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Abstract: The notion of median in one dimension is a foundational element in nonparametric
statistics. It has been extended to multi-dimensional cases both in location and in regression via
notions of data depth. Regression depth (RD) and projection regression depth (PRD) represent the
two most promising notions in regression. Carrizosa depth DC is another depth notion in regression.
Depth-induced regression medians (maximum depth estimators) serve as robust alternatives to
the classical least squares estimator. The uniqueness of regression medians is indispensable in
the discussion of their properties and the asymptotics (consistency and limiting distribution) of
sample regression medians. Are the regression medians induced from RD, PRD, and DC unique?
Answering this question is the main goal of this article. It is found that only the regression median
induced from PRD possesses the desired uniqueness property. The conventional remedy measure for
non-uniqueness, taking average of all medians, might yield an estimator that no longer possesses the
maximum depth in both RD and DC cases. These and other findings indicate that the PRD and its
induced median are highly favorable among their leading competitors.
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1. Introduction

Regular univariate sample median defined as the innermost (deepest) point of a data set is
unique (If the sample median is defined to be the point θ that minimizes the sum of its distances to
sample points (i.e., θ = arg minθ∈R1 ∑n

i=1 |θ − xi|, where xi, i = 1, · · · , n are the given n sample points
in R1), then it is not unique. However, to overcome this drawback, conventionally it is defined as
θ = Median{xi} := x(b n+1

2 c)
+ x(b n+2

2 c)
/

2, where x(1) ≤ x(2) ≤ · · · ≤ x(n) are ordered values of xi’s
and b·c is the floor function. Namely, it is the innermost point (from both left and right direction) or
the average of two deepest sample points. Hence, it is unique). The population median defined as
the 1

2 -th quantile (Recall, for any univariate distribution function F, and for 0 < p < 1, the quantity
F−1(p) := inf{x : F(x) ≥ p} is called the pth quantile or fractile of F (see page 3 of Serfling (1980) [1]))
of the underlying distribution (there are other versions of definition) is also unique. The most
outstanding feature of the univariate median is its robustness. In fact, among all translation equivariant
location estimators, it has the best possible breakdown point (Donoho (1982) [2]) (and the minimum
maximum bias if underlying distribution has a unimodal symmetric density (Huber (1964) [3]).
Besides serving as a promising robust location estimator, the univariate median also provides a
base for a center-outward ordering (in terms of the deviations from the median), an alternative to the
traditional left-to-right ordering.

To extend the univariate median to multidimensional settings and to share its outstanding
robustness property and an alternative ordering scheme is desirable for multidimensional data.
One approach, among others, is via notions of data depth. General notions of data depth have been
increasingly pursued and studied (Liu, et al. (1999) [4], Zuo and Serfling (2000) (ZS00) [5]) since the
pioneer proposal of Tukey (1975) [6] (see Donoho and Gasko (1992) [7]). Besides Tukey depth, another
prevailing depth, among others, is the projection depth (PD) [5] (Liu (1992) [8], and Zuo (2003) [9]).
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1. Introduction

Item response theory (IRT) models [1,2] are an important class of multivariate statistical
models for analyzing dichotomous random variables used to model testing data from social
science applications. Of vital importance is the application of item response models in
educational large-scale assessment (LSA; [3,4]), such as the programme for international
student assessment (PISA; [5]) study.

In this article, we only investigate unidimensional IRT models. Let X = (X1, . . . , XI)
be the vector of I dichotomous random variables Xi ∈ {0, 1} (also referred to as test items or
items). A unidimensional item response model [6] is a statistical model for the probability
distribution P(X = x) for the vector x = (x1, . . . , xI) ∈ {0, 1}I , where

P(X = x; δ, γ) =
∫ ∞

−∞

I

∏
i=1

[
Pi(θ; γi)

xi (1− Pi(θ; γi))
1−xi

]
φ(θ; µ, σ)dθ , (1)

where φ denotes the density of the normal distribution with mean µ and standard devia-
tion σ. The vector δ = (µ, σ) contains the distribution parameters of the ability variable θ.
The vector γ = (γ1, . . . , γI) contains all estimated item parameters of item response func-
tions Pi(θ; γi) = P(Xi = 1|θ).

Different IRT models emerge by choosing particular item response functions Pi in (1).
The one-parameter logistic (1PL) model (also referred to as the Rasch model; [7]) employs
the item response function Pi(θ) = Ψ(θ − bi), where Ψ denotes the logistic distribution
function, and bi is the item difficulty of item i (i.e., γi = (bi)). The two-parameter logistic
(2PL) model [8] additionally includes the item discrimination ai (i.e., γi = (ai, bi)), and the
item response function is given by Pi(θ) = Ψ(ai(θ − bi)).

Note that distribution parameters δ and item parameters γ cannot be simultaneously
identified. For example, in the 2PL model, the mean µ and the standard deviation σ must
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be fixed to 0 or 1, respectively, if all item discriminations ai and item difficulties bi were
estimated. As an alternative, one could fix at least (or all) item parameters to predefined
values to enable the estimation of distribution parameters.

In this article, we investigate the estimation of the 1PL and 2PL models in the presence
of two groups. In this case, we are primarily interested in comparing the mean µ2 of the
second group with the mean µ1 of the first group. In order to enable group comparisons,
assumptions on item parameters must be imposed in the 1PL and 2PL models. First, one
must fix µ1 to zero. Second, some assumptions on item parameters must be made to enable
the identification of the distribution parameters of the second group. A typical assumption
is the measurement invariance assumption [9,10], which says that item parameters do not
differ across the two groups. However, in practical applications, some item parameters
will almost always differ across groups. This situation is also referred to as differential
item functioning (DIF; [11,12]). In this article, we assume that there could be DIF in item
difficulties in the 1PL and 2PL models (i.e., uniform DIF; [12]). The classes of techniques of
robust linking and regularized estimation are compared through three simulation studies
regarding the performance of parameter recovery of the group comparison.

