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Abstract: The purpose of this note is to provide a description of the weak convergence of the random
resample size bootstrap empirical process. The principal results are used to estimate the sample rank
correlation coefficients using Spearman’s and Kendall’s respective methods. In addition to this, we
discuss how our findings can be applied to statistical testing.
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1. Introduction

Let us consider a random vector [rv] X = (X1, . . . , Xd) on some the probability
space (A,B,P). Let F(·) denotes the joint cumulative distribution function [cdf] and
F1(·), . . . ,Fd(·) marginal df.s. The characterisation theorem of [1] implies that there exists
a copula function C(·) in such a way that

F(x) = F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), for all x1, . . . , xd ∈ R. (1)

The copula function C(·) is a d-variate cdf on [0, 1]d with uniform distributions on the
interval [0, 1]. In the case of continuous marginal df.s F1(·), . . . , Fd(·), then the function C(·)
is uniquely defined and

C(u) = C(u1, . . . , ud) = F(F−1
1 (u1), . . . , F−1

d (ud)), (2)

where, for j = 1, . . . , d,

F−1
j (u) = inf{x : Fj(x) ≥ u} with u ∈ (0, 1]

and
F−1

j (0) = lim
t↓0

F−1
j (t) = F−1

j (0+),

is the quantile function of Fj(·). Vectors are denoted by bolded letters throughout the paper,
e.g., x = (x1, . . . , xd) is a d-dimensional vector. The inequalities x ≤ y are understood
componentwise, i.e., xj ≤ yj for all j = 1, . . . , d. Unless otherwise provided, we suppose
that the, for j = 1, . . . , d, Fj(·), are continuous functions. In the books by [2,3] the reader
can find exhaustive descriptions of the modeling theory’s components as well as surveys
of the most frequently used copulas.

For detailed and summary historical information we refer to [4]. We can refer also
to [5], where the author highlights the proof of (1), examines some of its repercussions and
some of the research on copulas. Copulas are a powerful tool for analyzing dependence
patterns, and their adaptability and versatility have been demonstrated repeatedly. To be
more specific, copula C(·) “couples” the joint distribution function F(·) to its univariate
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margins, which capture the interdependency pattern of X = (X1, . . . , Xd). In fact, the copula
can be used as an explicit expression for most common measures of dependence. This
characteristic has led to productive applications in actuarial science and survival analysis
(see, e.g., [6,7]). In the literature on risk management and, more generally, in mathematical
economics and mathematical finance modeling, there are numerous examples (refer to
books of [8,9]), in particular, in the context of asset pricing and credit risk management.

In the independent case, the empirical copula suggested by [10] took on a slightly
different shape. Researchers looked into its features and potential uses even more, [11,12]
in the general case as well as by [13,14]. These latter works introduced the empirical copula
process on a discrete grid, but referred to it by its technical term, the multivariate rank order
process. Indeed, the sequential variant was introduced and investigated in greater depth for
nonstationary and mixing random variables in that study. Further talks on the empirical
copula process may be found in [15] and the references therein. Ref. [16] demonstrated the
weak convergence of the empirical copula process under the assumption that the first-order
partial derivatives of the copula exist and are continuous on particular subsets of [0, 1]d.

Let us denote by Cn(·) the empirical copula function based on an independent sample
of size n (see, e.g., (3) below for definition). It is generally accepted that the standardized
process

√
n(Cn − C)(·) converges weakly towards a Gaussian field γ(·) (cf. (9) below)

with covariance structure is copula-dependent, hence the asymptotic limiting distributions
are not straightforward [there exists different methods to show this result, the interested
reader may refer to [10,12,16–20], the interested in learning more about the derivations of
the limit of the related empirical copula processes may look into and the references therein],
this prevents practical implementations of explicit computation. Multiple researchers have
proposed employing bootstrap approaches to approximate the limit distribution, a topic
of growing practical relevance, refer to [16,21] and the references therein for more details.
Recall that the bootstrap method is a type of resampling techniques for statistical inference,
was introduced in [22]’s seminal paper. In order to draw conclusions about the features
of the underlying population, the bootstrap relies on the assumption that a given sample
is statistically equivalent to the population as a whole, refer to [23]. For recent reference
on the subject, refer to [24–28]. The primary purpose of writing this paper is that, to
the best of our knowledge, the results presented here provide a response to a previously
understudied topic.

