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Abstract: In this article, we establish a new class of nonparametric Shewhart-type control charts
based on order statistics with signaling runs-type rules. The proposed charts offer to the practitioner
the opportunity to reach, as close as possible, a pre-specified level of performance by determining
appropriately their design parameters. Special monitoring schemes, already established in the litera-
ture, are ascertained to be members of the proposed class. In addition, several new nonparametric
control charts that belong to the family are introduced and studied in some detail. Exact formulae
for the variance of the run length distribution and the average run length (ARL) for the proposed
monitoring schemes are also derived. A numerical investigation is carried out and demonstrates
that the proposed schemes acquire competitive performance in detecting the shift of the underlying
distribution. Although the large number of design parameters is quite hard to handle, the numerical
results presented throughout the lines of the present manuscript provide practical guidance for the
implementation of the proposed charts.

Keywords: average run length; nonparametric control schemes; Lehmann alternatives; runs-type
signaling rules; statistical process control

1. Introduction

Statistical process control is broadly applied to monitor the quality of a production
process, where a natural variability occurs in any case. Control charts assist the practitioners
to single out assignable sources so that the state of statistical control can be fulfilled. In
the case of observing a displeasing shift in the process, a control chart should detect it as
quickly as possible and produce an out-of-control signal.

Most of the monitoring schemes are distribution-based procedures, even though
this presumption is not always realized in practice. To overcome this obstacle and yet
keep the primary formation of the traditional control charts, several nonparametric (or
distribution-free) monitoring schemes have been proposed in the literature, such as the
Shewhart-type, the Cumulative (CUSUM) or the Exponentially Weighted Moving Average
(EWMA) schemes. Shewhart-type control charts were introduced in early work [1] and since
then several modifications (such as the nonparametric) have been established and studied
in detail. Some recent advances on the specific class of monitoring schemes appear in [2–5].

On the other hand, an up-to-date overview of distribution-free CUSUM and EWMA
charts is provided in [6,7]. For a thorough study and some interesting perspectives on
Nonparametric Statistical Process Control, the interested reader is referred to [8–10].

It is widely accepted that Shewhart-type control schemes perform well, especially
under large shifts of the underlying distribution. In this direction, several distribution-
free control schemes based on order statistics have been proposed in the literature. For
example, [11] introduced two-sided nonparametric monitoring schemes with control limits
determined by the aid of a reference sample from a presumably in-control population. In
their framework, the decision of whether the process is in-control or out-of-control relies
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on the median of each sequentially observed test sample from the production process. The
above-mentioned median scheme has also been studied in [12], where a broader class of
distribution-free monitoring schemes based on future sample quantiles was introduced.
Taking this direction of research forward, [13,14] took into account the location of the
specific order statistics of the test sample, as well as the test data that are placed between
the lower and the upper control limit to arrive at the status of the underlying process.
Some recent advances on the topic of nonparametric Shewhart-type control schemes can be
found in [15–17].

In the present article, we introduce a new class of nonparametric Shewhart-type
control chart based on order statistics with signaling runs-type rules. More specifically, we
apply the framework established by either [13] or [14] and, in any case, the resulting chart
is enhanced by adding well-known simple runs-rules. The motivation for establishing the
proposed control charts is to provide some new nonparametric alternatives for monitoring
a process. Our main goal, which has been successfully achieved, was to improve the in-
and out-of-control performance of some existing control charts based on order statistics.
In Section 2, the setup of the proposed monitoring schemes is presented in detail, while
explicit formulae are derived in Section 3 for determining the average and the variance of
the corresponding run length. In Section 4, several numerical comparisons shed light on
the efficacy of the proposed charts in comparison to competitive nonparametric control
schemes. Finally, the Discussion section summarizes the contribution of the present article,
while some potential directions are articulated for future research work.

2. The k-of-k DR Nonparametric Control Charts Based on Order Statistics and Runs

In this section, we establish a new family of monitoring schemes based on order
statistics which utilizes the well-known runs-type rule introduced by [18] (DR runs rules,
hereafter). The control limits of the proposed charts are based on reference observations
drawn from the in-control process. The resulting schemes are built by following the general
framework introduced by either [13] or [14] and enhancing, in any case, its performance
with the aid of the above-mentioned DR runs-rules.

The proposed monitoring schemes rely on a reference sample of size m, namely m
observations, say X1, X2, . . . , Xm with cumulative distribution function F, which have been
drawn from the process when it is in-control. In fact, the control limits of the proposed con-
trol charts coincide with appropriately chosen observations of the corresponding ordered
sample X1:m, X2:m, . . . , Xm:m. Test samples of size n, say Y1, Y2, . . . , Yn with cumulative dis-
tribution function G, are then picked out independently of each other (and of the reference
sample) and our target is to decide whether the process is still in-control or not. In statistical
terms, we are looking for a possible shift in the underlying distribution from F to G.

In the proposed framework, the information which is investigated from each test
sample relies on specific observations of the corresponding ordered test sample. In other
words, some observations from the ordered sample Y1:n, Y2:n, . . . , Yn:n will play the role of
monitoring statistics. In addition, we attempt to boost the performance of the proposed
scheme by applying the DR runs rules. It is known that when a k-of-k DR runs rule is
activated, an out-of-control signal is produced whenever k consecutive plotting points:
(1) all fall on or above the upper control limit, (2) all fall on or below the lower control limit,
(3) one falls on or above the upper control limit and the remaining fall on or below the
lower control limit, (4) one falls on or below the lower control limit and the remaining fall
on or above the upper control limit.