The rest of the article is structured as follows. Different statistical methods for group
comparisons in the 1PL and the 2PL models in the presence of uniform DIF are discussed in
Section 2. Section 3 presents results from Simulation Study 1, which investigates the group
comparison in the 1PL model in the presence of DIF. Section 4 more thoroughly investigates
the choice of tuning parameters for regularized estimation in a subset of conditions of
Simulation Study 1 in the Focused Simulation Study 1A. Section 5 presents results from
Simulation Study 2, which investigates the group comparison in the 2PL model in the
presence of uniform DIF effects. Finally, the article closes with a discussion in Section 6.

2. Two-Group Comparison under Sparse DIF

We now present IRT estimation in two groups g = 1, 2. Let Xpg = (Xpg1, . . . , XpgI) of
person p = 1, . . . , Ng in group g = 1, 2. We now define the log-likelihood function for data
Dg = (X1g, . . . , XNgg) in group g (g = 1, 2) as

l(µg, σg, ag, bg;Dg) =
Ng

∑
p=1

log

[∫ I

∏
i=1

Pi(xpgi, θ; aig, big)φ(θ; µg, σg)dθ

]
, (2)

where Pi(1, θ; ai, bi) = Ψ(ai(θ − bi)) and Pi(0, θ; ai, bi) = 1− Pi(1, θ; ai, bi) is the 2PL model,
and the vectors of item parameters are defined as ag = (a1g, . . . , aIg) and bg = (b1g, . . . , bIg)

For reasons of identification, we fix the mean µ1 in the first group to zero and the
standard deviation σ1 to 1. We assume that the 2PL (or the 1PL model as a restricted
version) holds in both groups, and there is uniform DIF in item difficulties (i.e., equal item
discriminations ai1 = ai2 in the two groups are assumed). That is, we model the difference
in item difficulties as

bi2 = bi1 + ei . (3)

We assume that DIF effects are fixed (see [13] for a random DIF perspective). Through-
out this paper, we impose a sparsity assumption on DIF effects ei. In this case, the majority
of items have DIF effects of zero, while only a few DIF effects differ from zero [14,15]. The
situation is known as partial invariance [16–19]. Hence, DIF effects can be regarded as
outliers that might bias the estimation of group mean differences [14,20–24].

In the next subsections, we discuss alternative methods for two-group comparisons
in the 1PL and 2PL models in the presence of uniform DIF. In Section 2.1, concurrent
calibration relying on invariant item parameters is discussed. Section 2.2 investigates
regularization approaches to handling DIF in two-group comparisons. Robust linking
approaches are treated in Section 2.3. Finally, relationships between regularization and
robust linking are highlighted in Section 2.4.
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2.1. Concurrent Calibration

Concurrent calibration jointly estimates common (group-invariant) item parameters
and distribution parameters in one estimation run. This property is particularly convenient
for practitioners because no additional steps or postprocessing of model results is required.
We now present concurrent calibration separately for the 1PL and 2PL models.

2.1.1. 1PL Model

We now estimate the distribution parameters of the second group (i.e., µ2 and σ2) with
a concurrent calibration approach in the 1PL model. In the 1PL model, item discriminations
are set to one and indicate this using the notation ag = 1 of a vector of ones. The distribution
parameters and the vector of common item difficulties are estimated by minimizing the
negative of the log-likelihood function (see (2))

(µ̂2, σ̂2, σ̂1, b̂) = arg min
(µ2,σ2,σ1,b)

{
− l(0, σ1, 1, b;D1)− l(µ2, σ2, 1, b;D2)

}
. (4)

Note that the minimization in (4) assumes invariant item difficulties b across the two
groups. In the presence of uniform DIF, the log-likelihood function in (4) is misspecified.
However, under certain conditions, it is possible that group differences could nevertheless
be unbiasedly estimated [25,26].

2.1.2. 2PL Model

We now weaken the assumption of equal item discriminations in the 2PL model.
Common item discriminations a and item difficulties b are estimated by minimizing the
estimation function

(µ̂2, σ̂2, â, b̂) = arg min
(µ2,σ2,a,b)

{
− l(0, 1, a, b;D1)− l(µ2, σ2, a, b;D2)

}
. (5)

Like in the 1PL model, the log-likelihood function in (5) is misspecified in the presence
of uniform DIF. Nevertheless, it is interesting to empirically investigate situations in which
misspecified concurrent calibration can provide approximately unbiased results.

2.2. Regularization Approaches

In practical applications, all items could be prone to DIF effects. However, modeling
all DIF effects without any constraints leads to an unidentified IRT model. To circumvent
this issue, regularization techniques have been proposed in statistics to estimate noniden-
tified models under sparsity assumptions [27,28]. The main idea of using regularization
techniques for multiple-group IRT estimation is that by adding an appropriate penalty term
to the negative log-likelihood function, some simplified structure on DIF effects is imposed.
It can be shown that under sparse DIF effects, regularized estimation provides unbiased
group means [20]. Regularized estimation recently became popular in psychometrics, such
as item response modeling [29,30], structural equation modeling [31–33], structured latent
class analysis [34–36], and mixture models [37,38]. The investigation of regularization
approaches of known demographic groups, such as gender or language groups, is an
important topic in educational measurement. Moreover, regularization techniques were
recently discussed for manifest DIF detection in the 1PL and 2PL models [19,20,39–44].

For a scalar parameter x, lasso penalty is a popular penalty function used in regular-
ization [28], and it is defined as

PLasso(x, λ) = λ|x| , (6)

where λ is a non-negative regularization parameter that controls the extent of regularization.
It is known that the lasso penalty induces bias in estimated parameters. To circumvent this
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issue, the smoothly clipped absolute deviation (SCAD; [45]) penalty has been proposed. It
is defined by

PSCAD(x, λ, a) =





λ|x| if |x| < λ

−(x2 − 2aλ|x|2 + λ2)(2(a− 1))−1 if λ ≤ |x| ≤ aλ
(a + 1)λ2 if |x| > aλ

(7)

with a > 2. In many studies, the recommended value of a = 3.7 (see [45]) has been adopted
(e.g., [27,36,38,46–48]). However, other studies considered the simultaneous selection of
both tuning parameters λ and a [31,49–51].

