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Abstract: Inferring other agents’ mental states, such as their knowledge, beliefs and intentions, is
thought to be essential for effective interactions with other agents. Recently, multi-agent systems
trained via deep reinforcement learning have been shown to succeed in solving various tasks. Still,
how each agent models or represents other agents in their environment remains unclear. In this work,
we test whether deep reinforcement learning agents trained with the multi-agent deep deterministic
policy gradient (MADDPG) algorithm explicitly represent other agents’ intentions (their specific aims
or plans) during a task in which the agents have to coordinate the covering of different spots in a
2D environment. In particular, we tracked over time the performance of a linear decoder trained
to predict the final targets of all agents from the hidden-layer activations of each agent’s neural
network controller. We observed that the hidden layers of agents represented explicit information
about other agents’ intentions, i.e., the target landmark the other agent ended up covering. We also
performed a series of experiments in which some agents were replaced by others with fixed targets
to test the levels of generalization of the trained agents. We noticed that during the training phase,
the agents developed a preference for each landmark, which hindered generalization. To alleviate
the above problem, we evaluated simple changes to the MADDPG training algorithm which lead to
better generalization against unseen agents. Our method for confirming intention modeling in deep
learning agents is simple to implement and can be used to improve the generalization of multi-agent
systems in fields such as robotics, autonomous vehicles and smart cities.

Keywords: multi-agent reinforcement learning; theory of mind; artificial neural networks

1. Introduction

The ability of humans to infer the mental states of others, such as their beliefs, desires,
or intentions, is called theory of mind (ToM) [1,2]. Inferring other agents’ intentions
gives an advantage both in cooperative tasks, where participants have to coordinate their
activities, and in competitive tasks, where one might want to guess the next move of one’s
opponent. Predicting other agents’ unobservable intentions from a few observable actions
has important practical applications. For example, with self-driving cars, the behavior
modeling of other traffic participants is seen as a crucial ingredient of human-level driving
capability [3,4].

In this work, we investigate to which degree artificial agents trained with the multi-
agent deep deterministic policy gradient (MADDPG) deep reinforcement learning algo-
rithm [5] have the ability to infer the intentions of other agents. Our experiments were based
on a cooperative navigation task from [5], where three agents have to cover three landmarks
and coordinate between themselves to decide which agent covers which landmark (see
Figure 1). We applied a linear readout probe to each agent’s hidden-layer activations and
tried to predict the final landmarks covered by other agents at the end of the episode.
If early in the episode, the other agents’ final landmarks can be accurately predicted, then
we could claim that the agents are representing information about others’ specific plans,
and hence to some extent infer their intentions.
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Figure 1. Cooperative navigation task. Large purple circles are agents; small black circles are
landmarks. The reward scheme incentivizes the coverage of each landmark by a different agent
without collisions. (Left): Initial layout, agents and landmarks are positioned randomly. (Right):
Final result; each landmark is covered by one agent.

In our experiments, we indeed showed that the intentions of other agents can be
decoded from an agent’s hidden-layer activations using a linear decoder, though the
same information cannot be linearly decoded from the observations only (based on which,
the hidden-layer activations are computed). This means that agents apply a learned
transformation to the observation, which makes this information more explicit in hidden
layer 1. Interestingly, the same information can be decoded less accurately from hidden
layer 2.

Probing the agents’ minds to read out their intentions clearly showed that training
multiple agents jointly using reinforcement learning leads to severe co-adaptation where
agents overfit to their training partners and do not generalize well to novel agents. For ex-
ample, we demonstrate that in a cooperative navigation task, the agents trained using
the MADDPG algorithm develop favorite landmarks, and these are different for all three
trained agents. The lack of generalization is exposed when a MADDPG-trained agent is put
together with two “Sheldon” agents—agents that always go to the same fixed landmark
(named after a character in “The Big Bang Theory” who insisted on sitting in the same spot
on the couch.). We show that the performance of an agent degrades substantially when the
only remaining available landmark is its least-favorite one.

Finally, we evaluate a number of changes to the MADDPG algorithm that make
this problem less severe. In particular, randomizing the order of agents for each episode
improves the generalization result, whereas the ensembling suggested in [5] does not.

