
Citation: Muqattash, I.; Hu, J. An

ε-Greedy Multiarmed Bandit

Approach to Markov Decision

Processes. Stats 2023, 6, 99–112.

https://doi.org/10.3390/

stats6010006

Academic Editor: Stéphane Mussard

Received: 19 November 2022

Revised: 22 December 2022

Accepted: 23 December 2022

Published: 1 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An ε-Greedy Multiarmed Bandit Approach to Markov
Decision Processes †

Isa Muqattash 1 and Jiaqiao Hu 2,*

1 Independent Researcher, Stony Brook, NY 11794-3600, USA; ismuqattash@gmail.com
2 Department of Applied Mathematics and Statistics, The State University of New York at Stony Brook,

Stony Brook, NY 11794-3600, USA
* Correspondence: jiaqiao.hu.1@stonybrook.edu
† This work was completed while the author was a PhD student at the Department of Applied Mathematics

and Statistics, SUNY at Stony Brook, Stony Brook, NY 11794-3600, USA.

Abstract: We present REGA, a new adaptive-sampling-based algorithm for the control of finite-
horizon Markov decision processes (MDPs) with very large state spaces and small action spaces.
We apply a variant of the ε-greedy multiarmed bandit algorithm to each stage of the MDP in a
recursive manner, thus computing an estimation of the “reward-to-go” value at each stage of the
MDP. We provide a finite-time analysis of REGA. In particular, we provide a bound on the probability
that the approximation error exceeds a given threshold, where the bound is given in terms of the
number of samples collected at each stage of the MDP. We empirically compare REGA against another
sampling-based algorithm called RASA by running simulations against the SysAdmin benchmark
problem with 210 states. The results show that REGA and RASA achieved similar performance.
Moreover, REGA and RASA empirically outperformed an implementation of the algorithm that uses
the “original” ε-greedy algorithm that commonly appears in the literature.

Keywords: multiarmed bandits; epsilon-greedy method; Markov decision process (MDP); sampling;
optimization under uncertainties

1. Introduction

Consider a finite-horizon Markov decision process (MDP) with non-negative rewards.
Let A and S denote finite action and state spaces, respectively, and let H denote the horizon
of the MDP. For any stage i = 0, . . . , H − 1 and state si ∈ S, choosing a control ai ∈ A
(stochastically) leads to a future state si+1. The system dynamics can be captured by si+1 =
f (si, ai, wi), where wi ∼ U(0, 1) is a uniformly distributed random variable representing the
uncertainly of the system (c.f. [1,2]). Let R(si, ai, wi) denote the immediate reward, and let Π
be the set of all possible deterministic nonstationary Markovian policies π = {πi|πi : S→
A, i = 0, . . . , H − 1}. To simplify our notation, let w = (wi, wi+1, . . . , wH−1). Given a policy
π ∈ Π, the reward-to-go value function is given by Vπ

i (si) = Eπ
w

[
∑H−1

t=i R(st, πt(st), wt)
]
,

with Vπ
H (s) = 0 ∀ s ∈ S. Let the optimal reward-to-go value function be denoted by

V∗i (s) = max
π∈Π

Vπ
i (s), with V∗H(s) = 0 ∀ s ∈ S, then V∗i (s) can be computed recursively using

V∗i (s) = max
a∈A

Q∗i (s, a)

Q∗i (s, a) = Eπ
w
[
R(s, a, w) + V∗i+1(f (s, a, w))

]
.

In this paper, we state our results for the objective of maximizing the total reward-to-go
value for a fixed initial state s0. When clear from the context, we omit the subscript for
the initial horizon and state, and use V∗(s) instead of V∗0 (s0). The results can be trivially
restated for minimization problems.

Stats 2023, 6, 99–112. https://doi.org/10.3390/stats6010006 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats6010006
https://doi.org/10.3390/stats6010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0003-4227-1311
https://orcid.org/0000-0002-9999-672X
https://doi.org/10.3390/stats6010006
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats6010006?type=check_update&version=1

Stats 2023, 6 100

Recent years have seen theoretical progress in the area of simulation-based methods
for solving large finite-horizon MDPs. Two algorithms closely related to the method that
we propose in this paper are the recursive automata sampling algorithm (RASA) of [3]
and the adaptive multistage sampling algorithm (AMS) of [4]. RASA recursively applies a
learning automata algorithm at each stage of the MDP in order to calculate the reward-to-go
value function. When applied to the initial state of the MDP, the algorithm produces an
approximated value for the MDP. The objective is to maximize the total reward criterion.
In [3], the authors give two probabilistic bounds on the performance of RASA as a function
of the number of samples at each stage. In particular, a lower bound on the probability that
the algorithm will sample the optimal action, and an upper bound on the probability that
the error of the algorithm exceeds a given threshold.

The AMS algorithm is very similar to RASA, except that learning automata are replaced
with an upper confidence bounds (UCBs) multiarmed bandit (MAB) algorithm to drive the
simulation at each stage of the MDP. In [4], the authors showed that the MDP value function
estimator produced by AMS is asymptotically unbiased. This asymptotic convergence
result is weaker than the convergence in probability result shown for RASA. The value
function estimator required to show the theoretical results for AMS is based on weighted
averaging of the Q-function estimates of each sampled action, where the weights are taken
on the basis of the number of times each action is chosen for simulation by the underlying
MAB algorithm. Thus, the resultant value function estimator is biased below the true value
function of the MDP.