The general framework of the class of the proposed enhanced control charts follows
the next steps.

Step 1. Draw a reference sample of size m from the in-control process.
Step 2. Determine the control limits of the monitoring scheme by the aid of the corresponding

reference ordered observations.
Step 3. Draw independent test samples of size n from the process.
Step 4. Pick up appropriately chosen ordered test observations as monitoring statistics.
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Step 5. Activate a k-of-k DR runs-type rule.
Step 6. Declare whether the process is in- or out-of control, by combining the plotting

statistics and the DR runs rule defined in the previous steps.

The step-by-step constructing procedure is summarized in the following flowchart
(Figure 1).
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Figure 1. Flowchart of the constructing procedure for the proposed k-out-of-k DR monitor-
ing schemes.

Before discussing the main results for the implementation of the proposed control
schemes, we should first provide some details about their monitoring statistics. Through-
out the present manuscript, we consider two different ideas for building the monitoring
statistics. According to the first (see, e.g., [13]), two specific order statistics, say Xa:m, Xb:m,
are used as control limits (say LCL, UCL), where 1 ≤ a < b ≤ m. Afterwards, for the
w-th test sample Yw

1 , Yw
2 , . . . , Yw

n which is drawn (w = 1, 2, . . .), the j-th order statistic Yw
j:n is

chosen and made use of along with the statistic Rw = R
(
Yw

1 , Yw
2 , . . . , Yw

n ; Xa:m, Xb:m
)
, which

corresponds to the number of observations of the w-th test sample that lie between LCL
and UCL. The process is declared to be in-control if the following conditions hold true

Xa:m ≤ Yw
j:n ≤ Xb:m and Rw ≥ r (1)

where r is a positive integer. Under the proposed monitoring scheme based on (1) (Ck
1−chart,

hereafter), the process is characterized as out-of-control if the abovementioned set of
conditions is violated for k consecutive test samples.
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On the other hand, our second idea for constructing the monitoring schemes of the
new class, relies on four ordered reference observations, say Xa:m, Xb:m, Xc:m, Xd:m with
1 ≤ a < b < c < d ≤ m. From the w-th test sample Yw

1 , Yw
2 , . . . , Yw

n (w = 1, 2, . . .), two
specific order statistic, say Yw

i:n, Yw
j:n with i < j, are picked up and made use of along with

the statistics Rw
1 = R

(
Yw

1 , Yw
2 , . . . , Yw

n ; Xa:m, Xb:m
)

and Rw
2 = R

(
Yw

1 , Yw
2 , . . . , Yw

n ; Xc:m, Xd:m
)
,

which correspond to the number of test observations between (Xa:m, Xb:m) and (Xc:m, Xd:m),
respectively. The process is declared to be in-control if the following conditions hold true

Xa:m ≤ Yw
i:n ≤ Xb:m, Xc:m ≤ Yw

j:n ≤ Xd:m Rw
1 ≥ r1 and Rw

2 ≥ r2 (2)

where r1, r2 are positive integer-valued parameters. Under the proposed monitoring scheme
based on (2) (Ck

2−chart, hereafter), the process is characterized once again as out-of-control
if the abovementioned set of conditions is violated for k consecutive test samples. For
more details about the general framework of the abovementioned monitoring scheme, the
interested reader is referred to [14] and Section 3 therein.

It is worth mentioning that several control charts which have been already established
in the literature, can be considered as members of the new class introduced in the present
manuscript. For instance, the monitoring scheme proposed by

• Ref. [13] can be viewed as a C1
1−chart

• Ref. [19] can be viewed as a C2
1−chart

• Ref. [14] can be viewed as a C1
2−chart

• Ref. [20] can be viewed as a C3
2−chart.

3. Main Results for the Proposed k-of-k DR Nonparametric Control Charts

In the present section, we shall provide some general results for the proposed distribution-
free control charts. More precisely, we investigate two crucial characteristics of the run
length of the proposed k-of-k DR monitoring schemes, namely the average run length and
the corresponding variance of both Ck

1−charts and Ck
2−charts.

The following proposition provides explicit expressions for the average run length and
the corresponding variance of the proposed k-of-k DR monitoring schemes in the general
case. It is straightforward that these expressions can be implemented for studying any
member of either the class of Ck

1− or the Ck
2−charts, respectively.

Proposition 1. (i) The unconditional Average Run Length and the unconditional Variance of the
Run Length of the Ck

1−chart is given by

ARL(k)
1 =

∫ 1

0

∫ t

0

1− pk
1(

1− p1
)

pk
1

fa,b(s, t)dsdt (3)

and

Var(k)1 =
∫ 1

0

∫ t

0

1− (2k + 1)
(
1− p1

)
pk

1 − p2k+1
1((

1− p1
)

pk
1)

2
fa,b(s, t)dsdt (4)

respectively, while p1 = 1− q1
(
GF−1(s), GF−1(t); r

)
and

q1(v, w; r) =
n−1

∑
g=0

n−g−1

∑
h=max(r−g−1,0)

n!
(j− g− 1)!(g + h + 1)!(n− j− h)!