We begin by discussing the limiting behavior of empirical copula processes in Section 2.
Weak convergence for the bootstrapped empirical copula process when the sample size
is random is discussed in Section 3. In Section 4, we discuss how our main results can be
applied to other areas, specifically the functional of copulas and statistical tests. Some con-
cluding remarks are given in Section 5. The Appendix contains the detailed mathematical
developments.

2. Some Useful Results on Empirical Copulas

Let Xk = (X1;k, . . . , Xd;k), k = 1, . . . , n, denotes i.i.d. rv.s with a d-dimensional con-
tinuous df F(·) whose j-th marginal, for j = 1, . . . , d, and the copula associated with are
denoted by Fj(·) and C(·), respectively. The empirical df.s are defined, respectively, by

Fn(x) =
1
n

n

∑
k=1

1I
{

X1;k ≤ x1, . . . , Xd;k ≤ xd
}

,

=
1
n

n

∑
k=1

d

∏
j=1

1I
{

Xj;k ≤ xj

}
, x ∈ Rd,

Fnj(xj) =
1
n

n

∑
k=1

1I
{

Xj;k ≤ xj

}
, xj ∈ R,
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where 1I{·} is the usual indicator function of the set {·}. Copulas have been estimated
nonparametrically ever since [10] presented an empirical estimator of the copula

Cn(u) = Fn(F−1
n1 (u1), . . . ,F−1

nd (ud)),

where, for j = 1, . . . , d,
F−1

nj (uj) = inf{x : Fnj(x) ≥ uj}.

As may be expected, the law of Cn(·) depends on F(·) solely via the related copula
C(·). For this result, let ξk = (ξ1;k, . . . , ξd;k), k = 1, . . . , n be i.i.d. rv. s with df C(·) and set

Gn(x) =
1
n

n

∑
k=1

1I
{

ξ1;k ≤ x1, . . . , ξd;k ≤ xd
}

,

Gnj(xj) =
1
n

n

∑
k=1

1I
{

ξ j;k ≤ xj

}
.

Consequently,

Fn(x)
L
= Gn(F1(x1), . . . , Fd(xd)),

where the equality in distribution is denoted by L= and

(Fn1(x1), . . . ,Fnd(xd))
L
= (Gn1(F1(x1)), . . . ,Gnd(Fd(xd))),

consequently, it follows that

Cn(u)
L
= Gn(G−1

n1 (u1), . . . ,G−1
nd (ud)). (3)

This demonstrates that the law of Cn(·) is similar for all F(·) whose related copula
is C(·). Therefore, it suffices to investigate the empirical copula derived from the data ξk.
We let Cn(·) denote the right-hand side of (3) in the sequel. The empirical process αn(·)
and the empirical copula process γn(·), both related with C(·), are given, for u ∈ [0, 1]d,
respectively, by

αn(u) =
√

n(Gn(u)−C(u)),
γn(u) =

√
n(Cn(u)−C(u)). (4)

The empirical process corresponding to the empirical distribution function Gnj(·) is
defined by

αnj(uj) =
√

n(Gnj(uj)− uj
)
, (5)

for u ∈ [0, 1]d and uj ∈ [0, 1]. Note that αnj(0) = αnj(1) = 0 almost surely. We have

αn  α (n→ ∞)

in `∞([0, 1]d). The weak convergence is denoted by the arrow ‘ ’ as in Definition 1.3.3
in [17]. We shall utilize the same notation, definitions, and conditions from [16] going
forward. The limit process α(·) is a C-Brownian bridge, i.e. a tight Gaussian process,
centered and with covariance function

cov
(
α(u), α(v)

)
= C(u ∧ v)−C(u)C(v),

for u, v ∈ [0, 1]d; here u ∧ v = (min(u1, v1), . . . , min(ud, vd)). The tightness of the process
and the continuity of its mean and covariance functions imply the existence of a version
of α with continuous trajectories. Without losing generality, we will now suppose that
α is such a variant. For j ∈ {1, . . . , d}, let ej denote the jth coordinate vector in Rd. For
u ∈ [0, 1]d such that 0 < uj < 1, let
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Ċj(u) = lim
h→0

C(u + hej)−C(u)
h

,

denotes, provided it exists, the jth first-order partial derivative of C(·).

