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Abstract: In this article, we introduce two new bivariate Kumaraswamy (KW)-type distributions with
univariate Kumaraswamy marginals (under certain parametric restrictions) that are less restrictive in
nature compared with several other existing bivariate beta and beta-type distributions. Mathematical
expressions for the joint and marginal density functions are presented, and properties such as the
marginal and conditional distributions, product moments and conditional moments are obtained.
Additionally, we show that both the proposed bivariate probability models have positive likelihood
ratios dependent on a potential model for fitting positively dependent data in the bivariate domain.
The method of maximum likelihood and the method of moments are used to derive the associated
estimation procedure. An acceptance and rejection sampling plan to draw random samples from one
of the proposed models along with a simulation study are also provided. For illustrative purposes,
two real data sets are reanalyzed from different domains to exhibit the applicability of the proposed
models in comparison with several other bivariate probability distributions, which are defined on
[0, 1]× [0, 1].

Keywords: bivariate Kumaraswamy-type distribution; positive likelihood ratio dependence; maximum
likelihood estimation; earthquake data

1. Introduction

In recent years, several articles have demonstrated the applicability of the Kumaraswamy
(KW) distribution, and various extensions of univariate KW distributions are also well
established in the literature. Extensions to the bivariate and multivariate domains have also
received great attention from researchers. There has been growing interest in constructing
bivariate and multivariate KW distributions recently. Since the existing bivariate KW distri-
butions cannot adequately fit all types of data, several attempts have been made to construct
bivariate KW-type models. A non-exhaustive list of such references are given below. Ref. [1]
developed and discussed a bivariate KW distribution based on a minimization strategy.
Ref. [2] discussed the construction of a bivariate weighted KW model and provided some
structural properties and applications of such a model based on real life data. Ref. [3]
discussed some alternative ways of constructing a bivariate KW models via conditional
specification, conditional survival specification, Ref. [4] bivariate beta construction, and
a strategy based on [5] proposed model with a slight modification. In a separate article,
Ref. [6] also discussed the copula based the construction of various types of bivariate
KW-type models and discussed the correlation structure and flexibility associated with
such models. Noticeably, all the previous work regarding construction of a bivariate KW
distribution has one striking similarity, and that is their marginals, as well as the condi-
tionals also being of the KW type with appropriate model parameters. On the contrary,
in this paper, we are proposing two arbitrary, absolutely continuous bivariate KW-type
models, which under certain restrictions of the model parameters subsume the independent
KW models. The proposed probability models have shape parameters that belong to the
marginal densities of X and Y, but there are also dependence parameters which involve
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both the shape and scale parameters, as the case may be. We want to examine whether such
types of models under simple linear constraints for the parameters, assuming a known
univariate probability model (in our case, a univariate KW), can possess some tractability
advantages and fit certain types of data. It appears that both the models have closed-form
expressions for moments, with the product moment correlation coefficient involving special
functions or series. This is a totally new approach in constructing an absolutely continuous
bivariate KW-type distribution. Note that the various types of bivariate KW distributions
have led to useful applications in several areas, such as characterizing earthquake data
in Turkey [7], the modeling of the proportions of substances in a mixture, brand shares
(see [8]) and proportions of elaborate voting for a candidate in a two-candidate election,
see [9]. We also argue that these models, including those that are developed in this article,
can also be effectively used as priors for the proportion parameter(s) of a bivariate binomial
distribution in the context of inference under the Bayesian paradigm.

In this paper, we develop and study two different bivariate, absolutely continuous
probability distributions that are defined on a [0, 1]× [0, 1] unit square with the property
that under independence, based on certain parametric restrictions, both the marginals
are univariate KW distributions with suitable shape parameters. We study several useful
structural properties such as the shape of the distribution and likelihood ratio dependence
for both models. Next, we propose the following two models:

1. Model 1 : In this case, we assume the joint density will be of the form

f (x, y) = Dαβ
xα−1yβ−1(1− xα)θ+δ−1(1− yβ

)θ+δ−1[
1− θxαyβ

]δ
, I(0 < x < 1, 0 < y < 1), (1)

where D is an appropriate normalizing constant which can be obtained through

D =

[∫ 1

0

∫ 1

0
αβ

xα−1yβ−1(1− xα)θ+δ−1(1− yβ
)θ+δ−1[

1− θxαyβ
]δ

dxdy

]−1

.

Some representative plots of the bivariate density for varying parameter choices are
given in Appendix A.
In this case, the parametric restrictions are the following: θ + δ > 1, 0 ≤ θ < 1, α > 0
and β > 0. The parameters δ and θ influence the correlation measure between the X
and Y components of the distribution. Note that when θ = 0, the joint density reduces
to the product of two independent univariate KW random variables, particularly
when θ = 0, X ∼ KW(α, θ + δ) and Y ∼ KW(β, θ + δ) independently. Since the KW
distribution has two shape parameters, it appears that the marginals of both X and Y
have the same second shape parameter, specifically (θ + δ), but different first shape
parameters, which are α and β, respectively. Potential application of such bivariate
probability models can be envisioned in real-life scenarios where, for example, X and
Y have data structures such that one characteristic is common to both of them, but
the other one is different. The only factor that might work as a deterrent regarding
the flexibility of such a model is how a practitioner can guarantee that restrictions
such as θ + δ > 1 and 0 ≤ θ < 1 would be met in reality. Notice that since θ < 1
and δ > 1− θ, one can easily observe that 0 < δ < 1. Additional discussion of the
parameters is given in the structural properties section later. However, one may
consider appropriate testing of the hypothesis as a part of model fitting regarding
whether these parametric constraints are met.
In the next section, we consider another bivariate KW-type model that we conjecture
to have some flexibility in terms of modeling positively dependent data.