The main contributions of the paper are:

• We show that deep reinforcement learning agents trained with the MADDPG algo-
rithm in cooperative settings learn models which represent information about the
intentions of other agents.

• We show that jointly trained MADDPG agents co-adapt to each other and do not
generalize well when deployed with agents that use unseen policies.

• We evaluate a number of changes to the MADDPG algorithm that alleviate the gener-
alization gap to some degree.

2. Related Work

There is a wealth of literature about modeling other agents in multi-agent systems
using classical methods [6], but we specifically focus on the use of deep neural networks
for the task [2]. Furthermore, while most of the work in the area of ToM for artificial
agents focuses on evaluating their beliefs—for example, if they pass some variation of the
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Sally-Anne test [7,8]; then, we specifically focus on the intentions of the agents. In this work,
we define an intention as a plan to cover a specific landmark. We believe this is aligned
with the common definition, where desires represent the goals of the agents and intentions
represent concrete plans to achieve those goals [9]. Finally, commonly these works focus on
the explicit prediction of beliefs [8]—i.e., can a deep neural network represent the beliefs
of the other agent? In contrast, our work shows that the representations of intentions of
other agents emerge as side-effects when training the agents with the task-specific objective
function. This is called implicit modeling, and it is similar to the approach used in [10–12].

The most similar approach to ours has been previously applied in the context of
perspective taking [12]. Compared to our work, they focused on a single-agent use case and
modeling the field-of-view of another (static) agent. We found a similar result for modeling
intentions in a cooperative multi-agent task. In the context of self-driving cars, the behavior
prediction of other traffic agents is also a widely studied problem [3,4], but again, usually
explicit prediction of future actions of other agents is used instead of implicit modeling
of their intentions. The use of linear probes to understand intermediate layers of neural
networks was proposed in [13].

Co-adaptation of trained agents to their training partners has been observed before
in both cooperative and competitive tasks [14,15]. The proposed solutions [16,17] often
assume that there are some similarities between the partners seen during training and new
partners seen at test time, or that behaviors of other agents come from a fixed set. In our
work, we show that exposure to a variety of behaviors at training time indeed benefits
generalization. We also show that there are subtle ways in which generalization can be
hindered, e.g., by having agents in a fixed order in the observation data structure.

3. Background
3.1. Multi-Agent Reinforcement Learning

A reinforcement learning problem is often modeled as a Markov decision process
(MDP) [18]. In an MDP, an agent acts in an environment that has a state s ∈ S , and the
agent uses it to choose its action a ∈ A according to its stochastic policy π(a|s). Taking
this action produces scalar reward r = R(s, a) and causes the environment to change its
state according to probability distribution P(s′|s, a). The initial state s0 is chosen from some
distribution σ.

The process of the agent choosing an action and environment transitioning to a new
state is repeated until the end of the episode, and it produces a trajectory of states, actions
and rewards τ = {s0, a0, r1, s1, a1, r2, s2, . . . , rT , sT}, where T is the length of the trajectory.
The agent aims to find an optimal policy π∗ that maximizes its total expected return
R(τ) = ∑T

t=0 γtrt, where γ is the discount factor to make future rewards less valuable than
immediate rewards.

In a partially observed MDP (POMDP) [19], the agent does not see the full environment
state, just a partial observation o = ω(s). Therefore, the agent chooses its actions according
to a policy conditioned on observations, not on states: π(a|o).

The extension of POMDP to a multi-agent case is called a Markov game [20]. It largely
follows the same formalism, except that each agent i sees its own observation oi = ωi(s)
and has its own policy πi(ai|oi) and reward function ri = Ri(s, ai). When transitioning to a
new state, the state transition function takes into account simultaneous actions from all N
agents: P(s′|s, a1, . . . , aN). The trajectory has the same form: τ = {s0, a0, r1, s1, a1, r2, s2, . . .},
where at and rt represent vectors of actions and rewards from all agents. Each agent i aims
to maximize its own total expected return: Ri(τ) = ∑T

t=0 γtri
t.



Stats 2023, 6 53

3.2. Value Functions

Many algorithms for reinforcement learning make use of value functions that represent
the “goodness” of a state or an action in terms of potential future rewards [21]. A state-value
function represents the total expected return from a state s using policy π:

Vπ(s) = E
τ∼π

[R(τ)|s0 = s],

where expectation is established for the trajectories induced by policy π. Similarly, an
action–value function or Q-function represents the total expected return when choosing
action a in state s:

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a].

