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Abstract: Propensity score (PS) based methods, such as matching, stratification, regression adjust-
ment, simple and augmented inverse probability weighting, are popular for controlling for observed
confounders in observational studies of causal effects. More recently, we proposed penalized spline
of propensity prediction (PENCOMP), which multiply-imputes outcomes for unassigned treatments
using a regression model that includes a penalized spline of the estimated selection probability and
other covariates. For PS methods to work reliably, there should be sufficient overlap in the propensity
score distributions between treatment groups. Limited overlap can result in fewer subjects being
matched or in extreme weights causing numerical instability and bias in causal estimation. The
problem of limited overlap suggests (a) defining alternative estimands that restrict inferences to
subpopulations where all treatments have the potential to be assigned, and (b) excluding or down-
weighting sample cases where the propensity to receive one of the compared treatments is close to
zero. We compared PENCOMP and other PS methods for estimation of alternative causal estimands
when limited overlap occurs. Simulations suggest that, when there are extreme weights, PENCOMP
tends to outperform the weighted estimators for ATE and performs similarly to the weighted estima-
tors for alternative estimands. We illustrate PENCOMP in two applications: the effect of antiretroviral
treatments on CD4 counts using the Multicenter AIDS cohort study (MACS) and whether right heart
catheterization (RHC) is a beneficial treatment in treating critically ill patients.

Keywords: causal estimands; PENCOMP; penalized spline; double robustness; multiple imputation;
causal inference

1. Introduction

Observational studies for inference about causal effects are valuable when randomiza-
tion is infeasible or unethical. Valid causal inference in this setting requires adjusting for
differences in the distributions of confounders between treatment groups. For example,
due to ethical reasons, a randomized controlled trial (RCT) has never been conducted to
evaluate the effectiveness of right heart catheterization (RHC), a commonly used procedure
in treating critically ill patients. However, because sicker patients are more likely to be
treated with RHC and have worse clinical outcomes, appropriate methods are needed to
reduce confounding by patient characteristics. To deal with confounding, the propensity
score—the probability of treatment assignment as a function of the observed covariates—is
often used.

The propensity score summarizes the observed covariates and serves as a dimension-
reduction technique. Differences in covariate distributions between treatment groups lead
to differences in the average propensity scores between treatment groups [1]. Due to the
balancing property of the propensity score, propensity score adjustment can remove the
bias due to differences in all observed confounders between treatment groups [2]. Propen-
sity score adjustment methods include matching, stratification, regression adjustment, and
inverse probability weighting. The matching and stratification methods construct artificial

Stats 2022, 5, 1254–1270. https://doi.org/10.3390/stats5040076 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats5040076
https://doi.org/10.3390/stats5040076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://doi.org/10.3390/stats5040076
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats5040076?type=check_update&version=1


Stats 2022, 5 1255

controls by matching or grouping treated subjects with non-treated subjects of similar
baseline characteristics, i.e., similar propensity scores. Regression-based methods such as
penalized spline of propensity prediction (PENCOMP) include a function of propensity
score and covariates that are predictive of the outcome. Finally, the inverse probability
weighting methods, such as inverse probability of treatment weighting (IPTW) and aug-
mented inverse probability of treatment weighting (AIPTW), control for confounding by
weighting subjects by the inverse of the probability of receiving the observed treatments.
For these methods to work reliably, there should be sufficient overlap in the propensity
score distributions between treatment groups [3]. When there is limited overlap, causal es-
timates can be imprecise. For example, in matching and stratification, there would be a few
or no available subjects in matching or in strata. When the weights are highly variable in
presence of limited overlap, IPTW and AIPTW can become numerically unstable. Although
PENCOMP is less sensitive to extreme weights [4], being a regression-based method, it can
be sensitive to model specification due to extrapolation of regression models.

The most-used estimand for causal comparison is the average treatment effect (ATE),
the average treatment effect for the entire population of interest. The ATE estimand
is defined as the mean difference in the potential outcomes of two scenarios: when all
subjects in the population of interest receive treatment versus when all subjects receive
control. However, when there is limited overlap in the propensity score distributions
between treatment groups, more credible alternative causal estimands can be estimated
by restricting to subpopulations with more covariate balance. Limited overlap can result
in extreme propensity scores or extreme weights causing numerical instability and bias in
causal estimation. To alleviate the problem of limited overlap, Gutman and Rubin (2013) [5]
proposed dropping units outside of the overlap region of estimated propensity scores
between treatment groups. Cochran and Rubin (1973) [6] and Dehejia and Wahba (1999) [7]
discarded unmatched subjects. Similarly, Rosenbaum (2012) [8] proposed an algorithm
for choosing an optimal set of treated subjects, where some treated subjects were dropped
due to poor matching quality. Ho et al. (2007) [9] proposed a two-stage approach. In
the first stage, all the treated units were paired with their closest control units, and only
the matched units were included in the second stage for further adjustment. Crump et al.
(2009) [10] and Yoshida et al. (2019) [11] restricted analysis to a subpopulation defined by
trimming extreme propensity scores. Li et al. (2017, 2019) [12,13] weighted subjects by
the overlap (ATO) weight to balance the weighted distributions of the covariates between
treatment groups in a fashion that minimizes the asymptotic variance of the causal effect.
Li and Greene (2013) [14] proposed weighting subjects by the match weight. Mao et al.
(2018) [15] studied the class of modified inverse probability weighted estimators to address
limited overlap.