Other simulation-based approaches for solving MDPs include stochastic anneal-
ing ([5]), neurodynamic programming ([6]), stochastic neural networks ([7]), and Q-
learning ([8,9]).

In this paper, we propose a new algorithm called the recursive epsilon-greedy al-
gorithm (REGA), which combines ideas from RASA and AMS. Like AMS, the sampling
strategy at each stage of the MDP is based on a multiarmed bandit model. In particular, we
use a generalized variant of Auer et al.’s ε-greedy algorithm (c.f. [10]). On the other hand,
our theoretical analysis and the value function estimator that we use are similar to those
of RASA. We give a finite-time analysis of REGA following the same ideas as those found
in [3]. In particular, we give an upper bound on the probability that the approximated
reward-to-go generated by REGA has an absolute error larger than a tolerated threshold
ε > 0. We provide a convergence rate in terms of the number of samples captured at each
stage of the MDP. Much credit goes to [3] for the ideas behind our theoretical analysis.

The rest of the paper is organized as follows: The REGA algorithm is introduced in
Section 2. Section 3 provides a finite-time analysis of REGA. Empirical results in comparison
to the RASA algorithm appear in Section 4. We conclude with some remarks in Section 5.

This article is based on Chapter 2 of the first author’s PhD thesis [11].

2. The Algorithm

MAB problems are well-studied in the literature (c.f. [10,12–14]), and provide a
mechanism for the trade-off between exploration and exploitation. In this paper, we
consider finite-horizon MDPs with finite action and state spaces A and S and finite horizon
H. Suppose that the system dynamics of the MDP are not known. The objective is to
use a simulation-based technique to approximate the total reward of the MDP. Instead of
simulating all permissible actions an equal number of times, it is reasonable to allocate
more simulations towards actions with a likely higher reward to go. This becomes more
important in settings where simulation resources are limited.

Consider a single stage i = 0, 1, . . . , H − 1 and current state s ∈ S, and let ci ≥ 1 be
tuneable parameters that control the amount of pure exploration that takes place at each
stage i of the algorithm. Let Q̂i,Mi (s, a) and V̂i,Mi (s) = argmax

a∈A(s)
Q̂i,Mi (s, a) denote estimates

of Q∗i (s, a) and V∗i (s), respectively, when Mi simulations are allocated to stage i. When clear
from the context, we drop the suffix Mi, and use simplified notations Q̂i(s, a) and V̂i(s). By
convention, we set V̂H(s) = 0. Moreover, let Mi

a(s) denote the number of times action a

Stats 2023, 6 101

is sampled at stage i. It always holds that Mi = ∑
a∈A(s)

Mi
a(s). Lastly, for a non-negative

integer m and a state s, let {εs
m}m be the nonincreasing sequence given by

εs
m = min

{
1,

ci|A(s)|√
m

}
, (1)

where A(s) is the set of available actions at state s, and |A(s)| is the size of A(s). When the
state s is clear from the context, we drop the superscript and use the simplified notation εm
instead of εs

m. The REGA algorithm is outlined in Algorithm 1.
The widely cited ε-greedy method of [10] defines εs

m differently, where denominator√
m in Equation (1) is replaced with m. See Section 4 for a comparison of empirical results.

Algorithm 1: Bytecode runtime measurement
Input: Stage i < H, state s ∈ S, ci ≥ 1, and Mi ≥ 1.
Initialization: V̂H(s) = 0, Q̂i(s, a) = 0 and Mi

a(s) = 0 ∀ a ∈ A(s).
Loop (For m = 1, 2, . . . , Mi):
{
1. Update the current optimal action âi.

âi = argmax
a∈A(s)

Q̂i(s, a)

2. Pick the next action to sample

āi =

{
âi, w.p. (1− εm)
(uniformly) random arm, w.p. εm

3. Generate wi
m ∼ U(0, 1) then simulate the next state f (s, āi, wi

m) and immediate
reward R(s, āi, wi

m).
4. Update Q̂i(s, āi) =

Mi
āi
(s)Q̂i(s, āi) + V̂i+1

(
f (s, āi, wi

m)
)
+ R(s, āi, wi

m)

Mi
āi
(s) + 1

. (2)

5. Update Mi
āi
(s) = Mi

āi
(s) + 1.

}
Output: V̂i(s) = argmax

a∈A
Q̂i(s).

The REGA algorithm treats each available action at the current state as an arm in a
MAB setting. As such, the next arm to sample is chosen in accordance with the ε-greedy
MAB method. Let m be the number of simulations run at this stage thus far. At first, all
arms are uniformly sampled up to a certain total number of purely exploratory/training
simulations. After that, with ties broken arbitrarily, the arm believed to be optimal is
sampled with increasing probability 1− εm. For each simulation and chosen action, the
MDP advances (stochastically) to a future stage si+1 according to the system dynamics
si+1 = f (si, ai, wi) (c.f. [1,2]). The next state si+1 is once again treated as a MAB problem.
We continue to apply the ε-greedy method recursively until the maximal horizon H is
reached. Via backward induction, the optimal reward to go at each stage is estimated, and
when applied to the initial state of the MDP, we obtain an estimation of the optimal value
function of the MDP. The main advantage of REGA is that the reward to go need not be
computed for every state of the MDP, as the algorithm only considers the states visited
during sampling. As such, REGA is well-suited for MDPs with very large state spaces.