2. Model 2 : Suppose that the joint density is of the form



Stats 2023, 6 234

f (x, y) = Cαβθ1θ2γ1γ2xα−1yβ−1
[
1− θ1xα − θ2yβ

]δ−α−β−1
(1− θ1xα)γ1−1

(
1− θ2yβ

)γ2−1

×I(0 < x < 1, 0 < y < 1), (2)

where C is an appropriate normalizing constant. Note that when δ = α + β + 1,
the joint density reduces to two independent KW random variables with respective
parameters.
Noticeably, when δ = α + β + 1, it appears that θ1X ∼ KW(α, γ1), and θ2Y ∼
KW(β, γ2) independently. Therefore, by invoking independence via a linear con-
straint on the parameters, component-wise, the marginals of both X and Y follow a
scaled version of a two-parameter univariate KW distribution with the scale factors θ1
and θ2, respectively. Furthermore, this model is significantly different from the first
proposed model in the sense that we bring in scale factors to capture the variability
of X and Y, and the shape parameters are different. This feature is different from
the first model, in which the second shape parameter is the same for both X and Y.
Once again, as before, a natural objection that might occur in terms of application in
modeling real-life data based on this probability model is how our informed expert
can guarantee that for dependence modeling, the linear restriction is not satisfied.
One simple strategy would be to simply consider a hypothesis test of independence,
which can be written as follows:
H0 : δ = α + β + 1, against the alternative Ha : δ 6= α + β + 1.
Some additional discussion on the parameters is given in the structural properties
section for this model later.

At the outset, we define the following mathematical functions which will be used time
and again:

(1) The Gauss hypergeometric function is defined by

2F1(a, b; c; x) =
∞

∑
k=0

(a)k(b)k
(c)k

xk

k!
, (3)

In addition, ( f )k = f ( f + 1)( f + 2) · · · ( f + k− 1) denotes the ascending factorial.
(2) The series expansion is given by

(1− z)−δ =
∞

∑
j=0

Γ(δ + j)zj

Γ(δ)j!
. (4)

The rest of this paper is organized as follows. In Section 2, we discuss some properties
of the first model. Section 3 covers model 2 and the description of some of its structural
properties. The associated estimation procedure by the method of maximum likelihood
and the method of moments is presented in Section 4 for model 1. In Section 5, we provide
a layout of the simulation scheme, assuming that model 1 can be adopted for model 2 as
well, and a small simulation study based on model 1 is included. Section 6 deals with
two real-life data sets that are reanalyzed to exhibit the applicability of the proposed two
models. Finally, some concluding remarks are included in Section 7.

2. Bivariate KW-Type Model 1 Structural Properties

Note that by using the series expansion in Equation (4), one can rewrite the joint
density for model 1 given in Equation (1):

f (x, y) =
∞

∑
j=0

Dθ jαβxjα−1yjβ−1(1− xα)θ+δ−1
(

1− yβ
)θ+δ−1

[
Γ(δ + j)
Γ(δ)j!

]
×I(0 < x < 1, 0 < y < 1). (5)
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2.1. Marginal Densities

The marginal density of Y given from Equation (1) will be

fY(y) =
∫ 1

0
f (x, y)dx

= Dαβyβ−1
(

1− yβ
)θ+δ−1 ∫ 1

0
xα−1 (1− xα)θ+δ−1[

1− θxαyβ
]δ

dx

= Dβyβ−1
(

1− yβ
)θ+δ−1{

Γ(δ + θ) 2 F̃1

(
1, δ; δ + θ + 1; yβθ

)}
= D

∞

∑
k=0

βΓ(δ + θ)
θk(1)(k)δ(k)
(δ + θ + 1)k

yβ(k+1)−1
(

1− yβ
)θ+δ−1

× I(0 < y < 1), (6)

upon using Mathematica and the Gauss hypergeometric function given in Equation (3).
Similarly, the marginal density of X will be

fX(x) = Dαxα−1(1− xα)θ+δ−1{Γ(δ + θ) 2 F̃1(1, δ; δ + θ + 1; xαθ)
}
× I(0 < x < 1)

= D
∞

∑
k=0

αΓ(δ + θ)
θk(1)(k)δ(k)
(δ + θ + 1)k

xα(k+1)−1(1− xα)θ+δ−1 × I(0 < x < 1), (7)

upon using Mathematica and Equation (3) again.
Interpretation of the model parameters:
The four parameters α, β, θ and δ can be interpreted by examining the behavior of the

probability model in Equation (1) near the boundaries of the simplex (x, y) : 0 < x <
1, 0 < y < 1}:

• Observe that as x → 0, f (x, y) ∼ Dαβxα−1yβ−1(1− yβ
)θ+δ−1. Thus, the distribution

of Y along the vertical boundary of the simplex belongs to a univariate KW distribution
with two shape parameters: β and θ + δ. The parameter α represents the scale variation
from a standard KW model.

• Likewise, as y→ 0, f (x, y) ∼ Dαβxα−1yβ−1(1− xα)θ+δ−1. Therefore, the distribution
of X along the vertical boundary of the simplex belongs to a univariate KW distribution
with two shape parameters α and θ + δ. The parameter β represents the scale variation
from a standard KW model.