The optimal action–value function represents the maximum return by the best possi-
ble policy:

Q∗(s, a) = max
π

Qπ(s, a).

It can be found through temporal-difference learning [21,22], which means iteratively
updating Q-function according to Bellman equation:

Q∗(s, a) = E
s′∼P

[
R(s, a) + γ max

a′
Q∗(s′, a′)

]
.

Once the optimal action–value function is found, it can be turned into an optimal
policy by just finding the highest-scoring action for a given state:

π∗(s) = argmax
a

Q∗(s, a).

3.3. Deep Deterministic Policy Gradient (DDPG)

Policy gradient methods for reinforcement learning [23] adjust the parameters θ of
policy πθ directly to maximize the objective

J(θ) = E
τ∼πθ

[R(τ)].

Policy gradient theorem [23] states that the gradient of the above objective can be
written as

∇θ J(θ) = E
τ∼πθ

[
T

∑
t=0

(∇θ log πθ(at|st))Qπ(st, at)

]
.

The state–value function Qπ is called a critic in this context, and policy πθ is called an
actor. The algorithms using this form of policy update are called actor–critic algorithms [21].

Deterministic policy gradient (DPG) [24] allows learning deterministic policies for
continuous action spaces by plugging the deterministic policy function a = µθ(s) directly
into the objective function of expected action–value Qµ

φ for all states:

J(θ) = E
s∈S

[
Qµ

φ(s, µθ(s))
]
.

In this case, the gradient expression for policy weights θ has the following form:

∇θ J(θ) = E
s∈S

[
∇θµθ(s)∇aQµ

φ(s, a)|a=µθ(s)

]
.
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The algorithm alternates between learning Q-function Qµ
φ and policy function πθ

using the above equation. Q-function parameters φ are learned using temporal-difference
learning by minimizing the mean-squared Bellman error over collected dataset D:

L(φ) = E
(s,a,r,s′)∼D

[(
Qµ

φ(s, a)− (r + γQµ
φ(s
′, µθ(s′)))

)2
]

.

Deep deterministic policy gradient (DDPG) [25] approximates Q-function Qµ
φ and

policy µθ using deep neural networks and makes use of replay memory and target networks
to stabilize the learning [26].

3.4. Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

The multi-agent deep deterministic policy gradient (MADDPG) algorithm [5] adapts
the DDPG algorithm to multi-agent settings. It can be used with both cooperative and
competitive tasks, and it does not make any assumptions regarding the environment or
communication channel between the agents (e.g., differentiability). It adopts the framework
of centralized training and decentralized execution, which means that information about
all agents is used at training time to learn the action–value function (critic), but the policy
function (actor) relies only on individual agent observation at execution time (see Figure 2).

Figure 2. The centralized training decentralized execution framework proposed in the multi-agent
deep deterministic policy gradien (MADDPG) algorithm. The action–value function Qµ

i for agent
i makes use of observations and actions of all agents but is used only at training time. During the
evaluation, the policy function µi for each agent i depends only on the agent’s local observation oi

when producing action ai. In this work linear probes depicted by syringe are used at observation,
hidden layer 1, hidden layer 2, and action level to predict the final landmark of other agents.

In particular, given observations x = (o1, . . . , oN) , actions a = (a1, . . . , aN), policies
µµµ = (µ1, . . . , µN) parameterized by (θ1, . . . , θN) and action–value functions (Qµµµ

1 , . . . , Qµµµ
N)

parameterized by (φ1, . . . , φN), the policy for agent i is learned using following
gradient update:

∇θi J(θi) = E
x,a∼D

[
∇θi µi(ai|oi)∇ai Q

µµµ
i (x, a1, . . . , aN)|ai=µi(oi)

]
The key difference from vanilla DDPG gradient expression is that observations and

actions of all agents are used to estimate the action–value and are assumed to be accessible
at training time. At the same time, each agent has its own action–value function, which
allows them to have differing objectives, e.g., competition. For simplicity of notation,
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the state is shown as consisting of the observations of all agents, but it can contain also
additional information. The critic is learned by minimizing the following loss function:

L(φi) = E
x,a,r,x′∼D

[(
Qµµµ

i (x, a1, . . . , aN)− y
)2
]

, y = ri + γQµµµ′

i (x′, a′1, . . . , a′N)|a′i=µ′i(o
′
j)

,

where µ′µ′µ′ = (µ′1, . . . , µ′N) is the set of target policies with delayed parameters (θ′1, . . . , θ′N).