Stats 2023, 6 102

3. Theoretical Analysis

In this section, we provide a theoretical treatment of the convergence properties of
REGA. Before introducing the main result, the following lemma is needed to justify some
algebraic steps. The proof can be found in Appendix A.

Lemma 1. Let c ≥ 1 be a fixed real number, and let M ≥ 1 and r >
(
c2 + c

)2 be fixed integers.
Then, the following inequalities hold:

cM√
r + M + 1

<
r+M

∑
i=r+1

− log
(

1− c√
i

)
<

(c + 1)M√
r

(3)

r+M

∑
i=r+1

log2(1− c√
i
) < (c + 1)2 log

(
1 +

M
r

)
. (4)

The discrete probability distribution of the sum of independent Bernoulli trails that
are not identically distributed is known as the Poisson binomial distribution. The following
theorem gives a bound on the error of estimating the Poisson binomial distribution CDF
with the “usual” Poisson distribution CDF (c.f. [15], Thm. 5.1).

Theorem 1. Let X1, . . . , Xn be independent Bernoulli variables with respective success probabilities
p1, . . . , pn. Assume that 0 < pi < 1 and let λi = − log(1− pi) for all 1 ≤ i ≤ n. Let Y(λ)
denote a random variable having the Poisson distribution with mean parameter λ. Then, for each
integer m ≥ 1, we have

P

[
Y

(
n

∑
i=1

λi

)
≤ m

]
≤ P

[
n

∑
i=1

Xi ≤ m

]
≤ P

[
Y

(
n

∑
i=1

λi

)
≤ m

]
+

1
2

n

∑
i=1

λ2
i .

Before analyzing REGA, we first consider a simpler version of the algorithm in which
V̂i+1 is replaced with V∗i+1 in Equation (2). This removes the recursion from REGA under
the assumption that the true reward to go at the next stage is known and thus reduces the
problem from a multistage problem to a single-stage problem. We refer to this algorithm as
the nonrecursive epsilon-greedy algorithm (NREGA). Later on, we derive results pertaining
to REGA.

In what follows, we use the following additional notation. Note that ξε > 0 for ε > 0.

Λ = max
{(

c2 + c
)2

, (c|A(s)|)2
}

,

ξε =
RmaxH + ε

RmaxH
log
(

RmaxH + ε

RmaxH

)
− ε

RmaxH
.

The next lemma gives a finite time bound on the estimation errors of the Q-functions
induced by NREGA at the exit of the algorithm as a function of the number of allocated
simulations at each stage. The result is analogous to Lemma 3.2 in [3].

Lemma 2. Let ε > 0 and α ∈ (1, 2) be fixed. Consider a single stage of NREGA applied to a MDP
using parameters c ≥ 2

√
3 and a large enough total number of allocated simulations M, such that

M ≥ Λ1/α and Mα ≥ M + 2. Then, for any action a and state s, we have

P
[∣∣Q̂i,M(s, a)−Q∗i (s, a)

∣∣ ≥ ε
]
<

(c + 1)2

2
log
(

1 + M1−α
)

(5)

+ ec

(
c exp

[√
2− c√

2

])M1−α/2

+ 2 exp
[
−ξε M1−α/2

]
.

Stats 2023, 6 103

Proof. Consider a fixed but arbitrary stage i of the algorithm, state s, and action a of the
MDP. Denote by ai(t) the arm played at iteration t of the algorithm. Let I{ai(t) = a} be
a random variable indicating whether or not the chosen arm ai(t) is in fact arm a, and
let IU{ai(t) = a} denote whether or not the arm was chosen (independently) per the

uniformly random rule in step 2 of the algorithm. Let Ni,M
a (s) =

M

∑
t=1

I{ai(t) = a} be a

random variable denoting the total number of times action a is played during the first M

iterations of the algorithm at stage s. Similarly, let Ui,M
a (s) =

M

∑
t=1

IU{ai(t) = a}.

In an argument identical to the one in the proof of Lemma 3.2 in [3], it can be shown
for any positive integer N that

P
[∣∣Q̂i,M(s, a)−Q∗i (s, a)

∣∣ ≥ ε
]
< 2 exp[−ξεN] + P

[
Ni,M

a (s) ≤ N
]
. (6)

We first bound the term P
[

Ni,M
a (s) ≤ N

]
and then replace N with an appropriate function

of M.
Indeed, Ni,M

a (s) ≥ Ui,M
a (s) ∀a ∈ A(s) and Ni,M

a (s) > Ui,M
a (s) for some a ∈ A(s).

Therefore, Ni,M
a (s) dominates Ui,M

a (s) almost surely. Hence,

P
[

Ni,M
a (s) ≤ N

]
≤ P

[
Ui,M

a (s) ≤ N
]

(7)

= P

[
M

∑
t=1

IU{ai(t) = a} ≤ N

]
.

For iteration t = 1, . . . , M of the algorithm, let εt be defined as per Equation (1). Per
the algorithm description, random variables IU{ai(t) = a} are independent and have
probabilities

P
[

IU{ai(t) = a} = 1
]
=

εt

|A(s)| =
{

c√
t
, t ≥ (c|A(s)|)2

1
|A(s)| , o/w

.