Condition 1. For any j ∈ {1, . . . , d}, on the set Vd,j := {u ∈ [0, 1]d : 0 < uj < 1}, the jth
first-order partial derivative Ċj(·) exists and is continuous.

Henceforth, suppose that the Condition 1 is satisfied. For notational convenience, the
domain of Ċj(·) will be extended to the whole of [0, 1]d by considering

Ċj(u) =


lim sup

h↓0

C(u + hej)

h
, if u ∈ [0, 1]d, uj = 0;

lim sup
h↓0

C(u)−C(u− hej)

h
, if u ∈ [0, 1]d, uj = 1.

(6)

In this manner, Ċj(·) is defined everywhere on [0, 1]d, takes values in [0, 1] because

|C(u)−C(v)| ≤
d

∑
j=1
|uj − vj|,

and is continuous on the set Vd,j, by Condition 1. Also note that Ċj(u) = 0 as soon as ui = 0
for some i 6= j.

Condition 2. For all i, j ∈ {1, . . . , d}, on the set Vd,i ∩ Vd,j, the second-order partial derivative
C̈ij(·) is defined and continuous and there exists a constant K > 0 in such a way that

|C̈ij(u)| ≤ K min
(

1
ui(1− ui)

,
1

uj(1− uj)

)
, u ∈ Vd,i ∩Vd,j.

Proposition 1 ([16]). Assume that the Conditions 1 and 2 are satisfied. Then, as n→ ∞, we have

sup
u∈[0,1]d

|γn(u)− γ̃n(u)| = O
(
n−1/4(log log n)1/4(log n)1/2) a.s., (7)

where

γ̃n(u) = αn(u)−
d

∑
j=1

Ċj(u) αnj(uj), u ∈ [0, 1]d, (8)

and
αnj(uj) = αn(1, . . . , 1, uj, 1, . . . , 1),

where the jth entry is the variable uj.

This result is presented with an outline of the proof by [11], whereas a complete proof
is provided by [19,29] and complemented recently by [15,16,30–36]. Assume first that
the first-order partial derivatives Ċj(·) exist and are continuous throughout the closed
hypercube [0, 1]d. For u ∈ [0, 1]d, define

γ(u) = α(u)−
d

∑
j=1

Ċj(u) αj(uj), (9)

where αj(uj) = α(1, . . . , 1, uj, 1, . . . , 1). By continuity of Ċj(·) throughout [0, 1]d, the tra-
jectories of γ are continuous. From [19] we learn that γn  γ as n → ∞ in the space
`∞([0, 1]d).
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Proposition 2 ([16]). Suppose that the Condition 1 holds, then, with γ̃n as defined in (8),

sup
u∈[0,1]d

∣∣γn(u)− γ̃n(u)
∣∣ P−→ 0 (n→ ∞).

Consequently, in `∞([0, 1]d), we have

γn  γ (n→ ∞).

[16] justified the last weak convergence by the fact that the map from `∞([0, 1]d) into
itself that sends a function f to

f −
d

∑
j=1

Ċj πj( f ),

with (πj( f ))(u) = f (1, . . . , 1, uj, 1, . . . , 1), is linear and bounded.

3. Main Resuts

Let us introduce the following definitions. Let Pn(ω) denote the empirical measure
for ω ∈ Ω, i.e.,

Pn(ω) = Pω
n =

1
n

n

∑
i=1

δξi(ω).

Let ξ̂
ω
n,1, . . . , ξ̂

ω
n,m denote an iid vectors sampled from the empirical measure Pn(ω) and

let P̂nm(ω) denotes the empirical measure related to ξ̂
ω
n,1, . . . , ξ̂

ω
n,m, i.e.,

P̂nm(ω) = P̂ω
nm =

1
m

m

∑
i=1

δ
ξ̂ni(ω)

.

For ω ∈ Ω, n = 1, 2, . . . , ξ̂
ω
n,1, . . . , ξ̂

ω
n,m, . . . are row iid with distribution P̂nm(ω) on

(A,B). We define on a common probability space (Ω,S , Prω) = (A,B,Pω
1 )

N × · · · ×
(A,B,Pω

n )
N × · · · the resulting triangular array.