Restriction of treatment comparison to a subpopulation allows a more precise and
credible causal estimate for the subpopulation but changes the causal estimand. Sturmer
et al. (2010) [16] argued that extreme propensity scores could be due to some important
unmeasured confounding, so restriction of treatment comparisons to subjects within a
common range of propensity scores could increase the validity of causal estimate. Imbens
and Wooldridge (2009) [17] argued that the focus on the ATE estimand for causal compar-
ison in practice can be unrealistic. Investigators might be less likely to ask patients with
extreme propensity scores to participate in a study or receive a treatment (or control) due
to excessive risk involved. Thus, the subpopulations obtained by applying more weights to
subjects with propensity scores close to 0.5 and less weights to subjects with propensity
scores close to 0 or 1 may resemble the population targeted by randomized trials [12,15]. In
this paper, we focus our attention on alternative causal estimands and analysis methods to
ensure that more robust causal inferences are possible when there is limited overlap in the
propensity score distributions between treatment groups. We evaluate the performance of
PENCOMP in estimating alternative estimands that restrict causal inference to the subset
of the population with sufficient overlap to make robust inference.
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The remainder of the paper is structured as follows. In Section 2, we discuss the
standard causal estimand (average treatment effect or ATE) along with three alternative
estimands designed to deal with overlap. In Section 3, we describe three estimators
(PENCOMP along with two weighted estimators) for estimating the estimands described
in Section 2. In Section 4, we conduct simulation studies of the performance of the three
estimators for the four estimands we consider. In Section 5, we illustrate the methods in two
applications: the effect of antiretroviral treatments on CD4 counts and whether right heart
catheterization (RHC) is a beneficial treatment in treating critically ill patients. Section 6
concludes with a review of the results and a discussion of possible next steps.

2. Causal Estimands

In a study with treatments administered as a single time point, let Xi and Zi denote the
vector of baseline covariates and a binary treatment for subject i = 1, · · · , n, respectively.
Let Zi = {0, 1} denote a binary treatment with Zi = 1 for treatment and Zi = 0 for
control. Let YZi

i denote the potential outcome under Zi for subject i. Under Rubin’s causal
model, the treatment effect for a subject i is defined as the difference between the potential
outcomes under the two treatments received by the subject. To estimate the causal effects,
we make the following three assumptions.

1. Stable Unit Treatment Value Assumption, SUTVA [18]: (a) The observed outcome un-
der the assigned treatment is the same as the potential outcome under that treatment,
and (b) the potential outcomes for a given subject are not influenced by the treatment
assignments of other subjects [18,19].

2. Positivity: Each subject has a positive probability of being assigned to either treat-
ment of interest. The assumption is violated when there exists neighborhoods in the
covariate space where all subjects are assigned the same treatment.

3. Ignorable treatment assignment: (Y1, Y0) ⊥⊥ Z | X: Treatment assignment is indepen-
dent of the potential outcomes, given the observed covariates.

We now describe four different target estimands of causal effects: the ATE, the average
treatment effect truncated on propensity score, or truncated average treatment effect (TATE),
the average treatment effect on an evenly matchable set (ATM), and the average treatment
effect on the overlap population (ATO)

2.1. ATE

The ATE is the average of the individual level treatment effect defined on the entire
population for whom both treatments are appropriate therapies, E(Y1 − Y0), which is
often used and easy to interpret. This estimand is the population average treatment effect,
also denoted as PATE in Imai et al. (2008) [20]. ATE/PATE should be distinguished from
the sample average treatment effect (SATE), which is the average over a sample. In this
paper, we focus on estimating the treatment effect over a population rather than over a
sample. The estimation error of the population level treatment effect from a sample can be
decomposed into error due to sample selection and error due to treatment imbalance [20].
By restricting causal estimation to subpopulations to deal with limited overlap, alternative
causal estimands are obtained.

2.2. TATE

One possible alternative estimand can be defined by truncating extreme propensity
scores. For unit i in the population with covariate value Xi, let Pz(Xi) = Pr(Zi = z|Xi)
denote the propensity of receiving treatment z, for z = {0, 1}. The positivity condition
holds for the set of units S(0) where S(0) = {i : Pz(Xi) > 0}. We can restrict inferences
to the subpopulation S(α) of S(0), where the probability of all treatment assignments is
greater than a pre-defined level of α directly, that is S(α) = {i : Pz(Xi) > α, for z = {0, 1}}.
We refer to this estimand as the truncated average treatment effect (TATE). The estimand
is defined on the true propensity. However, the true propensity is unknown, and for
estimation purposes, the truncation is based on an estimated propensity. Thus the quality
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of the TATE estimator depends on both the correct specification of the propensity score
model and sufficient data to accurately estimate the true propensity scores.

2.3. ATM

Samuels (2017) [21] defined the ATM estimand, the average treatment effect on an
evenly matchable set M, E(Y1 − Y0 | M). The ATM estimand is targeted by one-to-one
pair matching without replacement on propensity score with a caliper, simply called pair
matching throughout the paper. A unit is evenly matchable if, within a small propensity
score stratum centered around the unit, there are at least as many units from the other
group as from its own group. Suppose we divide the range of the propensity score into
many small strata. Within each stratum, if there are equal numbers of units from both
groups, all the units are evenly matchable; otherwise, only the units from the least prevalent
group are evenly matchable. The evenly matched set is the union of all the matchable units
from all the strata. Li and Greene (2013) [14] proposed the match weight as an analog to
pair matching. Thus, the ATM can also be defined as the weighted average treatment effect
E[ω(P1(Xi))∆i]/E[ω(P1(Xi))], where the weight ω(P1(Xi)) =min{P1(Xi), P0(Xi)}, and ∆i
is the individual conditional treatment effect for subject i [14].