Let integer r ≥ Λ be a constant “shift” variable, and let X1, . . . , XM be independent
Bernoulli variables with success probabilities pt =

c√
r+t

. Since pt ≤ εt
|A(s)| ∀ t = 1, . . . , M,

then each random variable Xt is (first-order) stochastically dominated by the corresponding
random variable IU{ai(t) = a} for any fixed t. Hence, it holds that

P

[
M

∑
t=1

IU{ai(t) = a} ≤ N

]
≤ P

[
M

∑
t=1

Xt ≤ N

]
. (8)

Combining Equations (7) and (8) yields

P
[

Ni,M
a (s) ≤ N

]
≤ P

[
M

∑
t=1

Xt ≤ N

]
. (9)

Let λt = − log(1− c√
t
). We now apply Theorem 1 to Equation (9) which yields

P
[

Ni,M
a (s) ≤ N

]
≤ P

[
Y

(
r+M

∑
t=r+1

λt

)
≤ N

]
+

1
2

r+M

∑
t=r+1

λ2
t . (10)

Applying Chernoff bounds to a Poisson random variable Y(λ) yields

P(Y ≤ y) ≤ e−λ(eλ)y

yy , for y ≤ λ. (11)

Stats 2023, 6 104

Consider N ≤ cM√
r + M + 1

. It follows from Lemma 1 that N ≤
r+M

∑
t=r+1

λt. Hence, we

can apply the Chernoff bound from Equation (11) to Equation (10) to obtain

P
[

Ni,M
a (s) ≤ N

]
≤ 1

2

r+M

∑
t=r+1

λ2
t +

exp

[
−

r+M

∑
t=r+1

λt

](
e

r+M

∑
t=r+1

λt

)N

NN . (12)

We wish to give an elementary upper bound on the right-hand side of (12). Since
e−λ(eλ)y

yy is decreasing in λ for y ≤ λ, it follows from Lemma 1 that

P
[

Ni,M
a (s) ≤ N

]
≤ 1

2
(c + 1)2 log

(
1 +

M
r

)
(13)

+ exp
[
− cM√

r + M + 1

](
ecM

N
√

r + M + 1

)N
.

Now, let r = dMαe and N = dM1−α/2e. For the bound in Equation (13) to converge to

zero as M→ ∞, it is necessary that α ∈ (1, 2). Moreover, the condition N ≤ cM√
r + M + 1

is

indeed satisfied since c ≥ 2
√

3 implies that

M ≥
(√

3
c−
√

3

) 2
2−α

⇔ M1−α/2 + 1 ≤ cM1−α/2
√

3

⇒ M1−α/2 + 1 ≤ cM√
Mα + M + 2

⇒ dM1−α/2e ≤ cM√
Mα + M + 2

⇔ N ≤ cM√
r + M + 1

,

where the second equation follows from the restriction Mα ≥ M + 2.
Substituting r and N into Equation (13) and relaxing the bound yields

P
[

Ni,M
a (s) ≤ N

]
≤ 1

2
(c + 1)2 log

(
1 +

M
Mα

)
+ (14)

exp
[
− cM√

Mα + M + 2

](
ecMα/2

√
Mα + M + 1

)M1−α/2+1

.

Through condition Mα ≥ M + 2, we have

exp
[
− cM√

Mα + M + 2

](
ecMα/2

√
Mα + M + 1

)M1−α/2+1

(15)

≤ exp
[
− cM√

2Mα

]
(ec)M1−α/2+1

= exp

[
− cM1−α/2

√
2

+ M1−α/2 + 1

]
cM1−α/2+1

= ec

(
c exp

[√
2− c√

2

])M1−α/2

.

Stats 2023, 6 105

Combining Equations (14) and (15) yields

P
[

Ni,M
a (s) ≤ N

]
≤ (c + 1)2

2
log
(

1 + M1−α
)
+ ec

(
c exp

[√
2− c√

2

])M1−α/2

. (16)

N = dM1−α/2e, and ξε > 0 for ε > 0. Therefore, Equation (6) can be relaxed to

P
[∣∣Q̂i,M(s, a)−Q∗i (s, a)

∣∣ ≥ ε
]
<

(c + 1)2

2
log
(

1 + M1−α
)

(17)

+ ec

(
c exp

[√
2− c√

2

])M1−α/2

+ 2 exp
[
−ξε M1−α/2

]
,

which completes the proof.

Corollary 1. Suppose the conditions of Lemma 2 hold. Let Φ = c exp
[√

2−c√
2

]
< 1. If M is large

enough, such that ΦM1−α/2 ≤ M1−α and exp
[
−ξε M1−α/2

]
≤ M1−α, then it follows that

P
[∣∣Q̂i,M(s, a)−Q∗i (s, a)

∣∣ ≥ ε
]
<

(
(c + 1)2

2
+ ec + 2

)
M1−α.

Proof. It is well-known (c.f. [16]) that log(1 + x) ≤ x for x > −1. The result immediately
follows by relaxing Equation (5) of Lemma 2.

The result in Corollary 1 can be made arbitrarily close to O(1/M) in the limit by
selecting α arbitrarily close to 2. However, as α is increased towards 2, the minimal value of
M for which the finite time bound applies grows exponentially.

For the purposes of our theoretical analysis, we now assume that the optimal action at
each stage of the algorithm is unique, so that the MDP has a unique optimal policy. This
assumption is identical to that in [3].