(C.1) Let {Nω
n , n ≥ 1} denote a sequence of positive integer-valued random variables, in

such a way that

PrP − a.e.ω,
Nω

n
n
→Prω νω, as → ∞,

where νω dentes a positive random variable, that is defined on the same initial
probability space (Ω, Σ, Prω), i.e.,

Prω(νω > 0) = 1.

Set

Ĝnm(x) =
1
m

m

∑
k=1

1I
{

ξ̂
ω
n,k ≤ x

}
,

Ĝnm,j(xj) =
1
m

n

∑
k=1

1I
{

ξ̂ω
j;k ≤ xj

}
,

and therefore it follows that the bootstrapped empirical copula is defined by

Ĉnm(u)=Ĝnm(Ĝ−1
nm,1(u1), . . . , Ĝ−1

nm,d(ud)). (10)
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The empirical process αnNn(·) and the empirical copula process γ̂nNn(·), both associ-
ated with C(·), are defined, for u ∈ [0, 1]d, respectively, by

α̂nNn(u) = N1/2
n (ĜnNn(u)−Gn(u)),

γ̂nNn(u) = N1/2
n (ĈnNn(u)−Cn(u)).

Let E(Nn) = µn, Var(Nn) = σ2
n . We define

α̃nNn(u) = µ1/2
n

{
1

µn

Nn

∑
i=1

1I
{

ξ̂
ω
n,k ≤ x

}
−Gn(x)

}
.

and
γ̃nNn(u) = µ1/2

n

{
C̃nNn(u)−Gn(x)

}
.

where C̃nNn(u) is a bootstrapped copula associated with

G̃nNn(u) =
1

µn

Nn

∑
i=1

1I
{

ξ̂
ω
n,k ≤ x

}
.

(C.2) Nn is independent of the ξω
n,k’s;

(C.3) for all n = 1, 2, . . . , 0 < ENn = µn, VarNn = σ2
n < ∞, and

lim
n→∞

µn = ∞ and lim
n→∞

σ2
n

µn
= β ≥ 0,

(C.4) either Nn is a degenerate random variable for all n or σ2
n > 0,

Nn

µn

PrP→ 1 and
Nn − µn

σn

d→ Z ∼ N(0, 1), as n→ ∞.

We indicate by P
 the weak convergence conditional on the data in probability as

defined by [37], that is,

γnNn(·)
P
 γ(·),

if
sup

h∈BL1(`∞([0,1]d))
|E(h(γnNn) | {ξk}1≤k≤n)−Eh(γ)| P→ 0,

and, for every, h ∈ BL1(`
∞([0, 1]d))

E(h(γnNn)
? | {ξk}1≤k≤n)−E(h(γnNn)? | {ξk}1≤k≤n)

P→ 0,

where

BL1(`
∞([0, 1]d))

=
{

f : `∞([0, 1]d)→ R, ‖ f ‖∞ ≤ 1,

| f (l1)− f (l2)| ≤ sup
u∈[0,1]d

|l1(u)− l2(u)|, ∀l1, l2 ∈ `∞([0, 1]d)

}

is the class that encompasses all uniformly bounded continuous functions with that are
Lipschitz with constant less than 1 and

‖ f ‖∞ = sup
x∈[0,1]d

| f (x)|.
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Moreover, h(γnNn)
? and h(γnNn)? are, with respect to the bootstrapped sample, mea-

surable majorants and minorants.
The following theorems will be based on the work of (Theorem 4, [38]) in combination

with the delta method. We recall the principles in the section of proofs.

Theorem 1. Suppose that the Condition 1 and (C.1) hold. Then, we have, in `∞([0, 1]d),

γ̂nNn(·)
P
 γ, (11)

Let us introduce the limiting process αβ(·), that is centered process and with related
covariance function

cov
(
αβ(u), αβ(v)

)
= C(u ∧ v)− (1− β)C(u)C(v),

and define

γβ(u) = αβ(u)−
d

∑
j=1

Ċj(u) α
β
j (uj), (12)

Theorem 2. Suppose that the Conditions 1 and (C.1)-(C.2)-(C.3)-(C.4) are satisfied. Then, in
`∞([0, 1]d), we have

γ̃nNn(·)
P
 γβ, (13)

Remark 1. We have the following special cases :

1. Nn is Poisson random variable P(µn), in this case β = 1;
2. Nn is a binomial random variable with parameter (n, p), then

β = 1− p,

in light of the binomial distribution’s wide range of possible uses, this is of particular impor-
tance.