2.4. ATO

Li et al. (2017) [12] defined another estimand, the average treatment effect on the
overlap population, ATO. The overlap population is created by down-weighting the units
with extreme propensity scores and up-weighting the units with propensity score close
to 0.5. The target population is “the units whose combination of characteristics could
appear with substantial probability in either treatment group” [12]. The ATO is defined
as the weighted average treatment effect E[ω(P1(Xi))∆i]/E[ω(P1(Xi))], where the weight
ω(P1(Xi)) = ZiP0(Xi) + (1− Zi)P1(Xi), and ∆i is the individual conditional treatment
effect for subject i. Although the targeted population is theoretically more balanced in the
covariates between the treated and control groups, it is arguably less interpretable than the
original population.

3. Causal Estimators
3.1. IPTW

Each subject i is weighted by the balancing weight equal to the inverse of the probabil-

ity of receiving the treatment to which they were assigned: Wi = ω(P̂1(Xi))/
{

Zi P̂1(Xi) +

(1− Zi)(1− P̂1(Xi))

}
. The weighted estimator for treatment effect ∆ is defined as fol-

lows [15]:

∆̂IPTW =
∑n

i=1 WiZiYi

∑n
i=1 WiZi

− ∑n
i=1 Wi(1− Zi)Yi

∑n
i=1 Wi(1− Zi)

Different specifications of ω(P̂1(Xi)) yield average treatment effects for different sub-
populations. For the ATE estimand, ω(P̂1(Xi)) is 1, which defines the IPTW estimator. For
the ATO estimand, ω(P̂1(Xi)) is P̂1(Xi)× P̂0(Xi). For TATE, ω(P̂1(Xi)) is set as I{i ∈ S(α)},

where I is the indicator. For the ATM estimand, ω(P̂1(Xi)) is set as min
(

P̂1(Xi), P̂0(Xi)

)
.

For each estimand, the ∆̂IPTW is computed on the original data S. The standard errors
are estimated by bootstrapping the data. The procedure is as follows.

(a) For d = 1, · · · , D, generate a bootstrap sample Sd from the original data S by
sampling units with replacement.

(b) For each sample Sd, compute the weighted estimator on each bootstrap sample,
∆̂d

IPTW .
(c) Compute the standard error ŝdD for ∆̂IPTW based on D bootstrap samples as follows:
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ŝd
2
D =

D

∑
d=1

(∆̂d
IPTW − ∆̂∗. )

2/(D− 1)

where ∆̂∗. = ∑D
d=1 ∆̂d

IPTW/D. The 95% confidence intervals are computed as ∆̂IPTW ±
1.96ŝdD.

3.2. AIPTW

For each inverse of propensity weighted estimator described in Section 3.1, an aug-
mented inverse of propensity weighted estimator can be defined as follows [15]:

∆̂AIPTW =
∑n

i=1 ω(P̂1(Xi)){m1(Xi, α1)−m0(Xi, α0)}
∑n

i=1 ω(P̂1(Xi))
+

∑n
i=1 WiZi{Yi −m1(Xi, α1)}

∑n
i=1 WiZi

−∑n
i=1 Wi(1− Zi){Yi −m0(Xi, α0)}

∑n
i=1 Wi(1− Zi)

where m1(Xi, α1) = E(Yi|Xi, Zi = 1) and m0(Xi, α0) = E(Yi|Xi, Zi = 0).
Alternatively, AIPTW can also be constructed as described in Kang & Shafer (2007) [22],

as a solution to the following equation:

1
n

n

∑
i=1

Ûi +
1
n

n

∑
i=1

Zi P̂1(Xi)
−1(Ui − Ûi) = 0,

where Ui =
Yi−µ

σ2 and Ûi is the quasi-score function of Ui with Yi replaced by m1(Xi, α1). In
the simulation studies, we use the first version of AIPTW. Similar bootstrap procedures as
described in Section 3.1 can be used to estimate the standard error for ∆̂AIPTW .

3.3. PENCOMP

PENCOMP is a robust multiple imputation-based approach to causal inference [4,23].
PENCOMP builds on the Penalized Spline of Propensity Prediction method (PSPP) for
missing data problems [24,25]. Although PENCOMP was developed to deal with longitudi-
nal settings where later treatment assignments can be confounded by early outcomes, here
we consider a simple setting where treatments are assigned only once. Since each subject
receives one treatment, we observe the potential outcome under the observed treatment
but not the potential outcome under the alternative treatment. Thus, inference about causal
effects can be framed as a missing data problem [26,27], where the counterfactual outcome
is imputed, and inference is conducted using multiple imputation.

PENCOMP [4,23] applies the idea of PSPP to the causal inference setting, with the
propensity of response replaced by the propensity of treatment assignment and the missing
data being the outcomes under unassigned treatments. We estimate the propensity to
be assigned to each treatment by a regression method suitable for a categorical outcome,
for example, by logistic regression if there are two treatments, or polytomous regression
if there are more than two treatments. We then predict the potential outcomes for the
treatments not assigned to subjects using regression models that include splines on the
logit of the propensity to be assigned that treatment and a function of other covariates
that are predictive of the outcome. Separate models are fitted for each treatment group.
Under SUTVA, positivity and ignorability assumptions stated in Section 2, the marginal
mean from the imputation model is consistent if (1) the regression models for the potential
outcomes are correctly specified; or, (2) the propensity models are correctly specified, and
the relationship between the outcomes and the propensity are correctly specified. The latter
assumption can be met under relatively weak conditions by regressing the outcomes on the
spline of the logit of the propensity, since the spline does not impose strong assumptions
on the functional form of the relationship between the outcomes and the propensity.