Assumption 1. θ = min
s∈S,i=0,...H−1

θi(s) > 0, where θi(s) = min
a 6=a∗

(V∗i (s)−Q∗i (s, a)) ∀s ∈ S, a ∈

A(s) and i = 0, . . . , H − 1.

A small value of θ means increased difficulty in differentiating between the truly
optimal action and the best suboptimal action(s). Therefore, θ gives a measurement on the
“size” of the problem.

We are finally ready to leap from NREGA to the recursive REGA algorithm. We start
by restating Lemma 3.3 of [3] in a manner that is useful and applicable to REGA. We refer
the reader to the original manuscript for the proof but note that equation (11) as it originally
appears in Lemma 3.3 of [3] is unnecessarily loose, where Ni

a(x) is bounded from above
by Ki+1 instead of Ki. Using the lemma as-is causes our lower bound on the probability
in Theorem 2 to converge to 0 instead of 1 as the number of simulations at each stage of
the MDP is increased to infinity, whereas one would expect the bound to improve as the
number of samples is increased. We necessarily use the tighter bound.

Lemma 3. Consider REGA applied with Mi simulations allocated to each stage i = 0, . . . , H − 1.
Suppose that Assumption 1 holds, and suppose that δi ∈ (0, 1) satisfies
P
(∣∣Q̂i,Mi (s, a)−Q∗i (s, a)

∣∣ > θ
2i+2

)
< δi for all i and s ∈ S. At the exit step we have

P
(∣∣V̂0,M0 (s0)−V∗0 (s0)

∣∣ < θ

2

)
> (1− δ0)

H−1

∏
i=1

(1− δi)
∏i−1

j=0 Mj .

Stats 2023, 6 106

The following definition is needed in the next theorem:

ξi =
RmaxH + θ/2i+2

RmaxH
log
(

RmaxH + θ/2i+2

RmaxH

)
− θ/2i+2

RmaxH
.

We now state our main result pertaining to the REGA algorithm in the form of a finite-
time bound on the probability that the approximation error of the MDP value function
exceeds half the size of the problem, i.e., θ/2. The bound is given as a function of the
number of simulations Mi allocated at each stage.

Theorem 2. Suppose that Assumption 1 holds and that the requirements of Corollary 1 are satisfied
for each stage i of the MDP, where ξε is replaced with ξi. Let φ > 1 be fixed, and suppose that

Mi =
i−1

∏
j=0

Mφ/(α−1)
j for all i = 1, . . . , H − 1. Denote Ψ = (c+1)2

2 + ec + 2. If M0 is large enough

such that ΨM1−α
0 < 1, then at the exit step of REGA we have

P
(∣∣V̂0,M0(s0)−V∗0 (s0)

∣∣ < θ

2

)
>
(

1−ΨM1−α
0

)HM(α−1)/φ
0 .

Proof. Via Corollary 1, it holds for each stage i = 0, . . . , H − 1 that

P
(∣∣Q̂i,Mi (s, a)−Q∗i (s, a)

∣∣ > θ

2i+2

)
< ΨM1−α

i .

Via Lemma 3, we have

P
(∣∣V̂0,M0(s0)−V∗0 (s0)

∣∣ < θ

2

)
>
(

1−ΨM1−α
0

) H−1

∏
i=1

(
1−ΨM1−α

i

)∏i−1
j=0 Mj

=
(

1−ΨM1−α
0

) H−1

∏
i=1

(
1−ΨM1−α

i

)M(α−1)/φ
i

>
(

1−ΨM1−α
0

)HM(α−1)/φ
0 ,

where the last inequality follows from the fact that
(
1−Ψx1−α

)x(α−1)/φ

is increasing in x.
This completes the proof.

We conclude by noting that the bound on the probability in Theorem 2 goes to 1 as
M0 → ∞.

4. Empirical Results

Value iteration and policy iteration are classical exact methods for solving MDPs. One
iteration of these methods has runtime complexity O(|S|2|A|) and O(|S|2|A|+ |S|3), which
are nonlinear in the size of the state space |S|. On the other hand, REGA and RASA have
runtime complexity O

(
(maxh=0,...,H−1{Nh})H

)
, which is independent of the size of the

state space. Although the runtime complexities of REGA and RASA are also independent of
the size of the action space, the accuracies of the algorithms are certainly dependent on the
size of the action space. As such, REGA and RASA are generally not well-suited for MDPs
with large action spaces. Due to the backward induction process, the runtime complexities
of REGA and RASA grow exponentially as the sampling horizon H is increased. Thus,
REGA and RASA are particularly attractive algorithms for problems with a large state
space S, small action space A, and small horizon H.

Stats 2023, 6 107

One solution to the exponential runtime complexity issue pertaining to a large horizon
H is to use rolling-horizon control (RH), also known in the literature as receding/moving
horizon control. RH provides an approximate solution to infinite horizon control problems
in an online manner. The basic idea is to consider a fixed horizon length to determine the
best policy/action at the current stage, ignoring stages far out into the future in the hope
that they have little effect on the decision being made at the current stage. If the length of
this “sliding” lookahead window is chosen to be large enough, then the error induced by
this approach can be made small. For further information, we refer the reader to [17].