× vj−g−1(w− v)g+h+1(1− w)n−j−h (5)

and

fa,b(s, t) =
m!

(a− 1)!(b− a− 1)!(m− b)!
sa−1(t− s)b−a−1(1− t)m−b, 0 < s < t < 1 (6)
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(ii) The unconditional Average Run Length and the unconditional Variance of the Run Length of
the Ck

2−chart is given by

ARL(k)
2 =

∫ 1

0

∫ t2

0

∫ s2

0

∫ t1

0

1− pk
2(

1− p2
)

pk
2

fa,b,c,d(s1, t1, s2, t2)ds1dt1ds2dt2 (7)

and

ar(k)2 =
∫ 1

0

∫ t2

0

∫ s2

0

∫ t1

0

1− (2k + 1)(1− p2)pk
2 − p2k+1

2((
1− p2

)
pk

2)
2

× fa,b,c,d(s1, t1, s2, t2)ds1dt1ds2dt2 (8)

respectively, while p2 = 1− q2
(
GF−1(s1), GF−1(t1), GF−1(s2), GF−1(t2); r1, r2

)
and

q2(v, w, t, z; r1, r2) =
n−2
∑

c1=0

min(n−c1−2,j−i−1)
∑

c2=max(0,r1−c1−1)

min(n−c1−c2−2,j−i−1−c2)

∑
c3=0

n−c1−j+i−1
∑

c4=max(0,r2+c2+c3−j+i)
n!

× 1
(i−c1−1)!(c1+c2+1)!c3!(j−i−c2−c3+c4)!(n−j−c4)!

×vi−c1−1(w− v)c1+c2+1(t− w)c3(z− t)j−i−c2−c3+c4(1− z)n−j−c4

(9)

and

fa,b,c,d(s1, t1, s2, t2) =
m!

(a−1)!(b−a−1)!(c−b−1)!(d−c−1)!(m−d)!

×sa−1
1

(
t1 − s1)

b−a−1
(

s2 − t1)
c−b−1

(
t2 − s2)

d−c−1
(

1− t2)
m−d,

0 < s1 < t1 < s2 < t2 < 1.

(10)

Proof. Let us denote by Tk the waiting time until an out-of-control signal is produced by
either a Ck

1− or a Ck
2−control chart. In other words, Tk corresponds to the run length of

the underlying monitoring scheme. Given Xa:m = x, Xb:m = y, random variable Tk follows
a geometric distribution of order k with success probability p. Therefore, the conditional
expected value and variance of the run length Tk can be determined by the aid of the
following formulae (see, e.g., [21])

E(Tk|Xa:m = x, Xb:m = y ) =
1− pk

(1− p)pk (11)

and

Var(Tk|Xa:m = x, Xb:m = y ) =
1− (2k + 1)(1− p)pk − p2k+1(

(1− p)pk)2 (12)

respectively.

(i) When the Ck
1−chart is applied, success probability p of the aforementioned geometric

distribution of order k coincides to the probability p1 that the set of conditions stated
in (1) is not satisfied. However, Ref. [13] proved that p1 is determined by the aid of
the following double sum

n−1

∑
g=0

n−g−1

∑
h=max(r−g−1,0)

n!vj−g−1(w− v)g+h+1(1− w)n−j−h

(j− g− 1)!(g + h + 1)!(n− j− h)!

We next combine the last expression with Equations (11) and (12) and the desired
results is derived by averaging over the distribution of Xa:m, Xb:m.

(ii) On the other hand, under the Ck
2−chart, the success probability p coincides now to

the probability p2 that the set of conditions stated in (2) is not satisfied. Taking into
advantage that p2 can be expressed by the aid of the following sum
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n−2
∑

c1=0

min(n−c1−2,j−i−1)
∑

c2=max(0,r1−c1−1)

min(n−c1−c2−2,j−i−1−c2)

∑
c3=0

n−c1−j+i−1
∑

c4=max(0,r2+c2+c3−j+i)
n!

× vi−c1−1(w−v)c1+c2+1(t−w)c3 (z−t)j−i−c2−c3+c4 (1−z)
n−j−c4

(i−c1−1)!(c1+c2+1)!c3!(j−i−c2−c3+c4)!(n−j−c4)

(see, e.g., [14]), Formulae (11) and (12) lead effortlessly to the results we are seeking. �
Next, we consider three different values of the design parameter k. More specifically,

we develop some results for the new class of nonparametric control charts under the choices
k = 2, 3, 4. The following corollary offers explicit expressions for the average run length
and the corresponding variance of the proposed 2-of -2 DR monitoring schemes.

Corollary 1. (i) The unconditional Average Run Length and the unconditional Variance of the
C2

1−chart is given by

ARL(2)
1 =

∫ 1

0

∫ t

0

1 + p1
p2

1
fa,b(s, t)dsdt (13)

and

Var(2)1 =
∫ 1

0

∫ t

0

(
1− p1

)(
p2

1 + 3p1 + 1
)

p4
1

fa,b(s, t)dsdt (14)

respectively, while p1 and fa,b(s, t) are given in (5) and (6).