PENCOMP in a single time point treatment setting can be implemented as follows:



Stats 2022, 5 1259

(a) For d = 1, · · · , D, generate a bootstrap sample Sd from the original data S by
sampling units with replacement. Then carry out steps (b)–(d) for each sample Sd:

(b) Estimate the propensity score model for the distribution of Z given X, with regres-
sion parameters γz. The propensity to be assigned treatment Z = z is denoted as P̂z(X) =
Pr(Z = z|X, γ̂d

z ), where γ̂d
z is the ML estimate of γz. Define P̂∗z =log[P̂z(X)/(1− P̂z(X))].

(c) For each z = {0, 1}, using the cases assigned to treatment group z, for a continuous
outcome, estimate a normal linear regression of Yz on X, with mean

E(Yz|X, Z = z, θz, βz) = s(P̂∗z|θz) + gz(X; βz),

For a binary outcome, assume a logistic regression model as follows [28]:

logit{Pr(Yz = 1|X, Z = z, θz, βz)} = s(P̂∗z|θz) + gz(X; βz),

where s(P̂∗z|θz) denotes a penalized spline with fixed knots [29–31], with parameters θz,
and gz() represents a parametric function of covariates predictive of the outcome, including
covariates that are adequately balanced by the estimated propensity score models, indexed
by parameters βz. A different spline function can be fitted for each treatment group.

(d) For z = 0, 1, impute Yz for subjects in treatment group 1− z in the original data set
with draws from the predictive distribution of Yz given X from the regression in (d), with
ML estimates θ̂

(d)
z , β̂

(d)
z substituted for the parameters θz, βz, respectively.

(e) Let ∆̂d and Vd denote the estimated causal effect and its associated variance in
complete dataset d. For TATE, we restrict causal comparison to the set of cases defined by
S(α) based on the estimated propensity score and calculate the ∆̂d and Vd on the restricted
sample. For the ATM estimand, we restrict causal comparison to the set of cases remaining
after pair matching and calculate ∆̂d and Vd based on the matched set. The MI estimate of
the treatment effect ∆ is then ∆̄D = 1

D ∑D
d=1 ∆̂d, and the MI estimate of the variance of ∆̄D is

TD = V̄D + (1 + 1/D)BD, where V̄D = ∑D
d=1 Vd/D, BD = ∑D

d=1(∆̂
d − ∆̄D)

2/(D− 1). Then

∆ is t distributed with degree of freedom v, (∆− ∆̄D)T
−1
2

D ∼ tv, where v = (D − 1)(1 +
V̄D/((D + 1)× BD))

2.
As noted by a reviewer, a potential alternative to PENCOMP that could also provide a

form of at least approximately doubly robust estimation would be to implement only an
outcome model and then use regression matching to estimate counterfactual outcomes [32].
We do not pursue this option here.

4. Simulation
4.1. Study Design

We conducted simulation studies to assess the finite sample performance of PENCOMP-
MI, compared with IPTW and AIPTW in estimating the ATE and alternative estimands
when the overlap is low. Our simulation study design considered a single time point with
a binary treatment and linear and logistic regression models for continuous and binary
outcomes, along with two forms of model misspecification. We considered three sets of
models for PENCOMP-MI and AIPTW: (a) correctly specified outcome and propensity
score models; (b) a correctly specified outcome model only; and (c) a correctly specified
propensity score model only. For IPTW, we considered only a correctly specified or mis-
specified propensity score model. In each simulation scenario, 500 simulated datasets
were created for a sample size of 500. For PENCOMP-MI, 200 complete datasets were
created to obtain the estimates, standard errors and 95% confidence intervals (CI). For IPTW
and AIPTW, 500 bootstraps were used to estimate the standard errors and 95% CI. For
PENCOMP-MI, a truncated linear basis with 20 equally-spaced knots was used. To estimate
the ATM estimand using PENCOMP-MI, for each bootstrap sample, we first performed
pair matching using propensity score with a caliper of 0.25 times the standard deviation of
the logit of estimated propensity score, and then calculated the estimates on the matched
set according to the procedures described in Section 3.1.
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We compared these methods in terms of empirical bias, root mean squared error
(RMSE), and 95% CI (non) coverage. The performance for each method is evaluated
according to its target estimand.

Our simulation design is similar to that described in Li et al. (2019) [13]. For each
simulated dataset, we first generate six variables V1, · · · , V6, from a multivariate normal
distribution with zero mean, unit marginal variance and a compound symmetric covariance
structure. Let X1, · · · , X6 be the observed baseline covariates. The covariates X1, · · · , X3
are continuous and equal to V1, · · · , V3, respectively. Let X4, · · · , X6 be binary covariates
defined as X4 = IV4<0, X5 = IV5<0, and X6 = IV6<0. The treatment Z is Bernoulli distributed
with a treatment assignment probability as shown below:

P(Z = 1) = {1 + exp[−(α0 + α1X1 + α2X2 + α3X3 + α4X4 + α5X5 + α6X6)]}−1

where (α0, α1, α2, α3, α4, α5, α6) = (0.40, 0.15, 0.3, 0.3,−0.2,−0.25,−0.25).
For the continuous outcome, we assume the outcome Y is normally distributed with a

variance of 1 and a mean that depends on the observed covariates as shown below:

Y ∼ N(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7Z, 1)

where (β0, β1, β2, β3, β4, β5, β6, β7) = (0,−0.5,−0.5,−1.5, 0.8, 0.8, 1.0, 0.75)
For the binary outcome, we assume a logistic regression model with coefficients as

shown below:

Y ∼ Bernoulli({1 + exp[−(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7Z)]}−1)

where (β0, β1, β2, β3, β4, β5, β6, β7) = (0,−1.0,−1.0,−3.0, 1.6, 1.6, 2.0, 2.75)
We misspecified the propensity score model by omitting the covariates X5 and X6. We

misspecified the outcome models for Y1 and Y0 by including only the covariates X1 and
X2. In addition, for PENCOMP, we specified another form of outcome misspecification by
excluding all covariates, i.e., fitting a penalized spline on the propensity score only. This
model specification allowed us to compare PENCOMP with IPTW directly.

The true treatment effects for all the estimands were 0.75 for the continuous outcome
scenarios. For the binary outcome scenarios, the treatment effects were heterogeneous. For
the heterogeneous treatment effects, we calculated the truth by simulating 200,000 observa-
tions and taking the corresponding averages. For the ATE estimand, the truth was taken
to be the mean difference in the potential outcomes across the 200,000 observations. For
the ATO and ATM estimands, the ATO weights and the match weights were applied to
the 200,000 individual treatment effects, respectively, and the truths were taken to be the
weighted means. For TATE, the truths were taken to be the mean difference in the potential
outcomes in the truncated subpopulation.

4.2. Results

Results for the scenario with a homogeneous treatment effect and a continuous out-
come are shown in Tables 1–3. Table 1 shows the results for the model specification with
correctly specified outcome and propensity score models. The IPTW had a large bias, a
large RMSE and a poor coverage for the ATE estimand. Restricting to truncated estimands
improved the performance of IPTW. For example, the IPTW targeting the ATE estimand
had a bias of 0.555 (74%) and a RMSE of 1.12. The truncated estimand TATE1% reduced
the bias to 0.092 (12%) and the RMSE to 0.045. For the ATE and truncated estimands, both
PENCOMP and the AIPTW had substantially lower RMSEs than IPTW, with the RMSEs
ranging from 0.14 to 0.26. PENCOMP had smaller RMSEs than AIPTW for the ATE and
TATE estimands. In addition, PENCOMP with restriction improved the RMSEs slightly. For
example, PENCOMP had a RMSE of 0.20 for the ATE estimand and 0.14 for the TATE5%
estimand. PENCOMP had a slight overcoverage, with 95% CI non-coverage of 2.2 for the
ATE estimand.
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Table 1. Empirical bias (in absolute and percentage), RMSE, and 95% CI (non) coverage, across
the methods in a linear and continuous outcome model for the scenario where both the propensity
score model and the outcome model were correctly specified. Results were based on 500 simulations
with sample size of 500; 500 bootstraps were used to estimate standard errors for the weighted
estimators and 200 complete datasets for PENCOMP. ATE = Average treatment effect; ATM = average
treatment effect on an evenly matchable set; ATO = average treatment effect on the overlap population;
TATEα = truncated average treatment effect with a truncation at a pre-defined α level.

Estimand Estimator Truth Absolute Percent RMSE Non
×1000 Bias Bias ×100 Coverage

×1000 ×100 ×100

ATE IPTW 750 555 74 112 41.4
ATE AIPTW 750 3 0 26 9.2
ATE PENCOMP 750 6 1 20 2.2

ATM IPTW 750 0 0 14 5.0
ATM AIPTW 750 2 0 14 4.2
ATM PENCOMP 750 3 0 14 2.4

ATO IPTW 750 4 1 14 5.4
ATO AIPTW 750 4 1 14 5.2
ATO PENCOMP 750 3 0 14 4.0

TATE0.01 IPTW 750 92 12 45 10.0
TATE0.01 AIPTW 750 13 2 21 8.8
TATE0.01 PENCOMP 750 5 1 16 4.0

TATE0.05 IPTW 750 22 3 22 4.8
TATE0.05 AIPTW 750 12 2 17 4.2
TATE0.05 PENCOMP 750 5 1 14 4.4

Table 2 shows the results for the model specification with a misspecified outcome
model only. For the ATE estimand, AIPTW had a bias of 0.229 (31%) with a RMSE of
0.63. PENCOMP had a much smaller bias of 0.044 (6%) and a RMSE of 0.22. PENCOMP
also had a 95% non-coverage rate of 2.0%, while AIPTW had a non-coverage of 30.8%.
In this case, PENCOMP∗ with a null outcome model seemed to perform similarly to
PENCOMP with a misspecified outcome model, in terms of bias, RMSEs and coverage. In
general, PENCOMP seemed to have conservative (over) coverage for the ATE estimand
while AIPTW had under coverage. Restricting PENCOMP to the matched set or truncated
subpopulations achieved similar RMSEs as those achieved by using ATO and ATM weights.
For example, for TATE5%, PENCOMP had a RMSE 0.14 and a 95% non-coverage rate of
3.4%, compared to a RMSE of 0.14 and a 95% non-coverage rate of 3.4% for using the ATO
weights. However, compared to using the ATO and ATM weights, PENCOMP had larger
biases, when including an incorrectly specified outcome model.