3.5. Cooperative Navigation Task

Our experiments are based on a cooperative navigation task described in [5]. In this
task, three agents try to cover three landmarks and have to coordinate which agent covers
which landmark (see Figure 1). The reward at every time step is

r = −∑
i

minj(dij)− c

where dij is the distance from landmark i to agent j and c is the number of collisions. These
rewards incentivize each landmark to have exactly one agent close to it and to have as few
collisions as possible. The observation of each agent consists of 14 real values: the velocity
of the agent (2), the position of the agent (2), the egocentric coordinates of all landmarks (6),
and the egocentric coordinates of all other agents (4). The action of an agent consists of five
real values: acceleration in four possible directions (only positive values) and a dummy
value for no action. Accelerations in opposing directions are summed up.

4. Methods

We followed the training scheme from [5] and used the MADDPG algorithm with
default settings. The network had two fully connected hidden layers with 128 nodes,
each followed by rectified linear unit (ReLU) non-linearity. We trained the agents for
100,000 episodes, which was approximately when the convergence happened. Thereafter,
we evaluated the frozen agents for 4000 episodes and recorded the observations, hidden-
layer activations (from both layers) and actions of each agent.

To decode other agents’ intentions, we trained a linear readout probe to predict the
indexes of the final landmarks (the landmark covered at the final timestep of the episode)
of other agents from each agent’s hidden-layer activations (see Figure 3 left). This is
treated as a classification task with three landmarks as the three classes (the readout model
has three outputs). We used 4-fold cross-validation over 4000 episodes and report the
mean classification accuracy over folds. The training was done separately for each of the
25 timesteps (all episodes were of the same length). Only those episodes where each other
agent covered just one landmark were considered. For comparison, we also trained readout
models to predict the final landmark from the observation (network’s input) and the actions
(network’s output). The use of a linear decoder model guarantees that the information
must be present explicitly in the decoder model’s input.

To test the generalization ability of the agents, we put them together with two “Sheldon”
agents—agents that each go straight to a fixed landmark (“their spots”). This leaves one
landmark free for the trained agent to cover (see Figure 3 right). We ran an evaluation for
9 possible combinations of 3 co-trained agents and 3 free landmarks. One evaluation lasted
4000 episodes, and we report the percentage of episodes where all landmarks were covered.
We compare this with the same measure from previous evaluations where all agents were
co-trained agents. All results were averaged over five random training seeds.

We tried modifications to the MADDPG algorithm to alleviate the generalization issues:

• MADDPG + shuffle: Randomize the order of agents for each episode. The order
determines the position of other agents’ data in an agent’s observation. Randomizing
makes it impossible to have fixed assumptions about other agents’ behavior.

• MADDPG + shared: A shared model for all agents is used, making them basically
equivalent and eliminating the option for landmark preferences.
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• MADDPG + ensemble: An ensemble of agents for each position is used, as suggested
in [5]. The agents in an ensemble develop different policies because of different
random initialization and different training samples they see from replay memory.
This increases the diversity of partners any agent experiences, which forces it to
develop more general strategies.

Figure 3. The tasks in this work. (Left): Reading out intentions of other agents. The hidden layer of
the agent with the black circle is used to predict the final target of all agents, including itself. The bars
inside each agent show probabilities of this agent going to the landmark of the same color. (Right):
Generalization with “Sheldon” agents. Red and green agents always go to red and green landmarks.
The trained agent in purple has to figure out it has to cover the only remaining black landmark.

5. Results
5.1. Reading Out Intentions

We observed that the agents jointly trained with the vanilla MADDPG had preferences
for certain landmarks (see also Section 5.2), and hence, in many cases the readout probe
could achieve good classification performance by just producing a constant prediction (see
Figure A1 in Appendix A). To remove such bias, we used the MADDPG + shuffle scheme for
assessing the decoding performance. Figure 4 shows the readout probe’s prediction results.