4.1. SysAdmin Problem

In what follows, we demonstrate the performance of REGA when applied to the
well-known SysAdmin discrete-time problem (c.f. [18]). In the SysAdmin problem, a system
administrator manages B computing machines that are connected via a known network
configuration, so that each machine b = 1, . . . , B is connected to a subset of “neighboring”
machines N(b). Let Ih

b denote the state of machine b at horizon h = 1, . . . , H, where Ih
b = 1

indicates that the machine is in working state, and Ih
b = 0 indicates that the machine

is in faulted state. The state of the system at time h can be captured as a binary vector
< Ih

1 , Ih
2 , . . . , Ih

B >, so the size of the state space is 2|B|, which is exponential to the number
of machines. At each time step, the system administrator collects rewards r(b) associated

with machines b that are in working state. The objective is to maximize E

[
H

∑
h=1

B

∑
b=1

r(b) Ih
b

]
,

the expected total (nondiscounted) reward over the entire horizon of the problem, where
the expectation is taken with respect to machine states.

At each time step, the system administrator has to decide to either reboot a particular
machine or not reboot any machine at all. Only one machine can be rebooted at each time
step. Hence, the action space includes |B|+ 1 actions. We denote the action taken at each
horizon h by a binary vector < Ah

1, Ah
2, . . . , Ah

B >, where Ah
b = 1 if machine b is rebooted,

and Ah
b = 0 otherwise. Since, at each time step, at most one machine can be rebooted, we

have 0 ≤
B

∑
b=1

Ah
b ≤ 1.

Machine states are controlled via the following (stochastic) rules: If any machine in
N(b) is in faulted state, then b also fails with high probability p1. On the other hand, if
none of the machines in N(b) is in faulted state, then b can still fail with a much smaller
probability p2. When a machine is rebooted, it fails to start up in a working state with a
very small probability p3. The transitional probabilities for each machine can be formally
stated as follows:

1. A faulted machine that is not rebooted remains in a faulted state.

P
(

Ih+1
b = 0 | Ih

b = 0 , Ah
b = 0

)
= 1.

2. A machine in working state that is not rebooted enters a faulted state with different
probability depending on the state of neighbor machines. Let statement T denote that
∃ β ∈ N(b) s.t. Ih

β = 0.

P
(

Ih+1
b = 0 | Ih

b = 1 , Ah
b = 0

)
=

{
p1, T true
p2, o/w

P
(

Ih+1
b = 1 | Ih

b = 1 , Ah
b = 0

)
=

{
1− p1, T true
1− p2, o/w

3. Rebooting a machine can result in it becoming in faulted state (regardless of its
current state).

P
(

Ih+1
b = 0 | Ih

b ∈ {0, 1} , Ah
b = 1

)
= p3.

Stats 2023, 6 108

P
(

Ih+1
b = 1 | Ih

b ∈ {0, 1} , Ah
b = 1

)
= 1− p3.

Typically, in the literature, the SysAdmin problem is modeled as a finite horizon
discrete-time MDP with total (undiscounted) reward criteria. Due to the size of the state
space, it is often cited in articles related to factored MDPs (c.f. [18]).

4.2. Results

We consider two network topologies: a ring configuration and a star configuration.
In the ring configuration, each machine b ∈ B is connected to two neighboring machines
b− 1 and b + 1 (arithmetic taken modulo |B|). In the star configuration, there is one central
server, and all other machines are connected only to the central server. The two topologies
are depicted in Figure 1.

Figure 1. Example network topologies.

In addition to REGA and RASA, we also consider a modification to REGA that is
consistent with the original ε-greedy method of [10] that is heavily cited in the literature,
where denominator

√
m in Equation (1) is replaced with m. We refer to this method as

original REGA (OREGA). We also consider a trivial purely greedy strategy (PGS) where
each action is sampled exactly once, after which each iteration of the algorithm plays the
machine with highest observed average reward. Using custom C++ code running on a
quad-core CPU and 12GB of RAM, and allowing each run to execute for one minute, we
simulated REGA, RASA, OREGA, and PGS against the cycle and star network topologies
of 10 machines with an initial state of all machines being online. The problems have
state spaces with 210 states and action spaces with 11 actions. We set the horizon of the
problem to H = 3. The number of simulations was set to a constant across all stages (i.e.,
M1 = M2 = M3). The reward of machine i being online was set to i in order to eliminate
any simplifications introduced by symmetry where trivial strategies can perform well. The
machine failure rates were set to p1 = 0.7, p2 = 0.1 and p3 = 0.01. For REGA and OREGA,
we set the parameters ci to c1 = c2 = c3 = 6 (the performance of the ε-greedy method, and
thus REGA, is generally sensitive to the choice of values ci. Our choice is not necessarily the
best, but performed well). For RASA we set the tuneable parameter µi = 1− 2−1/Mi as was
chosen in the simulations described by the original paper [3]. Each simulation was repeated
30 times in order to calculate the average reward and standard error for each setting. REGA
and RASA achieved similar performances and, as expected, both outperformed the trivial
PGS policy. Interestingly, OREGA did not perform as well as REGA and RASA, and this
will be investigated in more detail in future work. Tables 1 and 2 summarize the results of
our simulations. The same results are plotted in Figures 2 and 3. For both networks, one
can verify via value iteration that the optimal value is V∗ = 149.93.

Stats 2023, 6 109

Table 1. Performance of REGA, RASA, OREGA, and PGS against a cycle network configuration of
10 machines with machine failure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01. The optimal value is
V∗ = 149.93.