(ii) The unconditional Average Run Length and the unconditional Variance of the C2
2−chart is

given by

ARL(2)
2 =

∫ 1

0

∫ t2

0

∫ s2

0

∫ t1

0

1 + p2
p2

2
fa,b,c,d(s1, t1, s2, t2)ds1dt1ds2dt2 (15)

and
Var(2)2 =

∫ 1
0

∫ t2
0

∫ s2
0

∫ t1
0

(1−p2)(p2
2+3p2+1)

p4
2

× fa,b,c,d(s1, t1, s2, t2)ds1dt1ds2dt2

(16)

respectively, while p2 and fa,b,c,d(s1, t1, s2, t2) are given in (9) and (10).

Proof. The desired results are derived by the aid of Proposition 1 after simple algebraic
maneuvering. �

It is worth mentioning that [19] delivered similar expressions with those appearing in
(13) and (14). The following corollary offers explicit expressions for the average run length
and the corresponding variance of the proposed 3-of-3 DR monitoring schemes.

Corollary 2. (i) The unconditional Average Run Length and the unconditional Variance of the
C3

1−chart is given by

ARL(3)
1 =

∫ 1

0

∫ t

0

p2
1 + p1 + 1

p3
1

fa,b(s, t)dsdt (17)

and

Var(3)1 =
∫ 1

0

∫ t

0

(
1− p1

)(
p4

1 + 3p3
1 + 6p2

1 + 3p1 + 1
)

p6
1

fa,b(s, t)dsdt (18)

respectively, while p1 and fa,b(s, t) are given in (5) and (6).

(ii) The unconditional Average Run Length and the unconditional Variance of the C3
2−chart

is given by
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ARL(3)
2 =

∫ 1

0

∫ t2

0

∫ s2

0

∫ t1

0

p2
2 + p2 + 1

p3
2

fa,b,c,d(s1, t1, s2, t2)ds1dt1ds2dt2 (19)

and

Var(3)2 =
∫ 1

0

∫ t2

0

∫ s2

0

∫ t1

0

(1− p2)
(

p4
2 + 3p3

2 + 6p2
2 + 3p2 + 1

)
p6

2
× fa,b,c,d(s1, t1, s2, t2)ds1dt1ds2dt2 (20)

respectively, while p2 and fa,b,c,d(s1, t1, s2, t2) are given in (9) and (10).

Proof. The desired results are derived by the aid of Proposition 1 after simple algebraic
maneuvering. �

The following corollary offers explicit expressions for the average run length and the
corresponding variance of the proposed 4-of-4 DR monitoring schemes.

Corollary 3. (i) The unconditional Average Run Length and the unconditional Variance of the
C4

1−chart is given by

ARL(4)
1 =

∫ 1

0

∫ t

0

(
1 + p1

)(
1 + p2

1
)

p4
1

fa,b(s, t)dsdt (21)

and

Var(4)1 =
∫ 1

0

∫ t

0

1− p4
1
(

p5
1 − 9p1 + 9

)(
1− p1)

2 p8
1

fa,b(s, t)dsdt (22)

respectively, while p1 and fa,b(s, t) are given in (5) and (6).

(ii) The unconditional Average Run Length and the unconditional Variance of the C4
2−chart is

given by

ARL(4)
2 =

∫ 1

0

∫ t2

0

∫ s2

0

∫ t1

0

(1 + p2)
(
1 + p2

2
)

p4
2

fa,b,c,d(s1, t1, s2, t2)ds1dt1ds2dt2 (23)

and

Var(4)2 =
∫ 1

0

∫ t2

0

∫ s2

0

∫ t1

0

1− p4
2
(

p5
2 − 9p2 + 9

)(
1− p2)

2 p8
2

× fa,b,c,d(s1, t1, s2, t2)ds1dt1ds2dt2 (24)

respectively, while p2 and fa,b,c,d(s1, t1, s2, t2) are given in (9) and (10).

Proof. The desired results are derived by the aid of Proposition 1 after simple algebraic
maneuvering. �

It is noticeable that the unconditional in-control Average Run Length and Variance of
the in-control Run Length can be obtained by substituting F = G in the formulae proved in
Proposition 1. In Table 1, we present the in-control ARL’s of the C2

1−, C3
1 − C4

1−monitoring
schemes for several values of design parameter. Note that all calculations were carried out
with the aid of Corollaries 1,2 and 3.
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Table 1. In-control Average Run Length of the C2
1−, C3

1− and C4
1− charts for a given design.

Reference Sample Size m

50 100 150 200

ARLo n (a, b, j, r) ARLin (a, b, j, r) ARLin (a, b, j, r) ARLin (a, b, j, r) ARLin

370 5
(6,45,2,2)
(9,41,2,2)

(11,38,2,2)

368.64
351.71
364.51

(10,91,2,2)
(13,87,2,3)
(22,98,2,3)

365.67
364.52
371.26

(12,122,2,2)
(13,121,2,3)
(20,119,2,3)

366.70
377.10
365.78

(18,187,2,2)
(27,181,2,3)
(34,173,2,3)

369.21
362.67
360.67

11
(4,37,4,6)
(5,33,5,6)
(6,35,4,7)

378.61
372.34
362.10

(23,85,6,5)
(33,87,6,5)
(29,86,5,6)

369.64
366.63
367.58

(30,129,5,5)
(32,127,5,6)
(37,124,5,6)