Table 3 shows the results for the model specification with a misspecified propensity
score model. When the propensity score model was misspecified, IPTW for all the estimands
had large empirical biases, RMSEs and low coverage rates. Both PENCOMP and AIPTW
performed much better than IPTW for all the estimands because the outcome models were
correctly specified. Misspecifying the propensity score models seemed to alleviate the
problem of extreme propensity score and slightly improved the performance of AIPTW
in this case. The performance of PENCOMP did not change much as PENCOMP was less
affected by extreme weights, compared to IPTW and AIPTW.
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Table 2. Empirical bias (in absolute and percentage), RMSE, and 95% CI (non) coverage, across the
methods in a linear and continuous outcome model for the scenario where the outcome models
were misspecified. Results were based on 500 simulations with sample size of 500; 500 bootstraps
were used to estimate standard errors for the weighted estimators and 200 complete datasets for
PENCOMP. PENCOMP* denotes the outcome misspecification with a null outcome model by fitting
a penalized spline on the propensity score only. ATE = Average treatment effect; ATM = average
treatment effect on an evenly matchable set; ATO = average treatment effect on the overlap population;
TATEα = truncated average treatment effect with a truncation at a pre-defined α level.

Estimand Estimator Truth Absolute Percent RMSE Non
×1000 Bias Bias ×100 Coverage

×1000 ×100 ×100

ATE IPTW 750 555 74 112 41.4
ATE AIPTW 750 229 31 63 30.8
ATE PENCOMP 750 44 6 22 2.0
ATE PENCOMP* 750 23 3 22 1.2

ATM IPTW 750 0 0 14 5.0
ATM AIPTW 750 3 0 15 4.6
ATM PENCOMP 750 29 4 14 1.8
ATM PENCOMP* 750 47 6 15 1.2

ATO IPTW 750 4 1 14 5.4
ATO AIPTW 750 6 1 14 5.4
ATO PENCOMP 750 19 3 14 3.4
ATO PENCOMP* 750 37 5 14 2.6

TATE0.01 IPTW 750 92 12 45 10.0
TATE0.01 AIPTW 750 49 7 35 11.0
TATE0.01 PENCOMP 750 20 3 16 2.8
TATE0.01 PENCOMP* 750 30 4 16 2.2

TATE0.05 IPTW 750 22 3 22 4.8
TATE0.05 AIPTW 750 16 2 21 3.6
TATE0.05 PENCOMP 750 17 2 14 3.4
TATE0.05 PENCOMP* 750 36 5 15 2.2

Tables 4–6 show the results for the binary outcome scenarios. Table 4 shows the results
for the model specification with correctly specified outcome and propensity score models.
Table 5 shows the results for the scenario with a misspecified outcome model only and
Table 6 for the scenario with a misspecified propensity score model. The same patterns
were observed in all three scenarios. AIPTW and PENCOMP targeting the ATE estimand
had the least RMSEs. The alternative estimands had higher biases and RMSEs, regardless
of the methods. In general, PENCOMP tended to have comparable or smaller RMSEs than
AIPTW for both the ATE and restricted estimands. For example, when the outcome model
was misspecified, PENCOMP targeting the ATE estimand had a RMSE of 0.024, while
AIPTW had a RMSE of 0.046. Furthermore, fitting a penalized spline on the propensity
score model (without a parametric outcome model) had better performance than weighting
by the inverse of the propensity score in terms of bias, RMSEs and coverage.
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Table 3. Empirical bias (in absolute and percentage), RMSE, and 95% CI (non) coverage, across
the methods in a linear and continuous outcome model for the scenario where the propensity
score models were misspecified. Results were based on 500 simulations with sample size of 500;
500 bootstraps were used to estimate standard errors for the weighted estimators and 200 complete
datasets for PENCOMP. ATE = Average treatment effect; ATM = average treatment effect on an evenly
matchable set; ATO = average treatment effect on the overlap population; TATEα = truncated average
treatment effect with a truncation at a pre-defined α level.

Estimand Estimator Truth Absolute Percent RMSE Non
×1000 Bias Bias ×100 Coverage

×1000 ×100 ×100

ATE IPTW 750 963 128 127 62.2
ATE AIPTW 750 9 1 24 8.0
ATE PENCOMP 750 0 0 20 2.8

ATM IPTW 750 435 58 46 74.8
ATM AIPTW 750 2 0 14 5.0
ATM PENCOMP 750 2 0 14 2.6

ATO IPTW 750 439 59 47 78.0
ATO AIPTW 750 3 0 14 6.0
ATO PENCOMP 750 2 0 14 4.4

TATE0.01 IPTW 750 552 74 69 39.0
TATE0.01 AIPTW 750 1 0 20 8.2
TATE0.01 PENCOMP 750 1 0 16 5.2

TATE0.05 IPTW 750 461 61 51 54.8
TATE0.05 AIPTW 750 0 0 16 5.2
TATE0.05 PENCOMP 750 2 0 14 4.4

Table 4. Empirical bias (in absolute and percentage), RMSE, and 95% CI (non) coverage, across the
methods for a binary outcome in the scenario where both the propensity score and the outcome
models were correctly specified. Results were based on 500 simulations with sample size of 500;
500 bootstraps were used to estimate standard errors for the weighted estimators and 200 complete
datasets for PENCOMP. ATE = Average treatment effect; ATM = average treatment effect on an evenly
matchable set; ATO = average treatment effect on the overlap population; TATEα = truncated average
treatment effect with a truncation at a pre-defined α level.