Mi REGA RASA OREGA PGS

35 160.8 (0.99) 158.7 (0.85) 161.0 (0.92) 139.8 (0.77)
75 151.0 (0.81) 150.5 (0.84) 149.6 (1.03) 135.1 (0.43)

100 148.1 (0.88) 147.1 (0.65) 143.7 (0.58) 132.7 (0.51)
125 144.6 (0.43) 145.0 (0.52) 140.2 (0.62) 132.3 (0.42)
150 144.5 (0.52) 144.5 (0.73) 138.7 (0.49) 131.4 (0.33)
175 142.6 (0.50) 141.8 (0.46) 137.0 (0.36) 131.2 (0.33)
200 142.1 (0.41) 141.9 (0.56) 136.3 (0.31) 131.8 (0.35)
225 140.7 (0.42) 141.5 (0.57) 135.5 (0.29) 130.3 (0.27)
250 140.7 (0.39) 140.8 (0.48) 135.0 (0.27) 131.2 (0.39)

Table 2. Performance of REGA, RASA, OREGA, and PGS against a star network configuration of
10 machines with machine failure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01. The optimal value is
V∗ = 149.93.

Mi REGA RASA OREGA PGS

35 162.7 (0.58) 159.5 (0.93) 163.6 (0.34) 145.2 (0.76)
75 153.6 (0.79) 152.4 (0.73) 152.9 (0.65) 139.2 (0.46)

100 149.6 (0.52) 149.9 (0.60) 146.7 (0.58) 138.4 (0.47)
125 149.4 (0.61) 147.3 (0.57) 143.5 (0.50) 137.8 (0.40)
150 147.8 (0.44) 148.0 (0.47) 142.4 (0.32) 138.0 (0.37)
175 146.1 (0.48) 146.3 (0.41) 141.7 (0.39) 137.9 (0.46)
200 145.8 (0.51) 145.9 (0.50) 141.3 (0.29) 136.4 (0.40)
225 145.4 (0.40) 145.0 (0.49) 140.5 (0.27) 137.0 (0.27)
250 145.1 (0.37) 144.7 (0.48) 140.3 (0.26) 136.5 (0.37)

Figure 2. Performance of REGA, RASA, and PGS against a cycle network configuration of 10 machines
with machine failure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01.

Figure 3. Performance of REGA, RASA, and PGS against a star network configuration of 10 machines
with machine failure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01.

Stats 2023, 6 110

5. Discussion

We introduced REGA, a recursive method based on the well-known ε-greedy multi-
armed bandit algorithm useful for numerically solving MDPs with (possibly large) state
spaces, but small action spaces. Indeed, the curse of dimensionality renders the algorithm
most suitable for small finite-horizon settings, but techniques such as rolling-horizon con-
trol can aid in such situations. Due to the numerical nature of REGA, it can be of particular
interest to use the algorithm to train model-free reinforcement learning and deep rein-
forcement learning problems. Indeed, the algorithm does not impose any restrictions on
how the agent interacts with the environment, and so long as the state transition function
f (s, āi, wi

m) and immediate reward R(s, āi, wi
m) can be computed (or simulated), then the

Q-value estimates can be updated as per the REGA algorithm specification. Furthermore, if
training the reinforcement learning models can occur offline with less sensitivity to running
time, then exploring larger horizon settings may be feasible. We leave the investigation of
applying REGA to appropriate popular and/or benchmark prediction and control problems
from reinforcement learning as future work.

We provided finite-time analysis of REGA and showed that the bound on the error
induced by the algorithm approaches zero as the number of sample points at each stage
of the MDP is increased. The algorithm was tested empirically against the SysAdmin
benchmark problem with up to 210 states. In our experiments, we found that a modification
to the exploration/exploitation trade-off model of the ε-greedy method commonly cited in
the literature yields improved results in practice, and that will be further investigated in
future work. Other directions of future study include constructing a counterpart algorithm
that is useful for MDPs with large action spaces and small state spaces. It would also be of
interest to carry out a formal theoretical analysis comparing the expected performance of
REGA and RASA.

Author Contributions: Methodology, I.M. and J.H.; software, I.M.; formal analysis, I.M. and J.H.;
writing—original draft preparation, I.M.; writing—review and editing, I.M.; supervision, J.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Lemma 1

Let x >
(
c2 + c

)2, and consider function b(x) = − log
(
1− c/

√
x
)
. We have lim

x→∞
b(x) =

0 and b′(x) < 0. Therefore, b is positive and decreasing in x, so the definite integral of b can
be bounded from below by the right-hand Riemann sum, and from above by the left-hand
Riemann sum, yielding

0 <
∫ r+M+1

r+1
b(x)dx ≤

r+M

∑
i=r+1

b(i) ≤
∫ r+M

r
b(x)dx. (A1)

To prove the first part, we bound the function b from below. Identity log(1− y) < −y
holds for y ∈ (0, 1). Since c/

√
x ∈ (0, 1), we obtain

b(x) >
c√
x

. (A2)

Combining Equations (A1) and (A2) yields

Stats 2023, 6 111

r+M

∑
i=r+1

b(i) ≥
∫ r+M+1

r+1
b(x)dx

>
∫ r+M+1

r+1

c√
x

dx

= 2c
(√

r + M + 1−
√

r + 1
)

=
2cM√

r + M + 1 +
√

r + 1

>
cM√

r + M + 1
,

which proves the first part. We now turn our attention to the second part of our claim. For

brevity, denote u =
(c2 + c)(

√
x− c)√

x− c2 − c
. Basic algebraic steps show that

− log(1− c√
x
) = log

(
(u− c)(c + 1)

cu

)
= log(1− c

u
)− log(1− c

c2 + c
) =

∫ u

c2+c

c
t(t− c)

dt.