Figure 1 displays the SCAD penalty function for different values of a with a fixed λ
value of 0.2. The SCAD penalty retains the penalization rate and the induced bias of the
lasso for model parameters close to zero, but continuously relaxes the rate of penalization
as the absolute value of the model parameters increases. Note that PSCAD has the property
of the lasso penalty around zero, but has zero derivatives for x values that strongly differ
from zero. In contrast, the derivative of the lasso penalty is 1 or−1 for positive and negative
x values, respectively.
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Figure 1. SCAD penalty function PSCAD for different values of a for λ = 0.2.

We now present regularization estimation under uniform DIF for the 1PL and the
2PL model.

2.2.1. 1PL Model

In regularization, we specify an overidentified IRT model but enable the identification
of distribution parameters of the second group (i.e., µ2 and σ2) by adding a penalty function
to the negative log-likelihood function. Compared with (4), we additionally introduce the
vector of DIF effects e = (e1, . . . , eI) and consider the minimization problem

(µ̂2, σ̂2, σ̂1, b̂, ê) = arg min
(µ2,σ2,σ1,b,e)

{
− l(0, σ1, 1, b;D1)− l(µ2, σ2, 1, b + e;D2) + N∗

I

∑
i=1
PSCAD(ei, λ, a)

}
, (8)

where N∗ = (N1 + N2)/2 includes the sample sizes in the penalty term.
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In practice, the minimization of (8) for a fixed value of λ results in a subset of DIF
effects that are different from zero, where the rest of the DIF effects has been set to zero. In
essence, the group difference is only based on those items whose DIF effects ei are estimated
equal to zero.

Typically, the regularization parameter λ is an unknown nuisance parameter in (8)
that must also be estimated. In practice, the minimization of (8) is carried out on a discrete
grid of λ values, and the optimal regularization parameter λopt is selected that minimizes
the Akaike information criterion (AIC) or the Bayesian information criterion (BIC).

The regularized estimation problem (8) can be minimized using marginal maximum
likelihood estimation and the expectation maximization (EM) algorithm [30,36,46]. The
EM algorithm alternates between the E-step and the M-step. The E-step computation is
identical to the estimation in nonregularized item response models. In the M-step, the
minimizing of the regularized negative log-likelihood function is carried out using ex-
pected counts that are computed in the expected log-likelihood function. The difference
between regularized estimation and ordinary maximum likelihood estimation is that the
optimization function becomes nondifferentiable, because the SCAD penalty is nondif-
ferentiable. The optimization of nondifferentiable optimization can be performed using
gradient descent [28] approaches or by substituting the nondifferentiable optimization
functions with differentiable approximating functions [36,52–54]. In our experience, the
latter approach performs quite satisfactorily in applications.

2.2.2. 2PL Model

We now turn to regularized estimation in the 2PL model. Like in the 1PL model, the
overidentified vector of the DIF effects e is introduced. In addition, the vector of common
item discriminations a is estimated. The following estimation function is minimized for
determining group differences

(µ̂2, σ̂2, â, b̂, ê) = arg min
(µ2,σ2,a,b,e)

{
− l(0, 1, a, b;D1)− l(µ2, σ2, a, b + e;D2) + N∗

I

∑
i=1
PSCAD(ei, λ, a)

}
. (9)

In principle, regularized estimation in the 2PL model using common item discriminations is
not different from regularized estimation in the 1PL model. The principle of regularization
can be extended to modeling DIF effects in item discriminations by introducing additional
penalty terms for these DIF effects [44].

2.3. Robust Linking Approaches

Linking methods are typically two-step methods that separately estimate IRT models,
such as the 1PL or 2PL models in each of the groups, and compute group distribution
parameters (i.e., group means and standard deviations) in a second step [25,55–57]. We
replace the separate estimation with a simultaneous estimation in a two-group IRT model.
We differ from this usual setup in this article for two reasons. First, we want to highlight
the notational similarity to regularized estimation. Second, we also want to conduct linking
in the 2PL model under the assumption of common item discriminations if there is a strong
belief that most of the DIF effects can be attributed to uniform instead of nonuniform
DIF effects. Robust linking as a concept refers to the property that group differences
can be estimated without bias (or only with small bias) despite the presence of (uniform)
DIF [25,58].

2.3.1. 1PL Model

We now present robust linking approaches in the 1PL model. In the first step, we
consider the minimization problem

(σ̂2, σ̂1, b̂, ê) = arg min
(σ2,σ1,b,e)

{
− l(0, σ1, 1, b;D1)− l(0, σ2, 1, b + e;D2)

}
. (10)
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Note that (10) differs from regularized estimation (8) in two aspects. First, it does not
involve a penalty function. Second, it does not provide an estimate of the group mean µ2
of the second group. We want to point out that the estimates from the minimization (10)
are equivalent to the separate estimation of the 1PL model with item difficulties b̂ in the
first group and difficulties b̂ + ê in the second group.

Robust (and nonrobust) linking methods employ estimated DIF effects ê = (ê1, . . . , êI)
to determine a group mean estimate µ̂2.

Robust Linking Using the Lp Loss Function

The first robust linking method uses the Lp loss function ρ(x) = |x|p for p > 0
(see [25,59,60]) and determines the group mean estimate as

µ̂2 = arg min
µ2

{ I

∑
i=1

ρ(êi + µ2)
}

. (11)

Mean–mean linking (MM; [55,61]) results with p = 2. The case p = 1 corresponds to
median linking [20] and is expected to be more robust than p = 2. Finally, the case p = 0.5
corresponds to the loss function used in invariance alignment [59,62,63]. In optimization,
one can replace the nondifferentiable function ρ with ρ̃(x) = (x2 + ε)p/2 using a sufficiently
small ε > 0, such as ε = 0.01 [59].

Robust Linking Using the MAD Statistic

Researchers Matthias von Davier and Bezirhan proposed robust outlier detection of
items with large DIF effects and removed them from linking [64] (see also [61,65,66]). For
each item i, a z statistic is defined by

zi =
êi −Mdn(ê)

MAD(ê)
, (12)

where Mdn(ê) denotes the median of the vector ê of estimated DIF effects, and MAD is
the (scaled) median absolute deviation of the DIF effects. An item is declared an outlier
(because of possessing a large DIF effect) if |zi| exceeds the cutoff of 2.7 [64]. The group
mean difference is defined as

µ̂2 = −

I

∑
i=1

wi êi

I

∑
i=1

wi

with wi = 1{|zi |≤2.7} . (13)

Obviously, items with large DIF effects are removed from the computation of the group
mean in (13).