Estimand Estimator Truth Absolute Percent RMSE Non
×1000 Bias Bias ×100 Coverage

×1000 ×100 ×100

ATE IPTW 144 33.07 22.90 8.8 19.8
ATE AIPTW 144 2.02 1.40 2.7 3.8
ATE PENCOMP 144 0.44 0.31 2.4 3.2

ATM IPTW 252 4.67 1.85 5.1 5.4
ATM AIPTW 252 3.95 1.57 4.7 3.8
ATM PENCOMP 252 6.18 2.45 4.7 2.4

ATO IPTW 242 4.57 1.89 4.8 4.2
ATO AIPTW 242 4.17 1.72 4.3 3.4
ATO PENCOMP 242 4.11 1.70 4.4 0.0

TATE0.01 IPTW 177 2.94 1.66 6.0 5.6
TATE0.01 AIPTW 177 6.46 3.65 3.5 2.8
TATE0.01 PENCOMP 177 8.60 4.86 3.4 3.4

TATE0.05 IPTW 231 5.59 2.42 5.3 4.0
TATE0.05 AIPTW 231 6.42 2.78 4.4 3.6
TATE0.05 PENCOMP 231 6.76 2.92 4.2 3.2
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Table 5. Empirical bias (in absolute and percentage), RMSE, and 95% CI (non) coverage, across the
methods for a binary outcome in the scenario where the outcome models were misspecified. Results
were based on 500 simulations with sample size of 500; 500 bootstraps were used to estimate standard
errors for the weighted estimators and 200 complete datasets for PENCOMP. PENCOMP* denotes the
outcome misspecification with a null outcome model by fitting a penalized spline on the propensity
score only. ATE = Average treatment effect; ATM = average treatment effect on an evenly matchable
set; ATO = average treatment effect on the overlap population; TATEα = truncated average treatment
effect with a truncation at a pre-defined α level.

Estimand Estimator Truth Absolute Percent RMSE Non
×1000 Bias Bias ×100 Coverage

×1000 ×100 ×100

ATE IPTW 144 33.07 22.90 8.8 19.8
ATE AIPTW 144 1.89 1.31 4.6 4.6
ATE PENCOMP 144 1.02 0.71 2.4 2.2
ATE PENCOMP* 144 1.22 0.84 2.5 1.8

ATM IPTW 252 4.67 1.85 5.1 5.4
ATM AIPTW 252 3.65 1.45 5.0 4.4
ATM PENCOMP 252 2.25 0.89 4.7 2.0
ATM PENCOMP* 252 0.67 0.27 4.7 1.2

ATO IPTW 242 4.57 1.89 4.8 4.2
ATO AIPTW 242 3.69 1.52 4.8 4.4
ATO PENCOMP 242 2.22 0.92 4.3 0.0
ATO PENCOMP* 242 1.45 0.60 4.3 0.0

TATE0.01 IPTW 177 2.94 1.66 6.0 5.6
TATE0.01 AIPTW 177 3.83 2.17 5.1 3.4
TATE0.01 PENCOMP 177 6.86 3.88 3.3 2.0
TATE0.01 PENCOMP* 177 6.76 3.82 3.3 1.6

TATE0.05 IPTW 231 5.59 2.42 5.3 4.0
TATE0.05 AIPTW 231 5.83 2.52 5.2 2.4
TATE0.05 PENCOMP 231 4.93 2.13 4.1 2.2
TATE0.05 PENCOMP* 231 4.85 2.10 4.1 2.0

Table 6. Empirical bias (in absolute and percentage), RMSE, and 95% CI (non) coverage, across the
methods for a binary outcome in the scenario where the propensity score models were misspecified.
Results were based on 500 simulations with sample size of 500; 500 bootstraps were used to estimate
standard errors for the weighted estimators and 200 complete datasets for PENCOMP. ATE = Average
treatment effect; ATM = average treatment effect on an evenly matchable set; ATO = average treatment
effect on the overlap population; TATEα = truncated average treatment effect with a truncation at a
pre-defined α level.

Estimand Estimator Truth Absolute Percent RMSE Non
×1000 Bias Bias ×100 Coverage

×1000 ×100 ×100

ATE IPTW 144 73.89 51.17 10.8 41.8
ATE AIPTW 144 1.03 0.72 2.8 5.4
ATE PENCOMP 144 0.11 0.078 2.5 2.4

ATM IPTW 242 62.99 26.01 7.9 24.4
ATM AIPTW 242 4.57 1.89 4.4 4.0
ATM PENCOMP 242 10.72 4.43 4.6 2.0

ATO IPTW 231 59.58 25.81 7.6 23.8
ATO AIPTW 231 4.59 1.99 4.0 3.4
ATO PENCOMP 231 4.94 2.14 4.1 0.0

TATE0.01 IPTW 169 54.94 32.55 7.9 22.4
TATE0.01 AIPTW 169 4.62 2.74 3.2 4.2
TATE0.01 PENCOMP 169 5.96 3.53 3.0 3.2

TATE0.05 IPTW 214 56.76 26.49 7.6 18.6
TATE0.05 AIPTW 214 5.80 2.71 4.0 3.2
TATE0.05 PENCOMP 214 6.33 2.96 3.8 2.6
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5. Application
5.1. Multicenter AIDS Cohort Study (MACS)

The Multicenter AIDS Cohort study (MACS) was started in 1984 [33]. A total of
4954 men were enrolled into the study and followed semi-annually. At each visit, data from
physical examination, medical and behavioral history, and blood test results were collected.
The primary outcome of interest was the CD4 count, a continuous measure of how well the
immune system functions. We used this dataset to analyze the short-term effects (one year)
of using antiretroviral treatments for HIV+ subjects. Here we restricted our analyses to
visit 13 when a new questionnaire on antiretroviral treatments was introduced. Treatment
was coded to 1 if the patient reported taking any antiretroviral treatments during the past
one year according to the new questionnaire. For the analyses, we used a complete case
analysis. We transformed the blood counts by taking the square root because the covariate
distributions were very skewed.