Remark 2. The empirical copula bootstrap process has received considerable attention in the
literature. There has been no work on the bootstrap of Kac empirical copula process to date. This
note provides a more general setting in the sense that when Nn is a Poisson random variable, the
bootstrap of the empirical Kac copula process is obtained. We highlight that the empirical Kac copula
process was first examined in [32], see the references therein.

4. Applications

The limiting laws of several statistics, such as the Kendall and Spearman sample rank
correlation coefficients, can be derived from Theorem 1, as shown in [31]. Taking a broader
view, let us define, for any function J(·) on [0, 1]3, the functional

S(C) :=
∫ 1

0

∫ 1

0
J(u, v,C(u, v))dudv.

The related sample quantity S(Cn) may be called Spearman type rank statistics, the
interested reader may refer to [11,29] for more details. To be more precise, assume that
z→ J(u, v, z) has a continuous derivative J(3)(u, v, z) with

sup
u,v,z∈[0,1]

|J(3)(u, v, z)| = sup
u,v,z∈[0,1]

∣∣∣∣∂J(u, v, z)
∂z

∣∣∣∣ < ∞.

Then, we can write
√

n(S(Cn)− S(C))
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=
√

n
(∫ 1

0

∫ 1

0
J(u, v,Cn(u, v))dudv−

∫ 1

0

∫ 1

0
J(u, v,C(u, v))dudv

)
=

∫ 1

0

∫ 1

0
J3(u, v, δn(u, v))γn(u, v)dudv,

where δn(u, v) is a point between Cn(u, v) and C(u, v), so that δn(·) converge to C(·)
uniformly with probability one. Making use of Theorem 1 , the limiting law in the following
equation, can be evaluated,

√
n(S(Cn)− S(C)) L→

∫ 1

0

∫ 1

0
J3(u, v,C(u, v))γ(u, v)dudv.

We define, for any function J(·) on [0, 1]3,

T(C) :=
∫ 1

0

∫ 1

0
J(u, v,C(u, v))dC(u, v).

We call T(Cn) a Kendall type rank statistic. Similarly, using Theorem 1 we can evaluate
the limiting law of √

n(T(Cn)−T(C)).

In the multivariate case, the population version of Spearman’s rho is defined, refer
to [39], as

ρ(C) = d + 1
2d − (d + 1)

(
2d
∫
[0,1]d

C(u)du− 1
)

and can be estimated by

ρ(Cn) =
d + 1

2d − (d + 1)

(
2d
∫
[0,1]d

Cn(u)du− 1
)

.

Based on the continuous mapping theorem we infer

√
n(ρ(Cn)− ρ(C)) L→ N(0, σ2

ρ ),

where

σ2
ρ =

(
d + 1

2d − (d + 1)

)2
22d

∫
[0,1]d

∫
[0,1]d

Eγ(u)Eγ(v)dudv.

Theorem 1 is useful to approximate this limiting law. The multivariate population
version of Kendall’s tau is defined, refer to [40], as

τ(C) = 1
2d−1 − 1

(
−1 + 2d

∫
[0,1]d

C(u)dC(u)
)

which can be estimated by

τ(Cn) =
1

2d−1 − 1

(
−1 + 2d

∫
[0,1]d

Cn(u)dCn(u)
)

.

√
n(τ(Cn)− τ(C)) L→ N(0, σ2

τ), (14)

where σ2
τ is the variance of τ(Cn). Theorem 1 can be used to evaluate this limiting law.

Indeed, we have(
2d−1 − 1

2d

)
√

n(τ(Cn)− τ(C))
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=
√

n
(∫

[0,1]d
Cn(u)dCn(u)−

∫
[0,1]d

C(u)dC(u)
)

= 2
√

n
(∫

[0,1]d
C(u)dCn(u)−

∫
[0,1]d

C(u)dC(u)
)

+
√

n
(∫

[0,1]d
(Cn(u)−C(u))dCn(u)−

∫
[0,1]d

(Cn(u)−C(u))dC(u)
)

= 2
√

n
(∫

[0,1]d
C(u)d(Cn(u)−C(u))

)
+
√

n
(∫

[0,1]d
(Cn(u)−C(u))d(Cn(u)−C(u))

)
= 2

√
n
(∫

[0,1]d
C(u)d(Cn(u)−C(u))

)
+ oP(1),

the right-hand variable can be shown to be asymptotically normal in a very elementary
way.