361.71
375.42
367.91

(40,174,5,5)
(42,170,5,6)
(40,176,4,7)

359.21
374.24
362.29

15
(18,46,8,7)
(17,45,6,8)
(12,33,6,8)

368.10
350.61
370.17

(14,74,8,7)
(21,73,7,7)
(33,87,6,7)

370.86
376.41
374.80

(26,118,7,7)
(22,74,7,7)
(34,90,6,7)

375.83
364.85
366.75

(28,152,8,7)
(43,152,8,7)
(54,167,7,8)

369.78
366.94
370.89

500 5
(6,48,2,2)
(9,43,2,2)

(12,43,2,2)

507.10
496.09
472.40

(8,82,2,2)
(13,89,2,3)
(21,97,2,3)

497.87
514.02
497.31

(11,122,2,2)
(13,123,2,3)
(21,123,2,3)

494.04
504.12
504.76

(16,175,2,2)
(27,186,2,3)
(35,180,2,3)

498.45
489.24
503.83

11
(8,43,4,6)

(15,41,5,5)
(12,42,4,7)

512.97
473.40
509.58

(31,79,6,5)
(33,88,6,5)
(30,88,5,6)

470.09
493.29
470.89

(32,138,5,5)
(30,126,5,6)
(35,123,5,6)

505.59
504.22
504.88

(36,169,5,5)
(39,167,6,6)
(46,165,5,6)

478.11
491.04
504.88

15
(16,46,7,7)
(11,37,6,8)
(9,31,5,8)

493.73
460.81
533.89

(23,93,6,7)
(25,78,7,7)
(34,92,6,7)

479.20
482.58
485.70

(26,119,7,7)
(34,87,8,7)
(22,70,6,7)

475.13
489.27
478.03

(37,163,7,7)
(38,161,7,8)
(47,161,7,8)

491.73
482.89
502.69

Each cell contains the in-control ARL-values attained for C2
1¯(upper entry), C3

1¯(middle entry) and C4
1¯(lower entry)

chart respectively.

Having at hand the results displayed in Table 1, the practitioner can design a distribution-
free control chart that attains a pre-specified in-control level of performance (ARLo). For
instance, let us assume that a reference sample of size m = 100 is available and that we aim
at constructing a monitoring scheme that achieves an in-control Average Run Length equal
to 370 (approximately). Based on Table 1, our aim shall be fulfilled if we construct

• a C4
1−chart with design parameters a = 22, b = 98, n = 5, j = 2, r = 3. In other words,

the practitioner should select the 22nd and the 98th ordered reference observation as
the control limits and work with test samples of size n = 5. Moreover, if the remaining
parameters are determined as j = 2, r = 3, then the resulting C4

1−chart achieves an
in-control ARL equal to 371.26, or

• a C3
1−chart with design parameters a = 21, b = 73, n = 15, j = 7, r = 7. In other

words, the practitioner should select the 21st and the 73th ordered reference obser-
vation as the control limits and work with test samples of size n = 15. Moreover, if
the remaining parameters are determined as j = 7, r = 7, then the resulting C3

1−chart
achieves an in-control ARL equal to 376.41, or

• a C2
1−chart with design parameters a = 36, b = 84, n = 11, j = 6, r = 5. In other

words, the practitioner should select the 36th and the 84th ordered reference obser-
vation as the control limits and work with test samples of size n = 11. Then, if the
remaining parameters are determined as j = 2, r = 3, the resulting C2

1−chart achieves
an in-control ARL equal to 370.25.

• In addition, a similar numerical investigation has been carried out for the class
of Ck

2−charts. More precisely, in Table 2, the in-control ARLs of the C2
2−, C3

2 −
C4

2−monitoring schemes are provided for several values of design parameters.
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Table 2. In-control Average Run Length of the C2
2−, C3

2− and C4
2− charts for a given design.

Reference Sample Size m
100 200

ARLo n (a, b, c, d, i, j, r1, r2) ARLin (a, b, c, d, i, j, r1, r2) ARLin

370 25
(6,43,55,92,5,21,1,1)
(8,43,53,87,6,21,2,1)

(13,45,56,85,5,20,2,1)

356.11
382.20
364.56

(9,83,103,183,5,21,1,1)
(8,71,108,176,5,21,1,1)
(9,91,118,170,5,21,2,1)

375.78
358.49
367.35

30
(7,44,53,90,6,25,2,1)
(9,43,52,86,6,25,2,1)

(12,42,56,81,5,20,2,1)

367.36
381.07
362.14

(9,74,108,178,6,24,1,1)
(13,72,117,175,6,25,2,1)
(14,70,119,170,6,25,2,1)

378.37
370.24
388.40

500 25
(6,47,55,92,5,21,1,1)
(7,43,53,87,6,21,2,1)

(12,42,56,85,5,20,2,1)

491.42
487.87
492.12

(8,81,103,184,5,21,1,1)
(13,75,117,179,5,21,1,1)
(6,97,115,170,5,21,2,1)

511.35
499.30
501.97

30
(7,44,47,90,6,25,2,1)
(8,42,53,86,6,25,2,1)

(12,48,56,81,5,20,2,1)

489.71
510.87
496.10

(9,76,105,178,6,24,1,1)
(13,78,117,175,6,25,2,1)
(14,75,114,167,5,20,2,1)

500.44
485.42
500.47

Each cell contains the in-control ARL-values attained for C2
2¯(upper entry), C3

2¯(middle entry) and C4
2¯(lower entry)

chart respectively.