We observe that the agent predicts its own final landmark generally better than others,
which is expected because it has direct access to the hidden state that guides the actions.

The final landmarks of other agents can be predicted numerically better from hidden-
layer-1 activations than from observations or from hidden-layer-2 activations. While all
relevant information is already contained within the observation (because hidden-layer
activations are computed from observations), it is more explicitly represented in the hidden
layers and can be successfully decoded with a simple linear model. Representations in
hidden layer 2 presumably focus more on the policy (the actions to be chosen), and therefore
lose some of the information about the intention.

The output of the network (the actions) was uninformative for predicting the final
landmark of other agents, which was expected. Prediction accuracy from observations and
actions was close to chance (33%), but not exactly. This can be explained by there still being
some landmark preferences in agents, which can be learned by the linear readout probe.

The accuracy of landmark prediction for other agents from hidden layer 1 ranged
from 55% to 80% over time. While not perfectly accurate, it is clearly above the level of
chance—33% (see Figure A2 in Appendix A for p-values). Interestingly, the final landmarks
of other agents can be predicted better than chance even in the first timestep, possibly
by assuming that each agent goes to the closest landmark. There was also an increase in
prediction accuracy as the episode progressed, which was expected.
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However, we note that even in the final steps of the episode, the accuracy of landmark
prediction for other agents did not reach 100%. From observations, this can be explained
by the linear nature of the decoder, which cannot represent the distance function needed
to assess the closest landmark to each agent. From hidden-layer representations, we note
that, while they would be capable of computing the closest agent to each landmark, this
is presumably not needed to solve the task. All the agent needs is to infer if its intended
landmark will be available, and not which other agent goes to which other landmarks.

The video showcasing the intention readouts is available here: https://youtu.be/3-
pMUPPo970, (accessed on 26 December 2022).
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Figure 4. Cross-validated accuracy of a linear read-out probe for the MADDPG + shuffle scheme. All
9 combinations of 3 agents predicting the final landmarks of the other 3 agents are shown, including
the agent predicting its own final target. The y-axis is the cross-validated accuracy of a linear read-out
probe, and the x-axis is the timestep of an episode.

5.2. Generalization Gap

As noted before, agents jointly trained with the vanilla MADDPG algorithm developed
preferences for certain landmarks (see Table 1). In addition to making reading out intentions
uninformative due to a biased dataset, it was also clear that the trained agents had co-
adapted to each other, and as such would not generalize when put together with agents
unseen during training.

https://youtu.be/3-pMUPPo970
https://youtu.be/3-pMUPPo970
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Table 1. Percentage of episodes where a given agent covered a given landmark with the vanilla
MADDPG algorithm. Only those episodes where all three landmarks were covered by exactly one
agent (48% of all episodes) were counted. Agent and landmark numbers refer to their positions
in observation.

Landmark 1 Landmark 2 Landmark 3

agent 1 74% 25% 1%
agent 2 25% 75% 0%
agent 3 1% 0% 99%

To quantify the lack of generalization, we put a trained agent together with two
“Sheldon” agents, each of which always goes to a fixed landmark. This test measures the
ability of the agent to adapt its policy to an unforeseen situation where only one landmark
is free for it to achieve the goal. Indeed, the agents showed an inability to adapt to the
situation when the free landmark was their least favorite; see Table 2 for an example.

Table 2. Percentage of episodes where agents were able to cover all landmarks, when two “Sheldon”
agents covered two fixed landmarks and the given agent trained with the vanilla MADDPG had only
one free landmark to cover. Agent and landmark numbers refer to their positions in observation.

Landmark 1 Landmark 2 Landmark 3

agent 1 65% 42% 3%
agent 2 28% 75% 2%
agent 3 5% 2% 78%

Notice that these tables are not directly comparable—numbers in Table 1 represent the
frequencies of choosing particular landmarks, but numbers in Table 2 represent the fractions
of episodes where agents covered all three landmarks. Instead, the numbers in Table 2
should be compared with the reference number 48% achieved when the agent was paired
with two co-trained agents. When the target is the least preferred, then the performance
drops, but when the target is the most preferred, then the performance actually improves,
as the “Sheldon” agents are very reliable partners. Though Tables 1 and 2 showcase a single
training run for clarity, a similar pattern occurred in all runs.