≤
∫ u

c2+c

c + 1
t2 dt =

c√
x− c

<
c + 1√

x
. (A3)

Combining Equations (A1) and (A3) yields

r+M

∑
i=r+1

b(i) ≤
∫ r+M

r
b(x)dx

≤
∫ r+M

r

c + 1√
x

dx

= 2(c + 1)
(√

r + M−
√

r
)

=
2(c + 1)M√
r + M +

√
r

<
(c + 1)M√

r
.

This completes the proof of Equation (3). We now prove Equation (4). Squaring both
sides of Equation (A3) yields

log2(1− c√
x
) <

(c + 1)2

x
.

Therefore,
r+M

∑
i=r+1

log2(1− c√
i
) <

r+M

∑
i=r+1

(c + 1)2

i
. (A4)

However, 1/x is positive and decreasing for x > 0; therefore, its definite integral can
be bound from below by the function’s right-hand Riemann sum. Hence,

r+M

∑
i=r+1

(c + 1)2

i
≤
∫ r+M

r

(c + 1)2

x
dx = (c + 1)2 log

(
1 +

M
r

)
,

which completes the proof.

Stats 2023, 6 112

References
1. Hernández-Lerma, O. Adaptive Markov Control Processes; Applied Mathematical Sciences; Springer: New York, NY, USA, 1989.
2. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st ed.; John Wiley & Sons, Inc.: New York,

NY, USA, 1994.
3. Chang, H.S.; Fu, M.C.; Hu, J.; Marcus, S.I. Recursive Learning Automata Approach to Markov Decision Processes. IEEE Trans.

Automat. Control 2007, 52, 1349–1355. [CrossRef]
4. Chang, H.S.; Fu, M.C.; Hu, J.; Marcus, S.I. Simulation-Based Algorithms for Markov Decision Processes; Communications and Control

Engineering; Springer: London, UK, 2007.
5. Hu, J.; Chang, H.S. An Approximate Stochastic Annealing algorithm for finite horizon Markov decision processes. In Proceedings

of the 2010 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5338–5343.
[CrossRef]

6. Bertsekas, D.P.; Tsitsiklis, J.N. Neuro-Dynamic Programming, 1st ed.; Athena Scientific: Nashua, NH, USA, 1996.
7. Santharam, G.; Sastry, P.S. A Reinforcement Learning Neural Network for Adaptive Control of Markov Chains. Trans. Syst. Man

Cybern.—Part A Syst. Hum. 1997, 27, 588–600. [CrossRef]
8. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, King’s College, Cambridge, UK, 1989.
9. Watkins, C.; Dayan, P. Technical Note: Q-Learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
10. Auer, P.; Cesa-Bianchi, N.; Fischer, P. Finite-time Analysis of the Multiarmed Bandit Problem. Mach. Learn. 2002, 47, 235–256.

[CrossRef]
11. Muqattash, I.M. Multi-Armed Bandits with Applications to Markov Decision Processes and Scheduling Problems. Ph.D. Thesis,

Stony Brook University, Stony Brook, NY, USA, 2014.
12. Auer, P.; Cesa-Bianchi, N.; Freund, Y.; Schapire, R.E. The Nonstochastic Multiarmed Bandit Problem. SIAM J. Comput. 2003,

32, 48–77. [CrossRef]
13. Bubeck, S.; Cesa-Bianchi, N. Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Found. Trends Mach.

Learn. 2012, 5, 1–122. [CrossRef]
14. Pandey, S.; Chakrabarti, D.; Agarwal, D. Multi-armed Bandit Problems with Dependent Arms. In ICML ’07: Proceedings of the

24th International Conference on Machine Learning; ACM: New York, NY, USA, 2007; pp. 721–728. [CrossRef]
15. Serfling, R. Some Elementary Results on Poisson Approximation in a Sequence of Bernoulli Trials. SIAM Rev. 1978, 20, 567–579.

[CrossRef]
16. Topsφe, F. Some Bounds for the Logarithmic Function. Res. Rep. Collect. 2004, 7, 1–20.
17. Hernández-Lerma, O.; Lasserre, J.B. Error bounds for rolling horizon policies in discrete-time Markov control processes. IEEE

Trans. Autom. Control 1990, 35, 1118–1124. [CrossRef]
18. Guestrin, C.; Koller, D.; Parr, R.; Venkataraman, S. Efficient Solution Algorithms for Factored MDPs. J. Artif. Int. Res. 2003,

19, 399–468. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TAC.2007.900859
http://dx.doi.org/10.1109/CDC.2010.5717689
http://dx.doi.org/10.1109/3468.618258
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1023/A:1013689704352
http://dx.doi.org/10.1137/S0097539701398375
http://dx.doi.org/10.1561/2200000024
http://dx.doi.org/10.1145/1273496.1273587
http://dx.doi.org/10.1137/1020070
http://dx.doi.org/10.1109/9.58554
http://dx.doi.org/10.1613/jair.1000

	Introduction
	The Algorithm
	Theoretical Analysis
	Empirical Results
	 SysAdmin Problem
	Results

	Discussion
	Appendix A
	References