Note that the performance of Ck
2−charts weakens when the test sample size is small.

Therefore, it is recommended that, for the implementation of Ck
2−charts, the sample size (n)

of the test samples drawn from the process should be equal to or more than 25. A similar
comment has been stated by [14] for their monitoring framework.

Based on Table 2, one may investigate the in-control performance of the proposed
nonparametric schemes. For instance, let us assume that, having at hand m = 100 reference
observations, we aim at constructing a monitoring scheme with in-control Average Run
Length equal to 500 (approximately). It seems that our requirement could be satisfied, if
we construct

• a C2
2−chart with design parameters a = 6, b = 47, c = 55, d = 92, i = 5, j = 21,

n = 25, r1 = 1, r2 = 1 (with exact in-control ARL equal to 491.42) or

• a C3
2−chart with design parameters a = 8, b = 42, c = 53, d = 86, i = 6, j = 25,

n = 30, r1 = 2, r2 = 1 (with exact in-control ARL equal to 510.87) or

• a C4
2−chart with design parameters a = 12, b = 42, c = 56, d = 85, i = 5, j = 20,

n = 25, r1 = 2, r2 = 1 (with exact in-control ARL equal to 492.12).

The out-of-control performance could be evaluated via the corresponding ARL that
the control chart attains. If the process shifts out-of-control, the out-of-control ARL of the
proposed DR charts depends on both the in-control and out-of-control distributions F and
G. If we assume that G belongs to the so-called Lehmann alternatives (see [22]), the out-of-
control distribution function takes on the form G = Fγ for some fixed, positive number
γ > 0. Table 3 provides the out-of-control ARL values delivered by the C2

1−, C3
1 − C4

1−
monitoring schemes under the Lehmann-type alternatives for γ = 0.8. The designs
displayed in Table 3 are the same as those appearing in Table 1.

One may draw interesting conclusions based on the numerical results displayed in
Table 3. For example, let us consider the same case study mentioned earlier, namely let us
assume that the practitioner works with a reference sample of size m = 100 in order to reach
an in-control ARL equal to 370. Then, under the Lehmann alternatives with parameter γ
equal to 0.8, the C2

1−, C3
1 − C4

1−monitoring schemes appearing in Tables 1 and 3 achieve an
out-of-control ARL equal to 47.26, 91.17 and 50.57. respectively.
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Table 3. Out-of-control Average Run Length of the C2
1−, C3

1− and C4
1− charts for a given design.

Reference Sample Size m

50 100 150 200

ARLo n (a, b, j, r) ARLout (a, b, j, r) ARLout (a, b, j, r) ARLin (a, b, j, r) ARLout

370 5
(6,45,2,2)
(9,41,2,2)

(11,38,2,2)

55.99
57.79
59.95

(10,91,2,2)
(13,87,2,3)
(22,98,2,3)

59.21
83.59
50.57

(12,122,2,2)
(13,121,2,3)
(20,119,2,3)

81.16
147.59
111.78

(18,187,2,2)
(27,181,2,3)
(34,173,2,3)

61.48
71.68
73.31

11
(4,37,4,6)
(5,33,5,6)
(6,35,4,7)

237.35
312.24
133.71

(23,85,6,5)
(33,87,6,5)
(29,86,5,6)

74.64
49.88
41.85

(30,129,5,5)
(32,127,5,6)
(37,124,5,6)

50.99
67.52
60.43

(40,174,5,5)
(42,170,5,6)
(40,176,4,7)

48.76
68.88
46.98

15
(18,46,8,7)
(17,45,6,8)
(12,33,6,8)

23.18
12.47
12.11

(14,74,8,7)
(21,73,7,7)
(33,87,6,7)

189.89
91.17
18.84

(26,118,7,7)
(22,74,7,7)
(34,90,6,7)

96.90
80.01
16.94

(28,152,8,7)
(43,152,8,7)
(54,167,7,8)

175.17
105.05
49.12

500 5
(6,48,2,2)
(9,43,2,2)

(12,43,2,2)

59.94
64.57
53.14

(8,82,2,2)
(13,89,2,3)
(21,97,2,3)

103.05
97.53
61.73

(11,122,2,2)
(13,123,2,3)
(21,123,2,3)

105.44
173.89
122.80

(16,175,2,2)
(27,186,2,3)
(35,180,2,3)

83.14
80.85
81.17

11
(8,43,4,6)

(15,41,5,5)
(12,42,4,7)

57.85
38.62
29.45

(31,79,6,5)
(33,88,6,5)
(30,88,5,6)

75.43
57.37
41.85

(32,138,5,5)
(30,126,5,6)
(35,123,5,6)

48.01
89.98
80.30

(36,169,5,5)
(39,167,6,6)
(46,165,5,6)

71.79
117.15
83.11

15
(16,46,7,7)
(11,37,6,8)
(9,31,5,8)

22.44
38.90
31.17

(23,93,6,7)
(25,78,7,7)
(34,92,6,7)

27.20
67.15
17.91

(26,119,7,7)
(34,87,8,7)
(22,70,6,7)

111.20
43.76
73.85

(37,163,7,7)
(38,161,7,8)
(47,161,7,8)

93.99
103.54
78.48

Each cell contains the out-of-control ARL-values attained for γ = 0.8 by C2
1¯(upper entry), C3

1—(middle entry) and
C4

1¯(lower entry) chart, respectively.