5.3. Improving Generalization

To improve the generalization of the MADDPG algorithm, we tried out three different
modifications, as described in Section 4. To evaluate generalization, we compare the
performance of an agent against co-trained agents with the performance of the same agent
against “Sheldon” agents.

We report the percentage of evaluation episodes where the agents covered all three
landmarks. This number was averaged over five training runs, and in the case of gener-
alization experiments also over nine agent-landmark combinations, similarly to Table 2.
Figure 5 shows the results.

We make the following observations:

• Vanilla MADDPG agents achieved very good results when evaluated against other
co-trained agents, but failed when confronted with agents with unseen policies. A
large standard deviation with “Sheldon” agents resulted from the fact that for favorite
landmarks, the success rate was very high, and for the least favorite landmarks, the
success rate was very low (see Table 2 for an example).

• The MADDPG + shared scheme was much worse than vanilla MADDPG when
evaluated against co-trained agents, but surprisingly achieved better generaliza-
tion against “Sheldon” agents. This can be explained by the fact that “Sheldon”
agents always succeed in doing their part, whereas co-trained agents often fail due to
similar preferences.
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• The MADDPG + shuffle scheme achieved a consistent success rate both with co-
trained agents and with “Sheldon” agents. Though improving with “Sheldon” agents,
the performance with co-trained agents was worse compared to the vanilla MADDPG.

• The MADDPG + ensemble scheme improved the result with co-trained agents but did
not fix the generalization gap; the ensembles still developed favorite landmarks.

Figure 5. The percentage of episodes where all three landmarks were covered for each training
scheme. The blue bars represent the means and standard deviations over 5 runs for all trained agents.
The orange bars represent the means and standard deviations over 5× 9 runs with two “Sheldon”
agents and one trained agent. For numerical results and significance p-values, see Tables A1 and A2
in Appendix A.

We note that in only about half of the episodes, all three landmarks were covered
by the agents. The best result with co-trained agents was 60.8%, and the best result with
“Sheldon” agents was 40.4%. Usually, the reason was that one of the three agents failed
to cover its landmark, rendering the whole episode a failure. In a small number of cases,
the landmarks were generated very close to each other, which made it impossible to cover
them with different agents. The behavior of agents matched the behavior in the original
work [5]; see Table A3.

The video showcasing the generalization improvements is available here: https://
youtu.be/r5jMpdC_pSk, (accessed on 26 December 2022).

6. Discussion
6.1. Reading Out Intentions

Inferring the intentions of others is the basis for effective cooperation [27]. We studied
a simplified version of cooperation where three agents needed to cover three landmarks.
We observed that the agents learn to model the intentions of other agents: even at the
beginning of the episode, the activity of the hidden layers of a particular agent carried
information about the other agents’ plans. While the experiment was done with the
MADDPG algorithm, we do not think the results are much dependent on the training
methodology, but rather on the representation of the policy, which was an artificial neural
network in this case. We would also like to point out that the judgment of other agents’
intentions was made based on a single observation, consisting of the positions of other
agents and locations of landmarks. While this makes our intention reading rather simplistic,
we would contend that this aspect of intention modeling is a necessary building block for
reading more complex intentions.

Studying human-level intentions (and ToM) has proven to be complicated [1,28–30];
studying simple tasks with agents whose representations can be examined will provide

https://youtu.be/r5jMpdC_pSk
https://youtu.be/r5jMpdC_pSk
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unique insights into the emergence of more complex aspects of ToM [2]. In particular, being
able to manipulate the network architecture and the components of the system allows one
to answer which aspects really matter for solving a particular task. For example, inferring
and generalizing intentions seems to require explicit memory (i.e., knowledge about the
behavioral patterns of specific other agents), but our current work shows that rudimentary
intention reading can be done even without a specific memory store, using a single obser-
vation. It might be possible that for more complex scenarios, recurrent neural networks or
networks with external memory are needed. Another aspect that we consider interesting
for future exploration is the performance of intention reading in different cooperative and
competitive tasks while agents are equipped with communication channels.

