for a better fit to these data.

Interpretation for µ

• There is a significant difference between the levels of radiotherapy and chemotherapy
and radiotherapy in terms of the covariable treatment in relation to the log time of the
first appearance of moderate or severe breast retraction.

Interpretations of σ

• There is a significant difference between the levels of radiotherapy and chemotherapy
and radiotherapy in terms of the covariable treatment in relation to the variability of
the logarithm of the time of the first appearance of moderate or severe breast retraction.

• We note from Figure 11b that before exp(2.5) = 12 months (approximately), the
radiotherapy and chemotherapy level of treatment has a longer survival time than the
radiotherapy level, but this difference is not significant.

• After 12 months, we note the opposite, i.e., the survival time of the radiotherapy level
is longer than that of the radiotherapy and chemotherapy level in relation to the time
of the first appearance of moderate or severe breast retraction.
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• So, we note that 12 months of applying radiotherapy and chemotherapy to the patient
makes them less immune.

• We can also note that this change after 12 months is captured by the systematic part
of σ.
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Figure 11. Estimated survival curve by the Turbull method for breast cancer: (a) One component for
µ. (b) Two components for µ and σ.
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Figure 12. Estimated hazard rate curves for breast cancer: (a) One component for µ. (b) Two
components for µ and σ.

6. Conclusions

We define and study a new log-Weibull regression for interval-censored data with
two systematic components for the location and scale parameters, whose risks are not
proportional. The parameters are estimated by maximum likelihood and some Monte Carlo
simulations are used to investigate the accuracy of the estimates and the normal approxima-
tion for the deviance residuals. We show significant differences between two treatments for
the supplementation of dairy cows. We emphasize the utility of the log-Weibull regression
in two applications to real data. The datasets can be obtained by contacting the main author.
Several future works can be considered, based on the assumption of non-proportional
hazards; for example, the research by Hashimoto et al. [1] referring to the regression model
based on the log-exponentiated Weibull distribution for interval-censored data can be
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generalized considering the assumption of non-proportional hazards. Analogously, we
can extend the research presented by Hashimoto et al. [22] and, in this case, the extension
will be related to regression models with a cure fraction for interval-censored data and
non-proportional hazards. The study presented by Yang et al. [23] can be extended to
non-proportional hazards models for interval-censored data considering two systematic
components. Other future works may include, for example, the use of regression mod-
els with random effects for interval-censored data with non-proportional hazards in the
form of group structures or correlated data, and, finally, the use of regression models
for interval-censored data under the assumption of hazards not being proportional to
informative censorship.
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