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Abstract: Using geometric considerations, we provided a clear derivation of the integral representa-
tion for the error function, known as the Craig formula. We calculated the corresponding power series
expansion and proved the convergence. The same geometric means finally assisted in systematically
deriving useful formulas that approximated the inverse error function. Our approach could be used
for applications in high-speed Monte Carlo simulations, where this function is used extensively.
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1. Introduction

High-speed Monte Carlo simulations are used for across a broad spectrum of appli-
cations, from mathematics to economics. As input for such simulations, the probability
distributions are usually generated by pseudo-random number sampling, a method de-
rived from the work of John von Neumann in 1951 [1]. In the era of “big data”, such
methods have to be fast and reliable, and a sign of this necessity was the release of Quside’s
inaugural processing unit in 2023 [2]. However, these samplings need to be cross-validated
by exact methods, and for this, the knowledge of analytical functions that describe the
stochastic processes, and among those, the error function, are of tremendous importance.

By definition, a function is called analytic if it is locally given by a converging Taylor
series expansion. Even if a function itself is not found to be analytic, its inverse could
be analytic. The error function could be given analytically, and one of these analytic
expressions was the integral representation found by Craig in 1991 [3]. Craig mentioned
this representation only briefly and did not provide a derivation of it. Since then, there have
been a couple of derivations of this formula [4–6]. In Section 2, we describe an additional
one that is based on the same geometric considerations as employed in [7]. In Section 3,
we provide the series expansion for Craig’s integral representation and show the rapid
convergence of this series.

For the inverse error function, the guidance for special functions (e.g., [8]) do not
unveil such an analytic property. Instead, this function has to be approximated. Known ap-
proximations date back to the late 1960s and early 1970s [9,10]) and include semi-analytical
approximations by asymptotic expansion (e.g., [11–16]. Using the same geometric consider-
ations, as shown in Section 4, we developed a couple of useful approximations that can
easily be implemented in different computer languages, resulting in the deviations from an
exact treatment. In Section 5, we discuss our results and evaluate the CPU time. Section 6
contains our conclusions.

2. Derivation of Craig’s Integral Representation

The authors of [7] provided an approximation for the integral over the Gaussian stan-
dard normal distribution that is obtained by geometric considerations and is related to the
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cumulative distribution function via P(t) = φ(t)− φ(−t), where φ(t) is the Laplace func-
tion. The same considerations apply to the error function erf(t) that is related to P(t) via

erf(t) =
1√
π

∫ t

−t
e−x2

dx =
1√
2π

∫ √2t

−
√

2t
e−x2/2dx = P(

√
2t). (1)

Translating the results of [7] into the error function, we obtained the approximation of
order p by the following:

erfp(t)2 = 1− 1
N

N

∑
n=1

e−k2
p,nt2

, (2)

where the N = 2p values kp,n (n = 1, 2, . . . , N) are found in the intervals between
1/ cos(π(n− 1)/(4N)) and 1/ cos(πn/(4N)). A method for selecting those values was
extensively described in [7], where the authors showed the following:∣∣∣ erf(t)−

√
1− e−k2

0,1t2
∣∣∣ < 0.0033 (3)

for k0,1 = 1.116. With 14 ≈ 0.0033/0.00024 times larger precision, the following was
expressed: ∣∣∣ erf(t)−

√
1− 1

2
(e−k2

1,1t2
+ e−k2

1,2t2
)
∣∣∣ < 0.00024, (4)

for k1,1 = 1.01 and k1,2 = 1.23345. For the parameters kp,n = 1/ cos(πn/(4N)) of the upper
limits of those intervals, we calculated the deviation by the following:

| erf(t)− erfp(t)| <
exp(−t2)

2N

√
1− exp(−t2) . (5)

Given the values kp,n = 1/ cos φ(n) with φ(n) = πn/(4N), with the limit N → ∞,
the sum over n in Equation (2) could be replaced by an integral with measure dn =
(4N/π)dφ(n) to obtain the following:

erf(t)2 = 1− 4
π

∫ π/4

0
exp

(
−t2

cos2 φ

)
dφ. (6)

3. Power Series Expansion

The integral in Equation (6) could be expanded into a power series in t2,

erf(t)2 = 1− 4
π

∞

∑
n=0

cn
(−1)n

n!
(t2)n (7)

with

cn =
∫ π/4

0

dφ

cos2n φ
=
∫ π/4

0
(1 + tan2 φ)ndφ =

∫ 1

0
(1 + y2)n−1dy

=
n−1

∑
k=0

(
n− 1

k

) ∫ 1

0
y2kdy =

n−1

∑
k=0

1
2k + 1

(
n− 1

k

)
, (8)

where y = tan φ. The coefficients cn could be expressed by the hyper-geometric function,
cn = 2F1(1/2, 1− n; 3/2;−1), also known as Barnes’ extended hyper-geometric function.
However, we could derive a constraint for the explicit finite series expression for cn that
rendered the series in Equation (7) convergent for all values of t. In order to be self-
contained, the intermediate steps to derive this constraint and to show the convergence
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were shown by the following, in which the sum over the rows of Pascal’s triangle was
required:

n

∑
k=0

(
n
k

)
= 2n.