6.2. Generalization in Multiagent Setups

The lack of generalization in reinforcement learning has been criticized before [31].
Especially problematic is the fact that we tend to test our agents in the same environment
that they were trained in. Multiagent training adds another dimension to the generalization
problem—the agents should also perform well against opponents and with partners unseen
during training.

In the present work, we observed that when trained with the same partners, agents
overfit to the behavior of their partners and cannot cooperate with a novel agent. While the
issue of co-adaptation during training was also raised in [5], they mainly pointed it out in
the context of competitive tasks. We show that it is just as much of a problem in cooperative
tasks. Furthermore, we demonstrated that the ensembling approach suggested in [5] does
not fix it. A more thorough analysis of the overfitting problem is presented in [15].

In principle, the solution is simple—the agents need to experience a variety of partners
during training to generalize well. Similarly to data augmentation used in supervised
training, we would need to “augment” our policies in various ways to produce the widest
variety of training partners. Unfortunately, it is not clear how to achieve this in an au-
tomated and generalizable way. Proposed approaches range from learning maximum
entropy policies [32], using quality-diversity algorithms [33], to taking inspiration from
self-play [34–36]. However, it is not clear if that process would ever produce “Sheldon”
policies used in our experiments, nor if they are actually needed.

For the evaluation of generalization, we chose agents that go to fixed landmarks. This
was done for the simplicity and reproducibility of the experiments. At the same time,
we do not think it is limiting, because by evaluating all possible combinations of each
agent against two reserved landmarks we practically test all reasonable partner behaviors.
In particular, this is equivalent to having two other agents randomly pick two landmarks.
Having two fixed partners always succeed also guarantees that we test the trained agent,
not our heuristic for the other agents.

People have experienced instabilities in self-play in competitive tasks [36,37]. We
report similar instabilities in self-play in cooperative tasks. Our proposed MADDPG +
shared algorithm sometimes performed surprisingly well with partners not seen during
training, but other times failed to learn good policies. Still, it holds the promise of possibly
learning more general policies than other approaches.

The current work did not consider deception, as in cooperative multi-agent tasks, there
is no incentive to deceive other agents. However, deception, in particular, discriminating a
real intention from the fake one is an important property of competitive multi-agent tasks.
We leave it as future work and refer to [38] for further reading.

The ability of agents to make decisions having only limited information about the
environment and within limited computational power is called bounded rationality [39].
Partial observability in multi-agent Markov games is directly related to the concept of
bounded rationality, as the full knowledge of the environmental state or the states of
other agents might not be known. Although our task happens to be fully observable,
the underlying MADDPG algorithm has been shown to work also in partially observable
environments [5]. Therefore, we believe that the ability to model intentions depends more
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on the representation of the policy (as a neural network) than the observability of the
environment. We also note that the feed-forward network used in our agents uses fixed
computational power, and therefore, basic intention modeling can be done already within
the limits of bounded rationality.

7. Conclusions

When the agent controlling a self-driving car performs an unprotected left turn at
an intersection, it needs to cope with any kind of behavior from other drivers, however
hostile or incompetent they are. Inferring the intentions of other agents is therefore crucial to
behaving in a reliable manner. For example, the controlling agent of a self-driving car cannot
expect all other cars to run the same version of the same software, or even any software at
all. Thus, they need to generalize to unforeseen situations and behaviors of other drivers.

In this work, we showed that deep reinforcement learning agents trained with the
MADDPG algorithm indeed learn to model the intentions of other agents when trying to
solve a cooperative task. In a cooperative navigation task, the final target of another agent
could be predicted better from the hidden-layer activations than from the observation.
As the hidden layer is computed from observation, the learned transformation applied by
the agent must make this information more explicit so that it can be read out better with
a linear decoder. This also confirms that linear read-out probes are a good technique for
examining the learned network.

Trying to read out the intentions of agents exposed the lack of generalization in
learned models. Trained agents co-adapted to specific behaviors of each other and failed
consistently when put together with unseen agents. We showed that simple shuffling of all
agents at each episode improves the generalization, whereas ensembling does not. While
this alleviates the generalization gap somewhat, a more robust solution would be to train
the agents against opponents using a diverse range of policies.