Early in the last century, Corrado Gini proposed a sample measure of association
based on absolute differences in ranks. The population version of that measure, for random
variables X1 and X2 with copula C(·), is given by, see e.g., [4,41],

Λ := 2
∫
[0,1]2

(|u1 + u2 − 1|+ |u1 − u2|) dC(u1, u2). (15)

For every u ∈ [0, 1]d, we have

W(u) := max

(
d

∑
i=1

ui − d + 1, 0

)
≤ C(u) ≤ min(u1, u2, . . . , ud) =: M(u). (16)

We denote by A(·) the function defined by (M(·) + W(·))/2. We define the survival
function K̄(·) of a measurable function K : [0, 1]d −→ [0, 1] by

K̄(u) := 1 +
d

∑
k=1

(−1)k ∑
1≤i1<i2<···<ik≤d

Ki1i2···ik
(
ui1 , ui2 , . . . , uik

)
where the functions on the right-hand side are appropriate lower margins of K(·). A
multivariate version of Gini’s gamma is then defined as

γ(C) :=
1

b(d)− a(d)

[∫
[0,1]d
{A(u) + Ā(u)} dC(u)− a(d)

]
with normalization constants a(d) and b(d) of the form

a(d) =
∫
[0,1]d
{A(u) + Ā(u)} du

=
1

d + 1
+

1
2(d + 1)!

+
d

∑
i=0

(−1)i
(

d
i

)
1

2(i + 1)!

and

b(d) =
∫
[0,1]d
{A(u) + Ā(u)} dM(u) = 1−

d−1

∑
i=1

1
4i

,

for details refer to [42,43]. Let Q′d(C, M) be the probability of concordance between CT and
M defined as (see [2])

Q′d(CT , M) =
∫
[0,1]d

(M(u) + M̄(u))dCT(u).
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For any d-copula C, the multivariate Spearman’s footrule ϕd(C) -or simply θ, if there
is no confusion-, proposed by [44] can be defined as

θ =
Q′d(C, M)− ad

bd − ad
,

where and

ad = Q′d(Π, M) =
∫
[0,1]d

(M(u) + M̄(u))d
d

∏
i=1

u1 =
2

d + 1

bd = Q′d(M, M) =
∫ 1

0
(M(t, . . . , t) + M̄(t, . . . , t))dt = 1;

that is,

θ = 1−
(d + 1)

(
1−Q′d(CT , M)

)
(d− 1)

.

Notice that θ can be alternatively written as

θ = 1− d + 1
d− 1

∫
[0,1]d

(
max

1≤j≤d

{
uj
}
− min

1≤j≤d

{
uj
})

dC(u).

As natural estimator of θ is given by

θn = 1− d + 1
d− 1

∫
[0,1]d

(
max

1≤j≤d

{
uj
}
− min

1≤j≤d

{
uj
})

dCn(u).

Following [45], let |A| denote the cardinality of any set A ⊆ D = {1, . . . , d}, and
denote by tA the vector (t1, . . . , td) such that t` = t1(` ∈ A)+ 1(` /∈ A) for all ` ∈ {1, . . . , d}
so that, for example, tD = (t, . . . , t).

√
n(θn − θ) N

(
0, σ2

C

)
.

Hence the variance is given by

σ2
C =

(
d + 1
d− 1

)2
{

Γ(D, D) + 2 ∑
A⊆D

(−1)|A|Γ(A, D) + Γ̄(D, D)

}
,

where for arbitrary A, B ⊆ D, one has

Γ(A, B) =
∫ 1

0

∫ 1

0
cov{C(sA),C(tB)}ds dt,

and

Γ̄(D, D) = ∑
A⊆D

∑
B⊆D

(−1)|A|+|B|Γ(A, B) =
∫ 1

0

∫ 1

0
cov
{
C(sD),C(tD)

}
ds dt,

refer to [45] for the details. When C is radially symmetric, that is, C = C̄, one gets
Γ̄(D, D) = Γ(D, D), refer also to [46]. Let us recall the multivariate versions of Blomqvist’s
beta

βd,C =
2d−1[C(1/2) + C̄(1/2)]− 1

2d−1 − 1
,

refer to [44]. A natural estimator is given by

βd,C,n =
2d−1[Cn(1/2) + C̄n(1/2)]− 1

2d−1 − 1
.
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From Proposition 1 of [47], we have
√

n(βd,C,n − βd,C)→ N(0, σ2
?),

where

σ2
? = 22d−2

[
C(1/2) + C̄(1/2)− {C(1/2) + C̄(1/2)}2

]
/
(

2d−1 − 1
)2

.