Returning to Equation (8), we had 0 ≤ k ≤ n− 1. Therefore,

1
2n− 1

≤ 1
2k + 1

≤ 1.

The result in Equation (8) led to the following:

1
2n− 1

n−1

∑
k=0

(
n− 1

k

)
≤ cn ≤

n−1

∑
k=0

(
n− 1

k

)
= 2n−1,

where the existence of a real number c∗n is between 1/(2n− 1) and 1, such that cn = c∗n2n−1.
We found the following:

erfp(t)2 = 1− 4
π

N

∑
n=0

cn
(−1)n

n!
(t2)n = 1− 2

π

N

∑
n=0

c∗n
(−2t2)n

n!
.

Because of 0 ≤ c∗n ≤ 1, there was again a real number c∗∗N in the corresponding open
interval so that the following was true:

2
π

N

∑
n=0

c∗n
(−2t2)n

n!
= c∗∗N

2
π

N

∑
n=0

(−2t2)n

n!
<

2
π

N

∑
n=0

(−2t2)n

n!
.

As the latter was the power series expansion of (2/π)e−2t2
, which was convergent

for all values of t, the original series was then also convergent and, thus, erfp(t)2 with the
limiting value shown in Equation (7). A more compact form of the power series expansion
was expressed by the following:

erf(t)2 =
∞

∑
n=1

cn
(−1)n−1

n!
(t2)n, cn =

n−1

∑
k=0

1
2k + 1

(
n− 1

k

)
.

4. Approximations for the Inverse Error Function

Based on the geometric approach described in [7], we were able to describe simple,
useful formulas that, when guided by consistently higher orders of the approximation (2)
for the error function, led to consistently more advanced approximations of the inverse
error function. The starting point was the degree p = 0, that is, the approximation in

Equation (3). Inverting E = erf0(t) = (1− e−k2
0,1t2

)1/2 led to t2 = − ln(1− E2)/k2
0,1, and

using the parameter k0,1 = 1.116 from Equation (3) yielded the following:

T0 =
√
− ln(1− E2)/k2

0,1.

For 0 ≤ E ≤ 0.92, the relative deviation (T(0) − t)/t from the exact value t was less
than 1.11%, and for 0 ≤ E < 1, the deviation was less than 10%. Therefore, for E > 0.92, a
more precise formula has to be used. As such, higher values for E appeared only in 8% of
the cases, so this would not significantly influence the CPU demand.

Continuing with p = 1, we inserted T0 =
√
− ln(1− E2)/k2

0,1 into Equation (2) to
obtain the following:

erf1(T0) =

√
1− 1

2
(e−k2

1,1T2
0 + e−k2

1,2T2
0 ),
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where k1,1 = 1.01 and k1,2 = 1.23345 are the same as for Equation (4). Using the derivative of
Equation (1) and approximating this by the difference quotient, we obtained the following:

erf(t)− erf(T0)

t− T0
=

∆ erf(t)
∆t

∣∣∣
t=T0
≈ d erf(t)

dt

∣∣∣
t=T0

=
2√
π

e−T2
0 ,

resulting in t ≈ T1 = T0 +
1
2
√

πeT2
0 (E − erf1(T0)). In this case, for the larger interval

0 ≤ E ≤ 0.995, the relative deviation (T1 − t)/t was less than 0.1%. Using erf2(t) instead of
erf1(t) and inserting T1 instead of T0, we obtained T2 with a relative deviation of maximally
0.01% for the same interval. The results are shown in Figure 1.

Figure 1. Relative deviations for the static approximations.

The method could be optimized by a method similar to the shooting method in
boundary problems, which would add dynamics to the calculation. Suppose that following
one of the previous methods, for a particular argument E, we found an approximation t0
for the value of the inverse error function of this argument. Using t1 = 1.01t0, we could
adjust the improved result

t = t0 + A(E− erf(t0))

by inserting E = erf(t) and calculating A for t = t1. In general, this procedure provided
a vanishing deviation close to E = 0. In this case as well as for t0 = T1, in the interval
0 ≤ E ≤ 0.7, the maximal deviation was slightly larger than 10−6 = 0.0001%, while up to
E = 0.92 the deviation was restricted to 10−5 = 0.001%. A more general ansatz

t = t0 + A(E− erf(t0)) + B(E− erf(t0))
2

could be adjusted by inserting E = erf(t) for t = 1.01t0 and t = 1.02t0, and yielded the
system of equations:

∆t = A∆E1 + B∆E2
1, 2∆t = A∆E2 + B∆E2

2

with ∆t = 0.01t0. Therefore, ∆Ei = erf(ti)− erf(t0) could be solved for A and B to obtain
the following:

A = −
(2∆E2

1 − ∆E2
2)∆t

∆E1∆E2(∆E1 − ∆E2)
, B =

(−2∆E1 + ∆E2)∆t
∆E1∆E2(∆E1 − ∆E2)