2.3.2. 2PL Model

Linking based on the 2PL model can be applied in two variants. The first approach
relies on a first simultaneous estimation step in which common item discriminations a are
estimated. It is well known that the 2PL model gets unstable with small samples, which
motivates the estimation of a simplified model with joint item discriminations. In the first
step of the linking approach, we determine item parameters and the standard deviation in
the second group by

(σ̂2, â, b̂, ê) = arg min
(σ2,a,b,e)

{
− l(0, 1, a, b;D1)− l(0, σ2, a, b + e;D2)

}
. (14)

Alternatively, separate estimation of the 2PL model in the two groups can be con-
ducted, which results in estimated item parameters â1 and b̂1 and â2 and b̂2, respectively.
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Robust Linking Using Lp Loss Function or MAD Statistic

The estimation of µ2 based on the Lp loss function and outlier removal can also be
based on the estimated vector ê. No change in formulas in (11), (12), and (13) is required.

Joint Haberman Linking Using Common Item Discriminations

We now show how to perform Haberman linking [67,68] if the first linking step is
carried out using common item discriminations (see minimization problem (14). The more
general Lp loss function is again used for Haberman linking [60]. In this case, common
item difficulties b̃ = (b̃1, . . . , b̃I) are estimated by minimizing

(µ̂2, ˆ̃b) = arg min
(µ2,b̃)

{ I

∑
i=1

ρ(b̂i − b̃i) +
I

∑
i=1

ρ(b̂i + êi − b̃i + µ2)
}

. (15)

Haberman Linking Based on Separate Calibration

We also compare the performance of joint Haberman linking using common item
discriminations with the ordinary Haberman linking that is based on separation calibra-
tion [60,68]. In the first step of Haberman linking, common logarithmized item discrimina-
tions α = (α1, . . . , αI), and the logarithmized standard deviation s2 of the second group is
determined as the minimizer of

(ŝ2, α̂) = arg min
(s2,α)

{ I

∑
i=1

ρ(log âi1 − αi) +
I

∑
i=1

ρ(log âi2 − αi − s2)
}

. (16)

Note that the standard deviation of the second group is given by σ2 = exp(s2).
In the second step of Haberman linking, the group means µ2 of the second group are

estimated along with common item difficulties bi

(µ̂2, b̂) = arg min
(µ2,b)

{ I

∑
i=1

ρ(b̂i1 − bi) +
I

∑
i=1

ρ(σ̂2b̂i2 − bi + µ2)
}

. (17)

2.4. On the Relation of Robust Linking and Regularized Estimation

It has been argued that robust linking yields very similar results to regularization
approaches for linking two groups [20]. We now sketch a heuristic proof of why this is the
case. In the regularization approach, one uses the SCAD penalty, which behaves similarly
to the lasso penalty PLasso(x) = λ|x| for x values close to zero. We now use the notation
of ρ for the penalty function in regularized estimation to indicate that a general Lp loss
function can be used in regularized estimation. The optimization function in regularized
estimation in the 1PL model is then given by

(µ̂2, σ̂2, σ̂1, b̂, ê) = arg min
(µ2,σ2,σ1,b,e)

{
− l(0, σ1, 1, b;D1)− l(µ2, σ2, 1, b + e;D2) + N∗λ

I

∑
i=1

ρ(ei)
}

. (18)

We demonstrated that robust linking relies on the first minimization step

(σ̂2, σ̂1, b̂, ê) = arg min
(σ2,σ1,b,e)

{
− l(0, σ1, 1, b;D1)− l(0, σ2, 1, b + e;D2)

}
. (19)

Importantly, the log-likelihood in (19) does not change under reparametrization by includ-
ing the redundant group mean µ2. We obtain

{
− l(0, σ1, 1, b;D1)− l(0, σ2, 1, b + e;D2)

}
=

{
− l(0, σ1, 1, b;D1)− l(µ2, σ2, 1, b + ẽ;D2)

}
(20)

for any µ2 and ẽ = µ2 + e. Hence, the overidentified right-hand side of (20) can be made
identifiable by adding a penalty function to the log-likelihood function. A condition for
unbiased estimation of the group mean µ2 is to define DIF effects ei in such a way that
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∑I
i=1 ρ(ei) = 0 is minimal [20]. This condition can also encode sparsity assumptions on DIF

effects using the Lp loss function and p→ 0. Importantly, robust linking can be defined as

µ̂2 = arg min
µ2

{ I

∑
i=1

ρ(êi + µ̂2)
}

, (21)

which demonstrates the practical equivalence of robust linking and regularized estimation
in sufficiently large samples.

3. Simulation Study 1: DIF Effects in the 1PL Model

In this Simulation Study 1, we compare robust linking and regularized estimation in
the 1PL model in the presence of DIF effects. We consider the case of two groups.

3.1. Method

In this simulation study, we fixed the number of items to 20 and fixed item difficulties
throughout all replications. Item parameters and DIF effects can be found at https://osf.
io/tma3f/ (accessed on 8 December 2022). Item difficulties bi (see column “b”) ranged
between −1.88 and 1.61, with a mean of 0.00 and a standard deviation of 1.20. Items
with DIF effects ei (column “e”) can also be found at https://osf.io/tma3f/ (accessed on
8 December 2022). The DIF effects ei had values {−1, 0, 1}. Only 4 out of 20 items were
simulated to have DIF effects different from zero.

Item response data were generated according to the 1PL model using item difficulties
bi in the first group and bi + δei in the second group. The DIF effect size δ was either 0.5
(i.e., small DIF effects) or 1.0 (i.e., large DIF effects). Furthermore, DIF was chosen to be
balanced or unbalanced. In the balanced DIF condition, two items had DIF effects −δ, and
two items had DIF effects δ. In the unbalanced DIF condition, all items had DIF effects δ.

The distribution of the ability variable θ was assumed as standard normal
(i.e., θ ∼ N(0, 1)) in the first group and had a mean of µ2 = 0.3 and a standard devi-
ation σ2 = 1.2 in the second group. Finally, we varied sample sizes per group N as 500,
1000, 2500, and 5000.