Now, let’s say we want to test the following hypothesis

H0 : C(u1, u2) = C(u2, u1), for (u1, u2) ∈ [0, 1]2,

Let us introduce the following process

Sn(u1, u2) =
√

n(Cn(u1, u2)−Cn(u2, u1))
H0= γn(u1, u2)− γn(u2, u1).

It is straightforward to prove that

γn(u1, u2)− γn(u2, u1) γ(u1, u2)− γ(u2, u1) (n→ ∞).

An application of the bootstrap continuous mapping theorem, see [37], gives

S̃n(u1, u2)=γ̂nNn(u1, u2)− γ̂nNn(u2, u1)
P
 γ(u1, u2)− γ(u2, u1).

Let us define the statistic

Kn = sup
u1,u2∈[0,1]

|Sn(u1, u2)|,

and we rejectH0 if Kn, is larger than the 1− α quantile of the law of

Kn = sup
u1,u2∈[0,1]

|Sn(u1, u2)|,

which depends in a complex manner on the unknown copula. Using a bootstrap sample, it
is possible to estimate quantiles

K̃n = sup
u1,u2∈[0,1]

|S̃n(u1, u2)|.

We would now to test

H0 : C(u1, u2) = u1 + u2 − 1 +C(1− u1, 1− u2),

against
H1 : C(u1, u2) 6= u1 + u2 − 1 +C(1− u1, 1− u2).

Let us consider the following process

An(u1, u2) =
√

n(Cn(u1, u2)− (u1 + u2 − 1 +Cn(1− u1, 1− u2)))

= γn(u1, u2)− γn(1− u1, 1− u2)).

In [46] it is shown that

γn(u1, u2)− γn(1− u1, 1− u2)) γ(u1, u2)− γ(1− u1, 1− u2) (n→ ∞).
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By the bootstrap continuous mapping theorem, see [37], we obtain

Ãn(u1, u2)=γ̂nNn(u1, u2)− γ̂nNn(1− u1, 1− u2)
P
 γ(u1, u2)− γ(1− u1, u2).

In a similar way, we can perform statistical tests for radial symmetry.

Remark 3. It is common knowledge that Theorem 1 may be utilized easily using normal bootstrap
sampling, which we will demonstrate in detail below. Let N be a large integer. For any k = 1, . . . , N,
let

γ̂
(k)
nNn

(u) := N1/2
n (Ĉ(k)

nNn
(u)−Cn(u)), for u ∈ [0, 1]d.

Now, according to Theorem 1, we readily obtain that,

(γn(·), γ̂
(1)
nNn

(·), . . . , γ̂
(N)
nNn

(·)) (γ(·), γ(1)(·), . . . , γ(N)(·)) in `∞([0, 1]d)⊗(N+1),

where γ(1)(·), . . . , γ(N)(·) are independent copies of γ(·). In order to approximate the limit-
ing distribution of {γn(u) : u ∈ [0, 1]d, n > 0}, one can use the empirical distribution of
γ̂
(1)
nNn

(·), . . . , γ̂
(N)
nNn

, for N large enough. In the examples that came before, the statistics may be
written as a function of the empirical copula, and the asymptotic behavior of those statistics can be
deduced from the weak convergence features of the bootstrapped empirical copula process. To be more
explicit, if we are interested in carrying out a statistical test that is based on a functional relationship
that is considered to be "smooth" functional

Sn := ϕ(γn),

with the convention that large values of Sn lead to the rejection of the null hypothesis,H0, under
certain regularity conditions, a valid approximation to the P-value is given by

1
N

N

∑
k=1

1I{S(k)
n ≥ Sn},

where
S(k)

n := ϕ(γ
(k)
n;Nn

),

we may refer to [31,48–53].