2.2. Conditional Distributions

The conditional density of Y, given X = x, will be

f (y|X = x) =
f (x, y)
f (x)

=
βyβ−1(1− yβ

)θ+δ−1[[
1− θxαyβ

]δ
]
[2F1(1, δ; 1 + θ + δ; θxα)]

× I(0 < y < 1) (8)

Hence, an expression for the mth-order conditional moment of Y, given X = x (for
any m ≥ 1), will be

E(Ym|X = x)

= β
∫ 1

0

βyβ+m−1(1− yβ
)θ+δ−1[[

1− θxαyβ
]δ
]
[2F1(1, δ; 1 + θ + δ; θxα)]

dy

=
Γ(δ + θ)Γ

(
m+β

β

)
2 F̃1

(
m+β

β , δ; m
β + δ + θ + 1; xαθ

)
β[2F1(1, δ; 1 + θ + δ; θxα)]

,
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upon using Mathematica. Similarly, one can find an expression for the conditional density
of X given Y = y and the corresponding conditional moments.

2.3. Marginal Moments

For any integer m ≥ 1 (by direct integration using Mathematica), from the marginal
density of Y from Equation (8), we have

E(Ym)

= D
∞

∑
k=0

(
βΓ(δ + θ)

θk(1)(k)δ(k)
(δ + θ + 1)k

)( Γ(δ + θ)Γ
(

k + m
β + 1

)
βΓ
(

k + δ + θ + m
β + 1

)) (9)

= D
∞

∑
k=0

(
Γ(δ + θ)

θk(1)(k)δ(k)
(δ + θ + 1)k

)
B
(

δ + θ, k +
m
β
+ 1
)

,

upon further simplification and using the relationship between the gamma function and
the beta function.

Similarly, the marginal mth-order raw moment (m ≥ 1) of X will be (from the marginal
density of X from Equation (7)

E(Xm)

= D
∞

∑
k=0

(
αΓ(δ + θ)

θk(1)(k)δ(k)
(δ + θ + 1)k

)(
Γ(δ + θ)Γ

(
k + m

α + 1
)

αΓ
(
k + δ + θ + m

α + 1
)) (10)

= D
∞

∑
k=0

(
Γ(δ + θ)

θk(1)(k)δ(k)
(δ + θ + 1)k

)
B
(

δ + θ, k +
m
α
+ 1
)

,

after some simplification, as shown before.

2.4. Product Moment

From the joint density expression in Equation (5), and for any non-negative (m, n) ≥ 1,
we have

E(XmYn)

=
∞

∑
j=0

Dθ j
(

αβ

[
Γ(δ + j)
Γ(δ)j!

])( ∫ 1

0

∫ 1

0
xjα+m−1yjβ+n−1(1− xα)θ+δ−1

(
1− yβ

)θ+δ−1
dxdy

)
(11)

=
∞

∑
j=0

Dθ j
([

Γ(δ + j)
Γ(δ)j!

])(Γ(δ + θ)Γ
(

j + n
β

)
Γ
(

j + δ + θ + n
β

) )×(Γ(δ + θ)Γ
(

jα+m
α

)
Γ
(

jα+m+α(δ+θ)
α

) ),

upon using Mathematica.
The next result represents the closed-form expression for the product moment correla-

tion coefficient:

Corollary 1. The Pearson’s product moment correlation coefficient of (X, Y) for the bivariate
density in Equation (1) will be given by

ρ =
Cov(X, Y)√

Var(X)×Var(Y)
, (12)

where
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Cov(X, Y)

=

 ∞

∑
j=0

Dθ j
([

Γ(δ + j)
Γ(δ)j!

])(Γ(δ + θ)Γ
(

j + 1
β

)
Γ
(

j + δ + θ + 1
β

) )×(Γ(δ + θ)Γ
(

jα+1
α

)
Γ
(

jα+1+α(δ+θ)
α

) )


−
{(

D
∞

∑
k=0

(
Γ(δ + θ)

θk(1)(k)δ(k)
(δ + θ + 1)k

)
B
(

δ + θ, k +
1
α
+ 1
))

×
(

D
∞

∑
k=0

(
Γ(δ + θ)

θk(1)(k)δ(k)
(δ + θ + 1)k

)
B
(

δ + θ, k +
1
β
+ 1
))}

.

Var(X)

=

{
D

∞

∑
k=0

(
Γ(δ + θ)

θk(1)(k)δ(k)
(δ + θ + 1)k

)
B
(

δ + θ, k +
2
α
+ 1
)}

−
{

D
∞

∑
k=0

(
Γ(δ + θ)

θk(1)(k)δ(k)
(δ + θ + 1)k

)
B
(

δ + θ, k +
1
α
+ 1
)}2

,

Similarly, we have

Var(Y) =

{
D

∞

∑
k=0

(
Γ(δ + θ)

θk(1)(k)δ(k)
(δ + θ + 1)k

)
B
(

δ + θ, k +
2
β
+ 1
)}

−
{

D
∞

∑
k=0

(
Γ(δ + θ)

θk(1)(k)δ(k)
(δ + θ + 1)k

)
B
(

δ + θ, k +
1
β
+ 1
)}2

.

Proof. This immediately follows from Equation (11) by substituting (m, n) = 1 and m = 1
into Equations (9) and (10), respectively.

2.5. Distributional Properties

A distribution is said to be positive likelihood ratio-dependent (PLRD) if its p.d.f.
f (x, y) satisfies

f (x1, y1) f (x2, y2)

f (x1, y2) f (x2, y1)
≥ 1, (13)

∀ x1 > x2 and y1 > y2 (see [10] for pertinent details). Next, for the joint p.d.f. in
Equation (1), the condition given in Equation (13) is equivalent to (xα

1 − xα
2)(y

β
1 − yβ

2 ) ≥ 0,
which clearly holds, provided α > 0 and β > 0. This property of being PLRD has several
implications that can be associated with the bivariate density in Equation (1), such as the
following:

• The bivariate density in Equation (1) is positive regression-dependent (PRD) (i.e.,
P(X ≤ x|Y = y) is decreasing in y for all x, and similarly, P(Y ≤ y|X = x) is decreas-
ing in x for all y).