.
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For 0 ≤ E ≤ 0.70, we obtained a relative deviation of 1.5 · 10−8. For 0 ≤ E ≤ 0.92, the
maximal deviation was 5 · 10−7. Finally, an adjustment of

t = t0 + A(E− erf(t0)) + B(E− erf(t0))
2 + C(E− erf(t0))

3

led to the following:

A = (3∆E2
1∆E2

2(∆E1 − ∆E2)− 2∆E2
1∆E2

3(∆E1 − ∆E3)

+ ∆E2
2∆E2

3(∆E2 − ∆E3))∆t/D,

B = (−3∆E1∆E2(∆E2
1 − ∆E2

2) + 2∆E1∆E3(∆E2
1 − ∆E2

3)

− ∆E2∆E3(∆E2
2 − ∆E2

3))∆t/D,

C = (3∆E1∆E2(∆E1 − ∆E2)− 2∆E1∆E3(∆E1 − ∆E3)

+ ∆E2∆E3(∆E2 − ∆E3))∆t/D, (9)

where D = ∆E1∆E2∆E3(∆E1 − ∆E2)(∆E1 − ∆E3)(∆E2 − ∆E3). For 0 ≤ E ≤ 0.70, the
relative deviation was restricted to 5 · 10−10, while up to E = 0.92, the maximal relative
deviation was 4 · 10−8. The results for the deviations of T(n) (n = 1, 2, 3) for linear, quadratic,
and cubic dynamical approximation are shown in Figure 2.

Figure 2. Relative deviations for the dynamical approximations (the degree was set as p = 1).

5. Discussion

In order to test the feasibility and speed, we coded our algorithm in the computer
language C under Slackware 15.0 (Linux 5.15.19) on an ordinary HP laptop with an
Intel® Core™2 Duo CPU P8600 @ 2.4GHz with 3MB memory used. The dependence of the
CPU time for the calculation was estimated by calculating the value 106 times in sequence.
The speed of the calculation did not depend on the value for E, as the precision was not
optimized. This would be required for practical application. Using an arbitrary starting
value E = 0.8, we performed this test, and the results are shown in Table 1. An analysis of
this table showed that a further step in the degree p doubled the runtime while the dynamics
for increasing n added a constant value of approximately 0.06 seconds to the result. Though
the increase in the dynamics required the solution of a linear system of equations and
the coding of the results, this endeavor was justified, as by using the dynamics, we could
increase the precision of the results without sacrificing the computational speed.
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Table 1. Runtime experiment for our algorithm under C for E = 0.8 and different values of n and p
(CPU time in seconds). As indicated, the errors are in the last displayed digit, i.e., ±0.01 s.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

p = 0 0.07(1) 0.13(1) 0.17(1) 0.21(1) 0.31(1) 0.56(1)

p = 1 0.14(1) 0.20(1) 0.24(1) 0.29(1) 0.39(1) 0.63(1)

p = 2 0.25(1) 0.32(1) 0.35(1) 0.40(1) 0.50(1) 0.75(1)

The results for the deviations in Figures 1 and 2 were multiplied by increasing the
decimal powers in order to ensure the results were comparable. This indicated that the
convergence was improved in each of the steps for p and n, at least by the corresponding
inverse power, while the static approximations n = 0 in Figure 1 showed both deviations
were close to E = 0, and for higher values of E, the dynamical approximations in Figure 2
showed no deviation at E = 0 and moderate deviations for higher values. However, the
costs for an improvement step in either p or n was, at most, a 2-fold increase in CPU time.
This indicated that the calculations and coding of expressions such as Equation (9) were
justified by the increased precision. Given the goals for the precision, the user could decide
to which degrees of p and n the algorithm should be developed. In order to prove the
precision, in Table 2, we showed the convergence of our procedure for p = 2 with fixed and
increasing values of n. The last column shows the CPU times for 106 runs of the algorithm
proposed in [12] with N given in the last column of the table in [12], as coded in C.

Table 2. Results for p = 2 and increasing values of n for values of E approaching E = 1. The last
column shows the CPU time for 106 runs according to the algorithm proposed in [12] for the values
of N, given in the last column of the table displayed in [12].

E = n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 [12]

0.7 0.732995 0.732868 0.732869 0.732869 0.732869 0.732869 0.17

0.8 0.906326 0.906193 0.906194 0.906194 0.906194 0.906194 0.19

0.9 1.163247 1.163085 1.163087 1.163087 1.163087 1.163087 0.35

0.99 1.821691 1.821376 1.821387 1.821386 1.821386 1.821386 1.95

0.999 2.326608 2.326762 2.326752 2.326754 2.326754 2.326754 14.62

0.9999 2.749217 2.751197 2.751034 2.751076 2.751056 2.751971 128.30

6. Conclusions

In this paper, we developed and described an approximation algorithm for the de-
termination of the error function, which was based on geometric considerations. As
demonstrated in this paper, the algorithm can be easily implemented and extended. We
showed that each improvement step improved the precision by a factor of ten or more, with
an increase in CPU time of, at most, a factor of two or more. In addition, we provided a ge-
ometric derivation of Craig’s integral representation of the error function and a converging
power series expansion for this formula.
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