A similar numerical investigation has been carried out for the class of Ck
2−charts. More

precisely, in Table 4, the out-of-control ARLs of the C2
2−, C3

2 − C4
2−monitoring schemes are

provided for the same designs displayed in Table 2.

Table 4. Out-of -control Average Run Length of the C2
2−, C3

2− and C4
2− charts for a given design.

Reference Sample Size m

100 200

ARLo n (a, b, c, d, i, j, r1, r2) ARLout (a, b, c, d, i, j, r1, r2) ARLout

370 25
(6,43,55,92,5,21,1,1)
(8,43,53,87,6,21,2,1)

(13,45,56,85,5,20,2,1)

36.27
118.84

9.91

(9,83,103,183,5,21,1,1)
(8,71,108,176,5,21,1,1)
(9,91,118,170,5,21,2,1)

70.75
307.17
215.94

30
(7,44,53,90,6,25,2,1)
(9,43,52,86,6,25,2,1)

(12,42,56,81,5,20,2,1)

32.89
32.80
4.98

(9,74,108,178,6,24,1,1)
(13,72,117,175,6,25,2,1)
(14,70,119,170,6,25,2,1)

67.75
72.17
91.94

500 25
(6,47,55,92,5,21,1,1)
(7,43,53,87,6,21,2,1)

(12,42,56,85,5,20,2,1)

36.69
203.41
13.67

(8,81,103,184,5,21,1,1)
(13,75,117,179,5,21,1,1)
(6,97,115,170,5,21,2,1)

112.97
51.25
487.09

30
(7,44,47,90,6,25,2,1)
(8,42,53,86,6,25,2,1)

(12,48,56,81,5,20,2,1)

44.30
57.63
4.98

(9,76,105,178,6,24,1,1)
(13,78,117,175,6,25,2,1)
(14,75,114,167,5,20,2,1)

84.55
66.59
59.65

Each cell contains the out-of-control ARL-values attained for γ = 0.7 by C2
2¯(upper entry), C3

2¯(middle entry) and
C4

2¯(lower entry) chart respectively.

If we consider the same case study mentioned earlier, namely let us assume that the
practitioner works with a reference sample of size m = 100 in order to reach an in-control
ARL equal to 370, then, under the Lehmann alternatives with parameter γ equal to 0.7, the



Stats 2023, 6 289

C2
2−, C3

2 − C4
2−monitoring schemes appearing in Tables 1 and 3 achieve an out-of-control

ARL equal to 36.69, 57.63 and 13.67, respectively.

4. Numerical Comparisons

In this section, we carry out extensive numerical experimentation to shed light on the
efficacy of the new control charts and their robustness features under both in-control and
out-of-control situations. The computations are accomplished with the aid of theoretical
results discussed previously. It is evident that, traditionally, whenever a new control chart is
established as a generalization of existing ones, direct comparison is highly recommended.
Therefore, we next investigate the performance of the proposed control charts against those
established [13,14].

A customary approach weighing two different control charts calls for determining a
common in-control ARL and then examine the corresponding out-control ARLs. Through-
out the next lines, we compare the behavior of the Ck

1−, Ck
2−monitoring schemes to those

established by [13,14], respectively.
Table 5 offers several numerical comparisons between the C2

1−control scheme and the
nonparametric chart introduced by [13]. We assume that a reference sample of size m = 100
is available, while test samples of size n = 5 are then drawn from the process in order to
decide whether it is in- or out-of-control. Both competing schemes are designed such that
an in-control ARL near to 500 is achieved. The design parameters of the chart of [11] are
determined as a = 5, b = 95, j = 3, r = 2 (Competitor 1, hereafter) and its exact in-control
ARL equals 458.07.

Throughout Table 5, two different scenarios are considered for the distribution of the
underlying process. We first consider the case of a process with in-control distribution as
the normal distribution with parameters 0 and 1. The out-of-control distribution is normal
distribution with possible shifts in mean and/or standard deviation (equal to θ units and δ
units, respectively).

The first part of Table 5 clearly reveals that, under the assumption that the process is
normally distributed, the C2

1−control chart performs better than Competitor 1, in terms
of out-of-control ARL values, in all cases considered. For example, let us consider the
case where the process mean has shifted θ = 0.5 units and the corresponding standard
deviation has also shifted δ = 0.05 units. As is easily observed by the aid of Table 5, the
C2

1−monitoring scheme achieves an out-of-control ARL equal to 37.91, while the corre-
sponding ARL–value for Competitor 1 is 59.08.