• Furthermore, the property of being PRD will imply that P(Y ≤ y|X ≤ x) is non-
decreasing in x for all y and that P(Y ≤ y|X ≤ x) is non-increasing in x for all y, each
of which imply that P(Y > y|X > x) ≥ P(Y > y)P(X > x) and P(Y ≤ y|X ≤ x) ≥
P(Y ≤ y)P(X ≤ x), namely such that X and Y are positive quadrant-dependent (PQD).
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Next, let us consider the shape of the bivariate density given in Equation (1). The
derivatives of log f (x, y) with respect to x and y are

∂ log f (x, y)
∂x

= Dαβxα−2yβ−1(1− xα)δ+θ−2
(

1− yβ
)δ+θ−1(

1− θxαyβ
)−δ−1

×
(

α + θ(αθ − 1)x2αyβ + xα
(

α
(

δ
(

θyβ − 1
)
− θ
(

yβ + 1
))

+ θyβ + 1
)
− 1
)

. (14)

∂ log f (x, y)
∂y

= Dαβxα−1yβ−2(1− xα)δ+θ−1
(

1− yβ
)δ+θ−2(

1− θxαyβ
)−δ−1

×
(

β + θ(βθ − 1)xαy2β + yβ(β(δ(θxα − 1)− θ(xα + 1)) + θxα + 1)− 1
)

. (15)

By setting Equations (14) and (15) to zero, one notes that the critical points for the joint
density in Equation (1) are given by the simultaneous solutions of the two equations

α + θ(αθ − 1)xαyβ +
(

α
(

δ
(

θyβ − 1
)
− θ
(

yβ + 1
))

+ θyβ + 1
)
− 1 = 0,

β + θ(βθ − 1)xαyβ + (β(δ(θxα − 1)− θ(xα + 1)) + θxα + 1)− 1 = 0.

Thus, the bivariate density in Equation (1) can exhibit multiple critical points (to be
precise, α + β).

3. Model 2’s Structural Properties

We begin this section by deriving the marginal densities from the bivariate density in
Equation (2).

Marginal densities:
First, note that using the binomial expansion, the joint p.d.f. in Equation (2) can be

rewritten as

f (x, y) = Cαβθ1θ2γ1γ2xα−1yβ−1
[
1− θ1xα − θ2yβ

]δ−α−β−1
(1− θ1xα)γ1−1

(
1− θ2yβ

)γ2−1

=
∞

∑
j=0

(−1)j
(

δ− α− β− 1
j

)
αβθ1θ

δ−α−β−j+1
2 γ1γ2xα−1yβ−1(1− θ1xα)γ1+j−1

(
1− θ2yβ

)γ2−1
. (16)

Observe that the sum will stop at δ− α− β− 1 if δ− α− β− 1 is an integer. From
Equation (17), the marginal density of Y can be obtained as follows:

fY(y) =
∞

∑
j=0

(−1)j
(

δ− α− β− 1
j

)
αβθ1θ

δ−α−β−j+1
2 γ1γ2yβ−1

(
1− θ2yβ

)γ2−1
{∫ 1

0
xα−1(1− θ1xα)γ1+j−1dx

}

=
∞

∑
j=0

(−1)j
(

δ− α− β− 1
j

)
αβθ1θ

δ−α−β−j+1
2 γ1γ2yβ−1

(
1− θ2yβ

)γ2−1
(

1− (1− θ1)
γ1+j

αγ1θ1 + αθ1 j

)
(17)

×I(0 < y < 1).

Similarly, the marginal density of X will be

fX(x) =
∞

∑
j=0

(−1)j
(

δ− α− β− 1
j

)
αβθ

δ−α−β−j+1
1 θ2γ1γ2xα−1(1− θ1xα)γ1−1

{∫ 1

0
yβ−1

(
1− θ2yβ

)γ2+j−1
dy
}

=
∞

∑
j=0

(−1)j
(

δ− α− β− 1
j

)
αβθ

δ−α−β−j+1
1 θ2γ1γ2xα−1(1− θ1xα)γ1−1

(
1− (1− θ2)

γ2+j

αγ2θ2 + βθ2 j

)
(18)

×I(0 < x < 1),

by the same argument as before in writing the joint p.d.f. in an equivalent form.
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Interpretation of the model parameters:
The six parameters θ1, θ2, γ1, γ2 and α, β can be interpreted by examining the behavior

of the probability model in Equation (2) near the boundaries of the simplex {(x, y) : 0 <
x < 1, 0 < y < 1}:

• Observe that as x → 0, f (x, y) ∼ Cαβθ1θ2γ1γ2xα−1yβ−1(1− θ2yβ
)δ+γ2−α−β−1. Thus,

the distribution of Y along the vertical boundary of the simplex belongs to a univariate
KW distribution with two shape parameters β and δ + γ2 − α− β− 1. The parameter
θ2 represents the scale variation from a standard KW model.

• Likewise, as y→ 0, f (x, y) ∼ Cαβθ1θ2γ1γ2xα−1yβ−1(1− θ1xα)δ+γ1−α−β−1. Thus, the
distribution of Y along the vertical boundary of the simplex belongs to a univariate
KW distribution with two shape parameters β and δ + γ1 − α− β− 1. The parameter
θ1 represents the scale variation from a standard KW model.