The proposed method for confirming intention modeling in deep learning agents is
simple to implement and can be used to improve the generalization of multi-agent systems
in fields such as robotics, autonomous vehicles, and smart cities.
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Appendix A
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Figure A1. Cross-validated accuracy of linear read-out probe for the vanilla MADDPG algorithm.
The predictions are unusually good because of biases of learned agents—the read-out model can score
well by just producing constant prediction. For example, agent 3 can be predicted perfectly because
in 99% of the cases, it goes to landmark 3 (see Table 1). Still, the comments from Section 5.1 hold.



Stats 2023, 6 63

Table A1. Numerical results shown in Figure 5. Success rate refers to the fraction of episodes where
agents covered all three landmarks. The best result for each block (up to significance shown in
Table A2) is shown in bold. Notice that the results consist of 5 values in the case of co-trained agents
and 45 values in the case of “Sheldon” agents. Every single value by itself is the fraction of episodes
where all agents covered all landmarks out of 4000 evaluation episodes.

Method Success Rate ± Std.

With co-trained agents

MADDPG 0.552 ± 0.098
MADDPG + shared 0.328 ± 0.077
MADDPG + shuffle 0.43 ± 0.076

MADDPG + ensemble 0.608 ± 0.048

With “Sheldon” agents

MADDPG 0.31 ± 0.299
MADDPG + shared 0.38 ± 0.053
MADDPG + shuffle 0.404 ± 0.055

MADDPG + ensemble 0.295 ± 0.324

Table A2. Significance (p-values) for means in Figure 5 calculated using a two-sided permutation test.
Cases where the means are significantly different (p-value < 0.05) are marked as bold. Notice that the results
consist of 5 values in the case of co-trained agents and 45 in the case of “Sheldon” agents. Every single
value was the fraction of episodes where all agents covered all landmarks out of 4000 evaluation episodes.

Method A Method B p-Value

With co-trained agents

MADDPG MADDPG + shared 0.016
MADDPG MADDPG + shuffle 0.087
MADDPG MADDPG + ensemble 0.333

MADDPG + shared MADDPG + shuffle 0.087
MADDPG + shared MADDPG + ensemble 0.008
MADDPG + shuffle MADDPG + ensemble 0.008

With “Sheldon” agents

MADDPG MADDPG + shared 0.131
MADDPG MADDPG + shuffle 0.044
MADDPG MADDPG + ensemble 0.817

MADDPG + shared MADDPG + shuffle 0.036
MADDPG + shared MADDPG + ensemble 0.089
MADDPG + shuffle MADDPG + ensemble 0.030

Table A3. Metrics reported in [5] for experiments. Average distance refers to the distance from each
landmark to the closest agent, averaged over episodes, timesteps, and landmarks. Averaging over
timesteps is used to take into account how fast the agents achieve the final target. # collisions refers
to the average number of collisions over episodes and timesteps. We also show results from [5] for
context, but it was impossible to exactly match them, as the codebase had changed since publication.
It is also possible that there was some mistake in the original publication; e.g., average distance
and # collisions could have been switched, or average distance could have actually been the sum
of closest agent distances averaged over episodes and timesteps. We tried to clarify this with the
original authors, who suggested running the latest version of the published code and using it as a
baseline. This is the “MADDPG with co-trained agents“ line.

Method Average Dist. # Collisions

With co-trained agents

MADDPG 0.221 ± 0.006 0.500 ± 0.043
MADDPG + shared 0.220 ± 0.010 0.304 ± 0.079
MADDPG + shuffle 0.215 ± 0.009 0.488 ± 0.075

MADDPG + ensemble 0.212 ± 0.007 0.532 ± 0.035

With “Sheldon” agents

MADDPG 0.299 ± 0.049 6.289 ± 2.815
MADDPG + shared 0.280 ± 0.004 4.772 ± 0.342
MADDPG + shuffle 0.283 ± 0.007 4.933 ± 0.739

MADDPG + ensemble 0.303 ± 0.052 6.829 ± 3.043

Lowe et al. [5] MADDPG 1.767 0.209
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Figure A2. Significance for the accuracies shown in Figure 4. The p-values were calculated using
binomial test against chance probability 33%. This shows most of the results have very low p-values,
and therefore, were significant, with the exception of predicting from action, which was very close to
random chance, as expected. Non-random prediction from observation and action can be explained
by some remaining bias in the agents to prefer certain landmark, which can be learned by the linear
readout probe.
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