On the one hand, it is quite useful to investigate the out-of-control performance of the
proposed monitoring schemes for different underlying distributions. Therefore, the case
of a process with in-control distribution, the Laplace distribution (0,1), is also considered.
The second part of Table 5 clearly reveals that, under the assumption that the process
follows the Laplace distribution, the C2

1−control chart performs once again better than
Competitor 1, in terms of out-of-control ARL values, in all cases considered. For example,
let us recall the same out-of-control situation as before, namely, let us assume that the
process mean has shifted θ = 0.5 units and the corresponding standard deviation has also
shifted δ = 0.05 units. In that case, the superiority of the C2

1−monitoring scheme against
Competitor 1 is even more evident. Indeed, the C2

1−chart achieves an out-of-control ARL
equal to 84.65, while the corresponding ARL–value for the Competitor 1 is 187.85.
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Table 5. ARL values of the C2
1− control charts against competitive schemes under different process

distributions and several shifts θ, δ (m = 100, n = 5).

Normal Distribution (0 + θ, 1 + δ) Laplace Distribution (0 + θ, 1 + δ)

θ δ
C2

1-Chart
a = 12, b = 84,

j = 3, r = 2
Competitor 1

C2
1-Chart

a = 12, b = 84,
j = 3, r = 2

Competitor 1

0 0 475.84 458.07 475.84 458.07

0.25 0 176.43 248.92 263.59 374.63

0.5 0 45.77 81.88 108.07 257.35

1 0 6.30 10.00 13.82 84.08

1.5 0 2.60 2.63 3.39 22.29

0.25 0.05 124.01 160.15 192.43 268.20

0.5 0.05 37.91 59.08 84.65 187.85

1 0.05 6.23 8.81 12.68 65.12

1.5 0.05 2.67 2.75 3.42 18.61

0.25 0.10 91.21 109.40 145.26 198.46

0.5 0.10 32.11 44.65 68.14 141.62

1 0.10 6.17 7.90 11.76 51.92

1.5 0.10 2.51 2.52 3.44 15.89

0.25 0.15 69.60 78.44 112.82 151.09

0.5 0.15 27.67 35.01 56.10 109.75

1 0.15 6.10 7.19 10.99 42.42

1.5 0.15 2.68 2.84 3.46 13.84

0.25 0.20 54.74 58.51 89.79 117.88

0.5 0.20 24.19 28.27 47.09 87.09

1 0.20 6.04 6.61 10.36 35.39

1.5 0.20 2.29 2.45 3.48 12.24

In what follows, we investigate the out-of-control performance of the class of Ck
2−control

charts and provide several numerical comparisons versus the monitoring scheme intro-
duced by [14]. We assume that a reference sample of size m = 100 is available, while the
in-control process distribution is supposed to be the Exponential with parameter λ = 1
and the shifts we are wishing to capture are created by a change in the parameter λ. Test
samples of size n = 25 are then drawn from the process in order to decide whether it is
in- or out-of-control. Both competing schemes are designed such that an in-control ARL
near to 500 is achieved. The design parameters of the chart of [14] are determined as
a = 2, b = 48, c = 49, d = 99, i = 4, j = 21, r1 = 1, r2 = 1 (Competitor 2, hereafter) and
its exact in-control ARL equals to 497.21.

As is easily observed, the C4
2−control chart is, under Exponential distribution, superior

to Competitor 2 in all cases examined. For instance, if the process mean of the underlying
in-control distribution has shifted 0.05(0.10) units, C4

2−monitoring scheme achieves (see
Table 6) an out-of-control ARL equal to 319.50 (184.13), while the corresponding ARL-value
for the Competitor 2 is 464.96 (396.84).
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Table 6. ARL values of the C4
2− control charts against competitive schemes under Exponential

distribution and several shifts (m = 100, n = 25).

Exponential Distribution (λ)

Shift C4
2-Chart

a=12, b=42, c=56, d=85, i=5, j=20,r1=2, r2=1
Competitor 2

0.000 492.12 497.21

0.025 402.57 485.98

0.050 319.50 464.96

0.075 246.08 434.80

0.100 184.13 396.84

0.125 134.15 353.09

0.150 95.51 306.01

0.175 66.80 258.20

0.200 46.23 212.12

0.225 31.95 169.80

0.250 22.27 132.63

0.275 15.84 101.32

0.300 11.60 75.90

0.325 8.81 55.97

0.350 6.96 40.77

0375 5.72 29.45

0.400 4.87 21.18

5. Discussion and Some Conclusions

In the present work, a new class of nonparametric Shewhart-type control chart based
on order statistics with signaling runs-type rules is set up and studied in some detail. The
monitoring statistics correspond to suitably chosen order statistics from sequential test
samples which are drawn from the underlying process. The proffered schemes utilize
well-known runs-type rules. The run length of the new distribution-free control charts is
investigated for both in- and out-of-control situations. Several numerical results disclose
the capability of the proposed schemes for detecting a possible shift of the underlying distri-
bution process. More precisely, the proposed control charts seem to perform competitively
under different distribution models, such as the Normal distribution, the Laplace or the
Exponential distribution. Moreover, the new monitoring schemes are proved to be able
to detect small shifts in either mean or dispersion of the underlying distribution. Due to
the existence of several design parameters, the proposed family of control charts offers to
the practitioner the flexibility to achieve a pre-determined level of performance with great
precision. It is also concluded that the proposed charts perform well even if the test sample
size is quite small. The latter remark seems practically useful since, in real life applications,
quite often the underlying process is monitored by the aid of small samples. Finally, it is of
some future research interest to implement runs-type rules to additional nonparametric
control charts for enhancement of their performance.
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