The expressions for the conditional moments cannot be obtained analytically, and
numerical integration might be required in this case.

Distributional Properties

For the joint density in Equation (2), the condition in Equation (13) is equivalent to
(xα

1 − xα
2)(y

β
1 − yβ

2 ) ≥ 0, which clearly holds, provided α > 0 and β > 0. Therefore, the
bivariate density in Equation (2) is positive likelihood ratio-dependent (PLRD), which
subsequently implies that X and Y are positive quadrant-dependent.

Next, let us consider the shape of the density in Equation (2). The derivatives of
log f (x, y) with respect to x and y are

∂ log f (x, y)
∂x

= Cx−1
(
− α2θ1xα

θ1xα + θ2yβ − 1
+

α
(
−θ12x2α(β− γ1− δ + 1) + θ1xα

(
β− γ1− δ + γ1θ2yβ

)
− θ2yβ + 1

)
(θ1xα − 1)

(
θ1xα + θ2yβ − 1

) − 1
)

. (19)

∂ log f (x, y)
∂y

= −C
{

βxα
(

θ1− γ2θ1θ2yβ
)
+
(

θ2yβ − 1
)(

θ1xα + θ2yβ − 1
)
+ β

(
θ2yβ − 1

)(
θ2yβ(α− γ2− δ + 1) + 1

)
+β2θ2yβ

(
θ2yβ − 1

)}
(20)

×
{

y
(

θ2yβ − 1
)(

θ1xα + θ2yβ − 1
)}−1

.

Therefore, from Equations (19) and (20), it is evident that the joint p.d.f. in Equation (2)
can exhibit several critical points. One may obtain several other useful structural properties,
albeit with computational complexity similar to that of the first model discussed earlier.

4. Inference

In this section, we discuss the estimation of the model parameters for the bivariate
density given in Equation (1), parameterized by (α, β, θ, δ). We consider the estimation of
the four parameters with the methods of moments and the method of maximum likeli-
hood. The associated Fisher information matrix is available upon request from the author.
Suppose that (x1, y1), · · · , (xn, yn) is a random sample drawn from the bivariate density in
Equation (1).

4.1. Method of Moments Estimation

However, at first, we consider the method of moments estimators of the four parame-
ters, which can be obtained as the simultaneous solutions of the following equations (upon
using the joint moment expression given in Equation (13)):
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∞

∑
j=0

Dθ j
([

Γ(δ + j)
Γ(δ)j!

])(Γ(δ + θ)Γ
(

j + 1
β

)
Γ
(
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β

) )×(Γ(δ + θ)Γ
(

jα+1
α

)
Γ
(

jα+1+α(δ+θ)
α

) ) =
1
n

n

∑
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xiyi.

∞

∑
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Dθ j
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Γ(δ + j)
Γ(δ)j!

])(Γ(δ + θ)Γ
(

j + 2
β

)
Γ
(
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β

) )×(Γ(δ + θ)Γ
(

jα+2
α

)
Γ
(

jα+2+α(δ+θ)
α

) ) =
1
n

n

∑
i=1

x2
i y2

i .

∞

∑
j=0

Dθ j
([

Γ(δ + j)
Γ(δ)j!

])(Γ(δ + θ)Γ
(

j + 3
β

)
Γ
(

j + δ + θ + 3
β

) )×(Γ(δ + θ)Γ
(

jα+3
α

)
Γ
(

jα+3+α(δ+θ)
α

) ) =
1
n

n

∑
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x3
i y3

i .

∞

∑
j=0

Dθ j
([

Γ(δ + j)
Γ(δ)j!

])(Γ(δ + θ)Γ
(

j + 4
β

)
Γ
(

j + δ + θ + 4
β

) )×(Γ(δ + θ)Γ
(

jα+4
α

)
Γ
(

jα+4+α(δ+θ)
α

) ) =
1
n

n

∑
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x4
i y4

i .

4.2. Maximum Likelihood Estimation

For the joint density in Equation (1), the associated log-likelihood function can be
expressed as

` = log D + log α + log β + (α− 1)
n

∑
i=1

log xi + (β− 1)
n

∑
i=1

log yi + (θ + δ− 1) log(1− xα
i )

+(θ + δ− 1) log
(

1− yβ
i

)
− β

n

∑
i=1

(
1− θxα

i yβ
i

)
. (21)

The first-order derivatives of this with respect to the four parameters are

∂`

∂α
=

∂ log D
∂α

− (δ + θ − 1)
n

∑
i=1

xα
i log(xi)

1− xα
i

+ β
n

∑
i=1

θxα
i log(xi)y

β
i +

n

∑
i=1

log(xi) +
1
α

. (22)

∂`

∂β
=

∂ log D
∂β

+
n

∑
i=1

(
1− θxα

i yβ
i

)
+ β

n

∑
i=1

θxα
i yβ

i log(yi) + (δ + θ − 1)
n

∑
i=1
−

yβ
i log(yi)

1− yβ
i

+
n

∑
i=1

log(yi) +
1
β

. (23)

∂`

∂θ
=

∂ log D
∂θ

+
n

∑
i=1

log(1− xα
i ) + β

n

∑
i=1

xα
i yβ

i +
n

∑
i=1

log
(

1− yβ
i

)
. (24)

∂`

∂δ
=

∂ log D
∂δ

+
n

∑
i=1

log(1− xα
i ) +

n

∑
i=1

log
(

1− yβ
i

)
. (25)

The maximum likelihood estimators of (α, β, θ, δ) are the simultaneous solutions
to Equations (22)–(25), respectively, by setting them individually to zero. For real-data
application, it is these MLEs that are considered for the parameter estimation.