The different linking approaches presented for the 1PL model in Section 2 were eval-
uated in Simulation Study 1. In the scaling models, we used rectangular integration
on a discrete quadrature of 41 equidistant θ points on [−8.0, 8.0]. In concurrent cali-
bration, we assumed invariant item parameters across groups. Regularized estimation
was carried out using the SCAD penalty, and the regularized model was estimated at
a grid of regularization parameters between 1.0 and 0.005 (see replication material on
https://osf.io/tma3f/(accessed on 8 December 2022) for specification details). In this
simulation study, the tuning parameter a was fixed to 3.7. We chose estimates of the reg-
ularization approach using the optimal regularization λopt based on AIC, BIC, and fixed
λ values of 0.05, 0.10, and 0.15 (see [38,69] for a similar approach). Moreover, powers p = 2
(L2; mean–mean linking), p = 1 (L1; median–median linking), and p = 0.5 (L0.5; invariance
alignment) were used in the robust linking approach that utilizes the Lp loss function. Fi-
nally, we determined the group mean of the second group on the outlier removal approach
using the MAD statistic and a cutoff value of 2.7.

In total, 3000 replications were conducted in each simulation condition. We assessed
the bias and root mean square error (RMSE) of the estimated group mean µ̂2. In each of the
R replications in a simulation condition, the group mean µ̂2r (r = 1, . . . , R) was estimated.
The bias was estimated by

Bias =
1
R

R

∑
r=1

(µ̂2r − µ2) . (22)

https://osf.io/tma3f/
https://osf.io/tma3f/
https://osf.io/tma3f/
https://osf.io/tma3f/
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The RMSE was estimated by

RMSE =
1
R

R

∑
r=1

(µ̂2r − µ2)
2 . (23)

To ease the comparability of the RMSE between different methods across sample sizes, we
used a relative RMSE in which we divided the RMSE of a particular method by the RMSE
of the best-performing method in a simulation condition. Hence, a relative RMSE of 100 is
the reference value for the best-performing method.

The statistical software R [70] was employed for all parts of the simulation. Concurrent
calibration in a multiple-group IRT model was estimated using the TAM package [71].
Regularized estimation was carried out using the xxirt function in the sirt package [72].
Replication material can be found at https://osf.io/tma3f/ (accessed on 8 December 2022).

3.2. Results

In Table 1, the bias of the estimated group mean µ̂2 as a function of the size of the DIF
effect δ and the sample size N is presented. It turned out that all methods performed well
in the case of balanced DIF.

Table 1. Simulation Study 1: Bias of estimated group means for balanced and unbalanced DIF effects
as a function of the size of DIF effects δ and sample size N.

Choice of λ

δ N MAD AIC BIC 0.05 0.10 0.15 L0.5 L1 L2 CC

Balanced DIF

0.5

500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5000 0.00 0.00 0.00 0.00 0.00 −0.01 0.00 0.00 0.00 0.00

1.0

500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Unbalanced DIF

0.5

500 −0.06 −0.02 −0.03 −0.04 −0.02 −0.06 −0.03 −0.05 −0.10 −0.09
1000 −0.03 −0.02 −0.01 −0.01 −0.01 −0.08 −0.02 −0.04 −0.10 −0.10
2500 0.00 −0.02 −0.01 −0.01 −0.01 −0.09 −0.01 −0.02 −0.10 −0.10
5000 0.00 −0.01 −0.01 −0.01 −0.01 −0.09 −0.01 −0.02 −0.10 −0.10

1.0

500 −0.01 −0.02 0.00 −0.05 0.00 0.00 −0.02 −0.05 −0.20 −0.18
1000 0.00 −0.02 0.00 −0.02 0.00 0.00 −0.01 −0.04 −0.20 −0.18
2500 0.00 −0.01 0.00 −0.02 0.00 0.00 −0.01 −0.02 −0.20 −0.18
5000 0.00 −0.01 0.00 −0.03 0.00 0.00 −0.01 −0.02 −0.20 −0.18

Note. MAD = robust linking using the MAD statistic; Choice of λ = method or value for determining the
regularization parameter λ; Lp = linking employing the Lp loss function with p = 0.5, 1.0, or 2.0; CC = concurrent
calibration assuming invariant item parameters; Absolute biases larger than 0.03 are printed in bold.

In the case of unbalanced DIF, nonrobust linking methods such as concurrent calibra-
tion (CC) and mean–mean linking (L2) were substantially biased. Interestingly, there
was also a bias for median–median linking (L1) with unbalanced DIF. However, the
bias decreased in larger samples. This can be expected because median–median link-
ing (i.e., L1 linking) recovers the true group difference in infinite sample sizes. In finite
samples, estimated DIF effects with a true value of 0 will differ from 0, but have an expected
mean of 0. As a consequence, the median of all estimated DIF effects (DIF items and non-
DIF items) will be negative in the case of unbalanced DIF, because estimated DIF effects
for DIF items are positive, resulting in a negative bias of the estimated group mean of the
second group.

https://osf.io/tma3f/
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The robust L0.5 linking approach performed well regarding the bias, particularly in
larger samples. Overall, the estimated group means tended to be less biased when the
BIC instead of the AIC was used in regularized estimation. However, the bias for robust
linking and regularization approaches under unbalanced DIF turned out to be larger in
conditions with small DIF effects of δ = 0.5 compared with large DIF effects of δ = 1.0.

Table 2 presents the relative RMSE as a function of the size of DIF effects δ and the
sample size N. It can be seen that CC is the frontrunner in terms of RMSE in the condition
of unbalanced DIF. Notably, regularized estimation was particularly inefficient in larger
samples of N = 2500 or N = 5000 in the condition of a small DIF effect. Furthermore, the
robust linking approach based on the MAD statistic that performs outlier removal showed
less variability than linking based on the L0.5 invariance alignment loss function.

Table 2. Simulation Study 1: Relative root mean sqaure error (RMSE) of estimated group means for
balanced and unbalanced DIF effects as a function of the size of DIF effects δ and sample size N.