5. Concluding Remarks

This note’s primary objective is to describe the weak convergence of the random
resample size bootstrap empirical process. Spearman’s and Kendall’s respective approaches
are utilized to estimate the sample rank correlation coefficients utilizing the principal results.
In addition, we address the application of our findings to statistical testing. The interest
of doing so would be to extend our work to the conditional copula by using the kernel or
the k-nearest neighbours estimators. Presently it is beyond reasonable hope to achieve this
program without new technical arguments. Another direction of research is to consider
the projection pursuit regression and projection pursuit conditional copula, which need
an extension and generalization of the methods used in the present work. If we assume
that the conditional copula function is smooth enough, that is p + 1 times differentiable at
a fixed x0, it will be better to use the local polynomial regression techniques, refer to [54], to
obtain a more appropriate estimate at x0 than that given by the Nadaraya-Watson estimator.
We will not treat the weak convergence of such estimators in the present paper, and leave it
for future investigation. It would be of interest to extend the present work to the problem
of the present paper to the incomplete data setting which requires nontrivial mathematics,
that goes well beyond the scope of the present paper. A future research direction would
be to study the problem investigated in this work in the setting of serially dependent
observations.
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6. Proof

This part is all about the proof that our methods work. The notation we talked about
before is still used below.

Proof of Theorem 1. We shall use the functional delta method to prove Theorem 1. Here
we recall the proof from [17,55]. Let

Φ(F) = F ◦ (F−1
1 , . . . , F−1

d ).

We decompose the map Φ(·) into three simpler maps as follows :

(F)
ϕ1→ (F1, . . . , Fd,F)

ϕ2→ (F−1
1 , . . . , F−1

d ,F)
ϕ3→ F ◦ (F−1

1 , . . . , F−1
d ).

Hence we obtain
Φ(·) = ϕ3 ◦ ϕ2 ◦ ϕ1(·),

and an application of the chain rule (see [17], Theorem 3.9.3) we obtain that

Φ′(θ) = ϕ′3(ϕ2 ◦ ϕ1(θ)) ◦ ϕ′2(ϕ1(θ)) ◦ ϕ′1(θ).

We note that map ϕ1(·) is linear and continuous, which implies that is Hadamard
differentiable. Its derivative is defined by

ϕ′1(F)(α, β) = (α1, . . . , αd, β).

By Lemma 3.9.23 in [17], we have the map ϕ2(·) is Hadamard differentiable tangen-
tially to C([0, 1]d) and the derivative is

ϕ′2(F1, . . . , Fd,F)(γ1, . . . , γd, ξ) =

(
−γ1

f1
◦ F−1

1 , . . . ,−γd

fd
◦ F−1

d , ξ

)
.

Finally, the Hadamard differentiability of the map ϕ3(·) is a consequence of Lemma
3.9.27 in [17], and the derivative is given by

ϕ′3(F−1
1 , . . . , F−1

d ,F)(µ1, . . . , µd, ν)

= ν(F−1
1 , . . . , F−1

d ) +

(
∂F(F−1

1 , . . . , F−1
d )

∂F−1
1

, . . . ,
∂F(F−1

1 , . . . , F−1
d )

∂F−1
d

) µ1

...
µd


= ν(F−1

1 , . . . , F−1
d ) +

d

∑
i=1

∂F(F−1
1 , . . . , F−1

d )

∂F−1
i

µi.

By using the last three results, we establish that the map Φ(·) is Hadamard differ-
entiable. This results as a composition of Hadamard differentiable functions. Hence the
derivative is given by:

Φ′(F)(α)(u) = ϕ′3(ϕ2 ◦ ϕ1(F)) ◦ ϕ′2(ϕ1(F)) ◦ ϕ′1(F)(α)(u)
= α(F−1

1 (u1), . . . , F−1
d (ud))

−
d

∑
i=1

∂F(F−1
1 (u1), . . . , F−1

d (ud))

∂F−1
i (ui)

αi(F−1
i (ui))

fi(F−1
i (ui))

= α(F−1
1 (u1), . . . , F−1

d (ud))−
d

∑
i=1

∂C(u1, . . . , ud)

∂ui
αi(F−1

i (ui)).
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This when combined with Theorem 3.9.4 of [17], implies that

γ̂nNn
P
 Φ′(F)(α).

The proof is completed by observing that

Φ′(F)(α) = α(u)−
d

∑
j=1

Ċj(u) αj(uj), u ∈ [0, 1]d.

Thus, the proof is conclusive.
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