5. Simulation

In this section, we consider the simulation from the bivariate density in Equation (1) using
an acceptance-rejection algorithm. We note that a similar strategy can be adopted for the

bivariate density in Equation (2). Let B1 = D
(
(1− θ)δ

[
2F1

(
1, θ + δ; 1 + θ + δ; θ

(1−θ)

)])−1

,

where D is the normalizing constant. The following scheme may be adopted:

1. Generate independent Kumaraswamy random variables U and V with shape parame-
ters (α, δ) and (β, δ), respectively.

2. Generate a uniform [0, 1] random variable W independent from (U, V).
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3. If W < D
(
(1− θ)δ

[
2F1

(
1, θ + δ; 1 + θ + δ; θ

(1−θ(UV)α)

)])−1

, then accept (U, V) as a

realization from the bivariate density in Equation (1).

4. If W ≥ D
(
(1− θ)δ

[
2F1

(
1, θ + δ; 1 + θ + δ; θ

(1−θ(UV)α)

)])−1

, then return to step 1.

We note that there are standard routines for generating independent Kumaraswamy
random variables. Next, to illustrate the feasibility of the suggested estimation strategy,
a small simulation study was undertaken. The simulation study was carried out for one
representative set of parameters (α, β, θ, δ) = (3.5, 1.5, 0.65, 0.45) for model 1 (Equation (1)),
and the process was repeated 15000 times. Three different sample sizes n = 50, 100 and 300
were considered. The bias (actual estimate) and the standard deviation of the parameter
estimates for the maximum likelihood estimates were determined from this simulation
study, and they are presented in Table 1 for bivariate probability model 1 in Equation (1).

Table 1. Bias and standard deviation for the parameters for bivariate probability model 1.

Parameter Sample Size (n = 50) Sample Size (n = 100) Sample Size (n = 300)

α 0.1211 (0.3548) 0.0769 (0.2271) 0.0451 (0.1718)

β −0.0148 (0.03748) 0.0132 (0.02616) 0.00118 (0.0135)

θ 0.0962 (0.0452) 0.0473 (0.0224) 0.00945 (0.1154)

δ 0.1452 (0.1094) 0.1317 (0.0248) 0.00438 (0.0176)

Remark 1. We note the fact that a similar simulation study can be performed for the second
probability model (Equation (2)). From Table 1, we see that both the bias and the standard error
values for the estimates decreased with an increase in the sample size. This is a desirable property for
an estimator.

6. Real Data Application

In this section, we consider two applications of the proposed bivariate weighted
Kumaraswamy distribution-based data sets that have been utilized by several other authors
as well in the past:

• Data Set I: Earthquakes become major societal risks when they strike vulnerable
populations. We consider the data obtained from [7]. Due to the fact that a significant
portion of Turkey is subject to frequent earthquakes, destructive mainshocks and their
foreshock and aftershock sequences, the area between the longitudes 39 and 42◦ N
and latitudes 26 and 45◦ E was investigated. In this particular region, 111 mainshocks
with surface magnitudes (Ms) of five or more occurred in the past 106 years. We define
the following random variables. X represents the magnitude of the foreshocks, and Y
represents the magnitude of the aftershocks. We fit the data to the following bivariate
KW models.

• Data Set II: The data on 45 patients were available from a private clinic in Tennessee
regarding the hemoglobin content in blood being prone to type II diabetes. To see the
effect of reducing the hemoglobin content in the blood, a special type of treatment
was administered to those patients. We define the following variables. X is a random
variable which represents the proportion of hemoglobin content in the blood before the
treatment, and Y is a random variable which represents the proportion of hemoglobin
content in the blood after treatment.

1. Model I: Bivariate distribution as defined in Equation (1);
2. Model II: Bivariate distribution as defined in Equation (2);
3. Model III: Bivariate Kumaraswamy (absolutely continuous distribution, according

to [3], in Equation (5));
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4. Model IV: Bivariate Kumaraswamy distribution via conditional specification, accord-
ing to [5], given by

f (x, y) = Cα1α2xα1−1yα2−1(1− xα1)β1−1(1− yα2)β2−1 exp(β3 log(1− xα1) log(1− xα2))

×I(0 < x < 1, 0 < y < 1),

where C is an appropriate normalizing constant;
5. Model V: Bivariate Kumaraswamy distribution via conditional survival specification,

according to Arnold and Ghosh (2016), given by

f (x, y)

= α1α2xα1−1
1 yα2−1(1− xα1)β1−1(1− yα2)β2−1 exp β3 log(1− xα1

1 ) log(1− yα2)

×
(

β1β2 + β2β3 log(1− xα1
1 ) + β3 + β2

3 log(1− xα1) log(1− yα2) + β1β3 log(1− yα2)
)

I(0 < x1, x2 < 1).

6. Model VI: [11] bivariate F3’s beta distribution, given by

f (x, y) =
Cxβ−1yδ−1(1− x− y)γ−β−δ−1

(1− ux)θ1(1− vy)θ2
,

for 0 < x < 1, 0 < y < 1, 0 < x + y < 1, −1 < u < 1, −1 < v < 1, (β, δ, θ1, θ2) > 0
and γ > β + δ, where C is the normalizing constant.

7. Model VII: [12] bivariate generalized beta distribution given by

f (x, y) =
Cxα−1yβ−1(1− x)γ−α−1(1− y)γ−β−1

(1− xyδ)γ ,

for 0 < x < 1, 0 < y < 1, 0 < x + y < 1, (β, δ, θ1, θ2) > 0 and γ > β + δ, where C is
the normalizing constant.