Choice of λ

δ N MAD AIC BIC 0.05 0.10 0.15 L0.5 L1 L2 CC

Balanced DIF

0.5

500 111 115 111 120 110 111 122 110 101 100
1000 111 112 106 109 108 118 115 108 101 100
2500 104 133 103 122 118 135 114 108 101 100
5000 103 147 129 139 126 153 111 107 100 100

1.0

500 107 111 105 115 106 104 118 109 102 100
1000 104 110 103 108 103 103 115 108 102 100
2500 105 113 104 112 103 103 114 109 102 100
5000 104 111 103 126 103 103 112 108 102 100

Unbalanced DIF

0.5

500 120 108 104 120 100 117 113 110 142 138
1000 124 126 100 122 108 164 117 119 196 187
2500 102 203 185 194 161 258 114 120 288 274
5000 100 249 240 243 217 374 114 124 408 383

1.0

500 108 109 100 141 101 100 122 121 270 247
1000 100 113 100 125 100 100 117 122 370 336
2500 101 113 101 244 103 100 113 121 572 519
5000 100 115 100 352 103 100 111 124 808 730

Note. MAD = robust linking using the MAD statistic; Choice of λ = method or value for determining the
regularization parameter λ; Lp = linking employing the Lp loss function with p = 0.5, 1.0, or 2.0; CC = concurrent
calibration assuming invariant item parameters; Relative RMSE values larger than 125 are printed in bold.

The situation changed in the conditions of unbalanced DIF. As expected, nonrobust
linking approaches CC and L2 had large RMSE values. In the case of small DIF effects
(i.e., δ = 0.5), the performance of the methods depended on the sample size. For moderate
sample sizes, N = 500 and N = 1000, regularized estimation based on the BIC was satisfac-
tory, while the MAD approach would be preferred in larger sample sizes N = 2500 and
N = 5000. Nevertheless, the L0.5 robust linking approach was quite competitive across all
sample sizes for small DIF effects. For large unbalanced DIF effects (i.e., δ = 1.0), regular-
ized estimation based on BIC and robust linking using the MAD statistic outperformed
other methods. Interestingly, regularized estimation using fixed λ values of 0.10 or 0.15 also
yielded satisfactory group mean estimates. Notably, the invariance alignment L0.5 approach
had some efficiency loss but might still be considered a viable alternative to the MAD
linking and regularization approach.

4. Focused Simulation Study 1A: Optimal Choice of two Tuning Parameters for the
SCAD Penalty

In this Focused Simulation Study 1A, we additionally investigated the impact of
different choices of the second tuning parameter a for the SCAD penalty.
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4.1. Method

This focused simulation study only considered the impact of the tuning parameter a
for the SCAD penalty in regularized estimation. We only investigated selected conditions
of Simulation Study 1. We focused on unbalanced DIF and chose sample sizes N = 500,
1000, and 2000. Regularized estimation with the SCAD penalty was carried out using
different a values of 2.2, 2.5, 3, 3.7, 4.5, 6, and 9. The same grid of λ values as in Simulation
Study 1 was employed (see Section 3.1). For each fixed a value, the optimal λ value was
determined by means AIC or BIC. In addition, we also determined estimated group means
by choosing the optimal pair (λopt, aopt) for AIC and BIC.

The performance of the different analytical choices was evaluated by using a relative
RMSE. The relative RMSE was obtained by dividing the RMSE of a method by the RMSE
of the best-performing method. The best-performing method could either be a regularized
estimation with a particular choice of λ and a or a regularized estimation with an optimal
choice of λ or a using AIC or BIC.

4.2. Results

Table 3 presents the relative RMSE of estimated group means for different choices of
a and λ. Like in Simulation Study 1, the RMSE was smaller for methods that relied on BIC
than on AIC. For methods based on AIC, it turned out that using the optimal a parameter
across a range of a values resulted in the least RMSE for N = 500 and N = 1000. However,
this was not the case for N = 2500. Across different conditions, the choice a = 3.7 did not
result in estimated group means with the least RMSE values. This finding also occurred
for regularized estimation based on BIC. However, differences between different choices
of a values turned out to be smaller. For N = 500 or N = 1000, the choice of a for the
SCAD penalty does not seem to matter. In contrast, using the optimal a value resulted in a
substantial RMSE decrease for small DIF effects (i.e., δ = 0.5). On the other hand, using the
optimal a value resulted in an RMSE increase for N = 2500 in the presence of large DIF
effects (i.e., δ = 1) compared with methods that use a fixed a value of the SCAD penalty.
Interestingly, the least RMSE values could also be obtained with proper choices of fixed
values of a and λ. In particular, for a large sample size of N = 2500, relying on a fixed
instead of an optimal λ value can substantially decrease the RMSE.

As a conclusion of this focused simulation study, one could state that the choice of
a for the SCAD penalty can have some impact. However, it is more important whether
regularized estimation is carried out using AIC or BIC.

Table 3. Focused Simulation Study 1A: Relative root mean square error (RMSE) of estimated group
means for unbalanced DIF effects as a function of the size of DIF effects δ and sample size N for
different values a of the SCAD penalty.

Best Choice of λ Based on AIC with a = Choice of λ Based on BIC with a =

δ N a λ 2.2 2.5 3 3.7 4.5 6 9 aopt 2.2 2.5 3 3.7 4.5 6 9 aopt

0.5
500 9 0.04 110.8 111.2 110.9 111.8 110.2 110.3 109.6 108.0 103.4 103.4 103.3 103.4 103.4 103.5 104.0 104.0
1000 3.7 BIC 128.7 130.1 129.5 127.7 129.4 126.1 122.7 121.4 100.2 100.0 100.1 100.0 100.2 100.1 100.4 100.2
2500 2.2 0.19 139.2 138.6 137.7 136.3 138.1 137.8 132.3 129.4 126.0 126.6 125.2 122.7 125.1 124.6 117.8 111.3

1
500 3.7 0.13 111.4 110.4 110.5 108.7 108.7 107.9 109.9 108.6 102.5 102.4 102.5 100.3 100.2 100.2 100.4 100.6
1000 3.7 0.13 113.1 112.5 112.5 112.9 112.1 111.2 108.9 110.3 100.6 100.6 100.7 100.6 100.7 100.6 100.9 100.8
2500 9 0.08 126.9 119.8 120.4 119.5 120.4 114.4 116.4 122.8 111.3 103.4 103.4 105.8 103.4 103.4 103.3 111.2

Note. Best = pair of (a, λ) values in all estimated models that resulted in the least relative RMSE value of 100;
Choice of λ = method or value for determining the regularization parameter λ; and aopt = choice of optimal
a parameter based on AIC or BIC with corresponding optimal λ parameter.