To verify the efficacy of all four models utilized here, a χ2 goodness-of-fit statistic and
the AIC and BIC values were computed using the computational package R. The MLEs
were computed using the nonlinear optimization package BB in R, while for the estimation
of parameters for the two newly proposed probability models (as given in Equations (1)
and (2)), we considered constrOptim in R. In addition, regarding fitting of the marginal
densities of X and Y, as suggested by one reviewer, we report the following goodness of
summary statistics for the bivariate probability model 1 in Equation (1) below. Furthermore,
we have also included the bivariate scatterplot for the first data set along with the graphs
related to marginal density plots in Appendix A.

1. Here are the results for the K-S goodness of fit for Data Set I:

• For the marginal density of X, K-S value = 0.0648 and K-S p-value = 0.7946.
• For the marginal density of Y, the K-S value = 0.06893 and K-S p-value = 0.8139.

2. Here are the results for the K-S goodness of fit for Data Set II:

• For the marginal density of X, the K-S value = 0.06794 and K-S p-value = 0.8233.
• For the marginal density of Y, the K-S value = 0.06853 and K-S p-value = 0.8394.

The marginal density fits for the second probability model introduced in this paper
are available upon request from the author, and for the sake of brevity, the values are not
included in the current version.

From the summary of results in Tables 2–5, it appears that for the earthquake data set
(Data Set I), Model I performed the best, while for the second data set (Data Set II), both of
the proposed models performed equally better compared with the rest of the probability
models considered. However, from the practitioner’s point of view, one may consider
either of the proposed models for the second data set.
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Table 2. Parameter estimates for Data Set I.

Model Model I Model II Model III Model IV

Parameter estimates α̂ = 2.1341 (1.3214) α̂ = 2.432 (0.6853) α̂1 = 1.1849 (0.6402) α̂1 = 2.2981 (0.5234)
β̂ = 1.8453 (1.381) β̂ = 1.5422 (0.6732) α̂2 = 1.1538 (0.3614) α̂2 = 2.1478 (0.3427)
θ̂ = 0.3165 (0.0842) γ̂1 = 2.2428 (0.1065) β̂1 = 1.472 (0.1368) β̂1 = 2.1138 (0.8436)
δ̂ = 0.4576 (0.1248) γ̂2 = 1.432 (1.3842) β̂2 = 1.5329 (0.2829) β̂2 = 2.1769 (1.2283)

θ̂1 = 0.7982 (0.6425) β̂3 = 1.6825 (0.6297) β̂3 = 1.457 (0.4126)
θ̂2 = 1.0317 (2.3845)

Log likelihood −234.18 −242.67 −265.46 −274.83

χ2 value 0.1485 0.3518 1.0678 2.1019

AIC 476.36 497.34 540.92 559.66

BIC 472.17 489.15 534.73 553.466

Table 3. Parameter estimates for Data Set II.

Model Model I Model II Model III Model IV

Parameter estimates α̂ = 3.2849 (1.0872) α̂ = 2.2578 (0.5241) α̂1 = 2.3244 (0.6402) α̂1 = 1.15681 (0.5423)
β̂ = 1.4546 (0.3371) β̂ = 1.2829 (0.9562) α̂2 = 2.0172 (0.4718) α̂2 = 2.1342 (0.5819)
θ̂ = 0.4263 (0.1842) γ̂1 = 2.2483 (0.4061) β̂1 = 1.5233 (0.5319) β̂1 = 3.1826 (0.5941)
δ̂ = 0.5843 (0.1268) γ̂2 = 1.923 (0.9537) β̂2 = 1.1883 (0.2445) β̂2 = 2.16782 (0.2156)

θ̂1 = 1.2061 (2.2346) β̂3 = 1.6542 (0.3273) β̂3 = 2.6381 (0.4018)
θ̂2 = 0.8924 (1.0617)

Log likelihood −212.17 −216.32 −238.49 −255.38

χ2 value 0.1378 0.1416 0.5516 0.5492

AIC 432.34 444.64 486.98 520.76

BIC 429.049 437.35 481.68 515.469

Table 4. Parameter estimates for Data Set I.

Model Model V Model VI Model VII

Parameter estimates α̂1 = 1.4723 (0.5582) γ̂ = 0.6487 (0.6673) α̂ = 2.1162 (0.5436)
α̂2 = 0.9503 (1.462) β̂ = 1.773 (0.4249) β̂ = 2.5648 (1.2838)

β̂1 = 1.0892 (4.5253) δ̂ = 4.229 (1.3835) γ̂ = 3.182 (0.2896)
β̂2 = 1.6534 (1.2435) θ̂1 = 1.4064 (1.1529) δ̂ = 1.0729 (1.3826)
β̂3 = 2.0308 (0.8425) θ̂2 = 1.4592 (0.6839)

Log likelihood −245.48 −267.18 −286.65

χ2 value 0.5237 0.6225 0.7244

AIC 501.16 544.36 581.30

BIC 494.77 538.17 577.11

Table 5. Parameter estimates for Data Set II.

Model Model V Model VI Model VII

Parameter estimates β̂ = 1.893 (0.7532) α̂ = 2.4325 (1.2485) α̂ = 2.4573 (0.8771)
α̂2 = 0.8845 (1.4468) β̂ = 1.7562 (0.6248) β̂ = 2.5648 (1.2835)
β̂1 = 1.0892 (2.2551) δ̂ = 2.4326 (1.4542) γ̂ = 1.0123 (0.6842)
β̂2 = 1.5422 (0.7494) θ̂1 = 1.5645 (0.9326) δ̂ = 2.0106 (1.2363)
β̂3 = 1.8634 (0.5438) θ̂2 = 1.1672 (1.2648)

Log likelihood −262.17 −258.34 −247.38

χ2 value 0.5632 0.4785 0.3451

AIC 534.34 526.68 502.76

BIC 529.049 521.38 499.47
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7. Concluding Remarks

In recent times, the construction of bivariate and multivariate KW distributions have
been of great interest among researchers and practitioners, with the apparent advantage of
various analytically tractable properties and ease of estimation compared with a bivariate
beta or Dirichlet distribution (in the multivariate domain). The estimation of parameters is
approached by the method of maximum likelihood, although we have shown that one can
adopt the method of moments as well. The usefulness of the bivariate KW-type distribution
is illustrated in two analyses of real data using the χ2, AIC and BIC values for goodness
of fit criteria. We also provided a framework of drawing random samples from such
probability models. As a cautionary note, it might be opined that the two newly defined
bivariate KW-type distributions provide a rather flexible mechanism for fitting a wide
spectrum of positive real-world data on the bounded interval (0, 1). The usefulness of the
two proposed models along with model parameters’ interpretation were also discussed.
Extension to the multivariate domain can easily be envisioned. For example, a p-variate
model can be written as follows:

•

f
(

xp×1
)
= M1

p

∏
i=1

αix
αi−1
i

(
1− xαi

i
)θ+δ1

(
1− θxαi

i
)δ I(0 < xi < 1),

which is defined on [0, 1]p;
• Another such model could be

f
(

xp×1
)
= M2

p

∏
i=1

θix
αi−1
i

(
1− θix

αi
i
)δ−αi−1 I(0 < xi < 1),

which is defined on [0, 1]p.

The interpretation and estimation of the model parameters for such models will be
a challenging issue both from the computational and practical points of view. We are
currently working on this and will report on it elsewhere. One may also consider copula-
based constructions of such probability models, especially in the multivariate domain, in
which several measures of dependence can be studied effectively.
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Appendix A

In figures below, we provide pdf graphs and contour plots for some specific choices
of the parameters α, β, θ and δ for the bivariate density given in Equation (1). From the
contour plots, it appears that for fixed choices β and α, the correlation became stronger for
large values of θ and δ. We also provide the marginal density plots and the bivariate scatter
plot for the first data set.
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Figure A1. The bivariate Kumaraswamy density (Equation (1)) plot, where α = 0.5, β = 0.5, θ = 0.5
and δ = 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure A2. The bivariate Kumaraswamy contour (Equation (1)) plot, where α = 0.5, β = 0.5, θ = 0.5
and δ = 2.

Figure A3. The bivariate Kumaraswamy density (Equation (1)) plot, where α = 0.8, β = 0.8, θ = 0.2
and δ = 3.
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Figure A4. The bivariate Kumaraswamy contour (Equation (1)) plot, where α = 0.8, β = 0.8, θ = 0.2
and δ = 3.

Figure A5. The bivariate Kumaraswamy density (Equation (1)) plot, where α = 0.8, β = 0.8, θ = 0.4
and δ = 3.
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Figure A6. The bivariate Kumaraswamy contour (Equation (1)) plot, where α = 0.8, β = 0.8, θ = 0.4
and δ = 3.
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Figure A7. The bivariate Kumaraswamy density (Equation (1)) plot, where α = 0.5, β = 0.8, θ = 1.2
and δ = 3.
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Figure A8. The bivariate Kumaraswamy contour (Equation (1)) plot, where α = 0.8, β = 0.8, θ = 1.2
and δ = 3.

Figure A9. The bivariate Kumaraswamy density (Equation (1)) plot, where α = 0.8, β = 0.8, θ = 4.5
and δ = 3.
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Figure A10. The bivariate Kumaraswamy contour (Equation (1)) plot, where α = 0.8, β = 0.8, θ = 4.5
and δ = 3.

Figure A11. The bivariate Kumaraswamy density (Equation (1)) plot, where α = 1.5, β = 2.5, θ = 0.5
and δ = 0.9.
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Figure A12. The bivariate Kumaraswamy contour (Equation (1)) plot, where α = 1.5, β = 2.5, θ = 0.5
and δ = 0.9.
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Figure A13. The bivariate Kumaraswamy density (Equation (1)) plot, where α = 2.5, β = 1.5, θ = 0.5
and δ = 0.9.
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Figure A14. The bivariate Kumaraswamy contour (Equation (1)) plot, where α = 2.5, β = 1.5, θ = 0.5
and δ = 0.9.

Figure A15. The bivariate Kumaraswamy density (Equation (1)) plot, where α = 1.1, β = 1.1, θ = 0.8
and δ = 2.
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Figure A16. The bivariate Kumaraswamy contour (Equation (1)) plot, where α = 1.1, β = 1.1, θ = 0.8
and δ = 2.

Figure A17. The bivariate Kumaraswamy density (Equation (1)) plot, where α = 1.1, β = 1.1, θ = 2
and δ = 0.8.
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Figure A18. The bivariate Kumaraswamy contour (Equation (1)) plot, where α = 1.1, β = 1.1, θ = 2
and δ = 0.8.
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Scatterplots and marginal density plots are shown for the first data set based on the
bivariate KW-type model in Equation (1).
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Figure A19. The scatter plot for the first data set.
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Figure A20. The bivariate KW marginal densities (Equation (1)) plot for the first data set.
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