5. Simulation Study 2: Uniform DIF Effects in the 2PL Model

In this Simulation Study 2, robust linking and regularization estimation is compared
in the 2PL IRT model in the presence of uniform DIF effects.
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5.1. Method

The simulation design of Simulation Study 2 closely follows the design of Simulation
Study 1 described in Section 3.1. We now only emphasize the differences between this
study and the first one.

Notably, item response data were generated based on the 2PL model using the same in-
variant item discriminations across the two groups (see https://osf.io/tma3f/ (accessed on
8 December 2022)) for data-generating item parameters; see column “a” for item discrimi-
nations. Like in Simulation Study 1, item difficulties bi ranged between−1.88 and 1.61 with
a mean of 0.00 and a standard deviation of 1.20. Item discriminations ai ranged between
0.58 and 1.57 with a mean of 1.00 and a standard deviation of 0.30. Item difficulties and
item discriminations were essentially uncorrelated (r = −0.02). DIF effects only occurred
in item difficulties (i.e., uniform DIF). Like in Simulation Study 1, we set µ2 = 0.3 and
σ2 = 1.2 as data-generating distribution parameters in the second group. Moreover, the
number of items (i.e., I = 20) was also fixed throughout all conditions. DIF effects were
either small (δ = 0.5) or large (δ = 1.0) and either balanced or unbalanced. Finally, we also
simulated four different sample sizes N of 500, 1000, 2500, and 5000.

For regularized estimation, the same grid of λ values like in Simulation Study 1 and
Focused Simulation Study 1A was utilized. In this simulation study, the tuning parameter
a was fixed to 3.7.

In the linking approaches, we either relied on a simultaneous first estimation step
assuming common item discriminations or separate estimation assuming groupwise item
discriminations. In contrast to Simulation Study 1, we also applied joint Haberman linking
(JHL) to common item discriminations and ordinary Haberman linking (HL) to groupwise
estimated item discriminations with powers p = 2, 1, and 0.5.

In total, 3000 replications were simulated in each condition. R software [70] was used
throughout the whole simulation. The R packages TAM [71] and sirt [72] were employed for
estimating the IRT models. Replication material can again be found at https://osf.io/tma3f/
(accessed on 8 December 2022).

5.2. Results

Table 4 presents the bias for the estimated group mean µ̂2 as a function of the size
of DIF effects δ and the sample size N. It turned out that all methods except concurrent
calibration (CC) resulted in unbiased estimates of group means. Consistent with other
studies, CC resulted in slightly biased estimates in the case of the 2PL model, even in the
situation of balanced DIF effects. The reason might be that the presence of DIF negatively
impacted the estimation of common item discriminations and the standard deviation of the
second group.

In the case of unbalanced DIF, robust linking approaches based on L0.5 or MAD, as
well as the regularization approach based on BIC, performed satisfactorily in terms of bias.
Joint Haberman linking (JHL) and Haberman linking based on separate calibration (HL)
resulted in approximately unbiased estimates with p = 0.5.

Table 5 presents the relative RMSE of the estimated group mean as a function of the
size of the DIF effect δ and the sample size N. In the case of unbalanced DIF, mean–mean
linking L2 and JHL performed the best across all conditions. It should be emphasized that
the RMSE of CC became unacceptable in larger sample sizes due to bias. Moreover, a robust
linking approach with powers p = 0.5 or p = 1 resulted in some efficiency losses.

https://osf.io/tma3f/
https://osf.io/tma3f/
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Table 4. Simulation Study 2: Bias of estimated group means for balanced and unbalanced DIF effects
as a function of the size of DIF effects δ and sample size N.

Choice of λ JHL with p = HL with p =

δ N MAD AIC BIC 0.05 0.10 0.15 0.5 1 2 0.5 1 2 L0.5 L1 L2 CC

Balanced DIF

0.5

500 −0.01 −0.01 −0.01 −0.02 −0.01 −0.04 −0.01 −0.01 −0.01 0.00 0.00 0.01 −0.01 −0.01 −0.01 −0.04
1000 0.01 0.00 0.01 0.00 0.01 −0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 −0.04
2500 −0.01 −0.01 −0.01 −0.01 0.00 −0.05 −0.01 −0.01 −0.01 0.00 0.00 0.00 −0.01 −0.01 −0.01 −0.04
5000 0.00 0.00 0.01 0.01 0.01 −0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.04

1.0

500 −0.01 −0.02 −0.01 −0.02 −0.01 −0.01 −0.02 −0.02 −0.01 0.00 0.00 0.01 −0.02 −0.02 −0.01 −0.06
1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.06
2500 −0.01 −0.02 −0.01 −0.01 −0.01 −0.01 −0.02 −0.01 −0.01 0.00 0.00 0.00 −0.02 −0.01 −0.01 −0.06
5000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.06

Unbalanced DIF

0.5

500 −0.07 −0.03 −0.04 −0.04 −0.03 −0.07 −0.04 −0.06 −0.10 −0.04 −0.06 −0.10 −0.04 −0.05 −0.10 −0.10
1000 −0.03 −0.01 0.00 −0.01 −0.01 −0.07 −0.02 −0.04 −0.10 −0.03 −0.05 −0.10 −0.02 −0.03 −0.10 −0.10
2500 −0.01 −0.03 −0.03 −0.03 −0.02 −0.10 −0.02 −0.04 −0.10 −0.02 −0.04 −0.10 −0.01 −0.03 −0.10 −0.10
5000 0.01 −0.01 0.00 −0.01 0.00 −0.09 0.00 −0.02 −0.10 −0.01 −0.03 −0.10 0.00 −0.01 −0.10 −0.10

1.0

500 −0.03 −0.03 −0.02 −0.06 −0.02 −0.02 −0.03 −0.07 −0.21 −0.03 −0.07 −0.20 −0.04 −0.06 −0.21 −0.17
1000 0.00 −0.01 0.00 −0.02 0.00 0.00 −0.01 −0.04 −0.20 −0.02 −0.05 −0.20 −0.01 −0.03 −0.20 −0.17
2500 −0.01 −0.02 −0.02 −0.05 −0.02 −0.02 −0.02 −0.04 −0.21 −0.01 −0.04 −0.20 −0.02 −0.03 −0.21 −0.17
5000 0.00 0.00 0.00 −0.02 0.00 0.00 0.00 −0.02 −0.20 −0.01 −0.03 −0.20 0.00 −0.01 −0.20 −0.17

Note. MAD = robust linking using the MAD statistic; Choice of λ = method or valuze for determining the
regularization parameter λ; JHL = joint Haberman linking using joint item discriminations; HL = Haberman
linking using group-specific item discriminations; Lp = linking employing the unweighted Lp loss function
with p = 0.5, 1.0, or 2.0 using joint item discriminations; CC = concurrent calibration assuming invariant item
parameters; Absolute biases larger than 0.03 are printed in bold.

Table 5. Simulation Study 2: Relative root mean square error (RMSE) of estimated group means for
balanced and unbalanced DIF effects as a function of the size of DIF effects δ and sample size N.

Choice of λ JHL with p = HL with p =

δ N MAD AIC BIC 0.05 0.10 0.15 0.5 1 2 0.5 1 2 L0.5 L1 L2 CC

Balanced DIF

0.5

500 108 119 109 130 111 120 112 103 100 127 115 125 115 105 100 113
1000 109 113 106 111 106 127 107 102 100 120 112 118 112 104 100 121
2500 104 185 117 183 139 178 105 103 100 113 110 116 111 105 100 152
5000 103 120 112 115 104 209 103 102 100 110 109 113 110 104 100 194

1.0

500 105 109 101 117 101 100 109 103 100 127 117 127 113 105 100 127
1000 104 108 102 107 102 101 109 103 100 124 116 123 112 106 100 149
2500 105 113 100 127 100 100 106 104 102 114 111 116 112 107 102 192
5000 103 108 100 108 100 100 102 101 100 113 113 118 110 104 100 258

Unbalanced DIF

0.5

500 118 118 101 130 100 121 103 107 140 119 118 148 109 106 140 135
1000 126 136 100 133 113 163 107 118 190 126 137 201 116 115 190 192
2500 105 293 272 299 212 269 107 134 288 118 146 284 113 123 288 276
5000 102 276 279 279 253 356 100 123 375 115 156 391 109 110 375 384

1.0

500 109 115 100 146 107 105 110 125 265 128 141 271 120 123 265 231
1000 100 114 105 131 105 105 105 122 359 124 145 366 113 118 359 315
2500 101 179 169 308 163 171 108 144 536 113 146 529 112 131 536 459
5000 103 117 100 345 100 100 104 135 776 116 161 778 112 118 776 677

Note. MAD = robust linking using the MAD statistic; Choice of λ = method or valuze for determining the
regularization parameter λ; JHL = joint Haberman linking using joint item discriminations; HL = Haberman
linking using group-specific item discriminations; Lp = linking employing the unweighted Lp loss function
with p = 0.5, 1.0, or 2.0 using joint item discriminations; CC = concurrent calibration assuming invariant item
parameters; Relative RMSE values larger than 125 are printed in bold.

The case of unbalanced DIF in the 2PL model was similar to the 1PL model presented
in Simulation Study 1 in Section 3.2. For small DIF effects (i.e., δ = 0.5), regularized
estimation using BIC was the frontrunner for moderate sample sizes N = 500 and N = 1000,
while robust linking based on the MAD statistic performed well in larger sample sizes
N = 2500 and N = 5000. For large DIF effects (i.e., δ = 1.0), robust linking using the MAD
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statistic performed satisfactorily. Moreover, JHL with p = 0.5 and the robust L0.5 linking
also resulted in group mean estimates of acceptable variability.

6. Discussion

In this article, we investigated the performance of robust linking and regularized
estimation in the presence of sparse uniform differential item functioning by means of
three simulation studies. It turned out that robust linking approaches were competitive
or outperformed regularized estimation in most conditions in the simulation studies.
In particular, regularized estimation was not quite successful in parameter recovery in
conditions with small DIF effects. It was also found that robust linking based on outlier
removal using the MAD statistic [64] was often superior to robust linking using the Lp loss
function with p = 0.5, which corresponds to invariance alignment. Overall, one could
generally conclude that there is probably no need for using the computationally much
more demanding regularization approaches instead of employing robust linking.

As in any simulation study, our findings are limited to the studied conditions. First,
we only considered a fixed test of 20 items. Additional studies could also involve a larger
number of items or balanced incomplete block designs for item response data [73]. Second,
only 4 out of 20 items (i.e., 20% of the items) showed uniform DIF effects. Other research
indicated that higher DIF rates would also be possible in robust linking, as long as the
threshold of 50% of DIF items is not exceeded [21,24]. Third, we simulated uniform DIF
under a sparsity condition. The 16 non-DIF items had DIF effects of exactly 0. Future
research could also assume that there would also be small DIF effects that could add up
to zero [26,74]. Fourth, future research could also investigate the case of nonuniform DIF
in item discriminations. It could be that larger sample sizes would be required for robust
linking in this situation, and regularized estimation might be advantageous.

In this article, we assumed that DIF effects potentially bias group mean differences.
Hence, DIF effects should be essentially removed from group comparisons. However, it
could be argued that eliminating items from comparisons poses a threat to validity [74–77],
and statistical criteria should not determine which items enter group comparisons [78].
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Abbreviations
The following abbreviations are used in this manuscript:

1PL one-parameter logistic
2PL two-parameter logistic
AIC Akaike information criterion
BIC Bayesian information criterion
CC concurrent calibration
DIF differential item functioning
DWLS diagonally weighted least squares
FIPC fixed item parameter calibration
IPD item parameter drift
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IRT item response theory
JK jackknife
LE linking error
LSA large-scale assessment studies
MAD median absolute deviation
PISA programme for international student assessment
RMSE root mean square error
SCAD smoothly clipped absolute deviation
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