Let t = 1, 2, and 3 represent visit 12, 13 and 14, respectively. Let X(t = 1, 2) denote the
blood counts at visit 12 and 13, respectively. Let Z be the binary treatment indicator that
takes the value of 1 if the subject took treatments during the periods between visit 12 and
visit 13, or between visit 13 and 14 according to the questionnaire. Let Y(t = 3) be the CD4
count one year later. For the propensity score model, we considered blood counts-CD4,
CD8, white blood cell (WBC), red blood cell (RBC), and platelets from the most recent
2 visits, as well as demographic variables-age and race. The treatment assignment Z was
modeled using a logistic regression. The outcome model was modeled using a normal
linear model with CD4, CD8, white blood cell (WBC), red blood cell (RBC), and platelets
from the most recent 2 visits and age. A total of 20 equally spaced knots and a truncated
linear spline were used.

As shown in Figure 1, the propensity score distributions were very skewed. The
treated had propensity of treatment close 1 and the control close to 0. There were 32% of
the controls who had estimated propensity scores between the 5% and 95% quantiles of
the propensity score distribution of the treated. To check the balance of each covariate
between the treated and control groups, we regressed the covariate on the spline of the
logit of estimated propensity scores and compared the residuals between the two groups
using the t statistics and the standardized mean difference. Table A1 in the supplement
shows that after adjusting for the propensity scores, the standardized mean differences and
the t statistics were reduced dramatically.
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Figure 1. Propensity score distributions for the treated and the controls.
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We estimated the short-term effect of one year of antiretroviral treatment on CD4 count
using PENCOMP, IPTW and AIPTW. The results are summarized in Table 7. The stan-
dard errors were obtained using 2000 bootstrap samples. For PENCOMP, 2000 complete
datasets were created. The naive estimators were negative, suggesting a harmful effect
of antiretroviral treatment on CD4 count, because sicker subjects with lower CD4 counts
were more likely to be assigned to treatment. All the causal effect estimates suggested
favorable or less harmful effects. When the weights were variable, the PENCOMP estimate
for the ATE estimand had a smaller standard error and a narrower 95% confidence interval
length than the IPTW and AIPTW estimates. For the ATM and ATO estimands, PENCOMP
had comparable standard errors to the AIPTW but had wider confidence interval. Re-
stricting PENCOMP to a truncated subpopulation decreased the SE and 95% confidence
interval length.

Table 7. MACS dataset: estimated one year change in CD4 count obtained using different methods.
Standard errors were calculated based on 2000 bootstrap samples. ATE = Average treatment effect;
ATM = average treatment effect on an evenly matchable set; ATO = average treatment effect on the
overlap population; TATEα = truncated average treatment effect with a truncation at a pre-defined
α level.

Estimand Estimator Estimate SE 95% CI Length

ATE IPTW 3.66 1.78 6.97
ATE AIPTW −0.18 0.70 2.75
ATE PENCOMP −0.16 0.44 1.72

ATM IPTW −0.10 0.34 1.34
ATM AIPTW 0.24 0.32 1.24
ATM PENCOMP 0.14 0.39 1.54

ATO IPTW 0.16 0.30 1.16
ATO AIPTW 0.20 0.31 1.20
ATO PENCOMP 0.03 0.32 1.25

TATE0.05 IPTW 1.67 1.20 4.68
TATE0.05 AIPTW 0.10 0.52 2.03
TATE0.05 PENCOMP −0.02 0.34 1.34

5.2. Right Heart Catheterization (RHC)

Right heart catheterization (RHC) is a common but invasive procedure when treating
critically ill patients. Many cardiologists and critical care physicians believe that RHC
is beneficial. Due to ethical reasons, randomized controlled trials (RCTs) were never
conducted to confirm its effectiveness. Without RCT, observational studies were often
used to evaluate its effectiveness. Because sicker patients were more likely to be treated
with RCH and to have adverse outcomes, treatment selection in observational studies
was often confounded by patient characteristics that influenced the outcomes. Connors
et al. (2001) [34] used data from the Study to Understand Prognoses and Preferences for
Outcomes and Risks of Treatments (SUPPORT) to assess the effectiveness of RHC. Connors
et al. (2001) [34] used propensity score matching to reduce confounding by matching
patients without RHC to similar patients with RHC who had the same disease category
and concluded that patients with RHC had an increased 30-day mortality, contrary to the
common belief of clinical effectiveness.

The SUPPORT study has been reanalyzed by other researchers [10,12,35,36]. Here
we applied our method to reanalyze the data and compared to what other researchers
have concluded. The study included a total of 5735 critically ill adult patients from five US
teaching hospitals between 1989 and 1994. A total of 2184 patients received RHC within
24 h of admission and 3551 patients did not. The treatment was a binary variable, taking
the value of 1 if the subject had RHC within the first 24 h after hospitalization. The outcome
was a binary variable indicating survival at Day 30.
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We used the same propensity score model as described in Li et al. (2018) [12], Hirano
and Imbens (2001) [35], Crump et al. (2009) [10] and Traskin and Small (2011) [36]. The
model included age, sex, race (black, white, other), years of education, income, type of
medical insurance (private, Medicare, Medicaid, private and Medicare, Medicare and
Medicaid, or none), primary disease category, secondary disease category, 12 categories
of admission diagnosis, ADL and DASI 2 weeks before admission, do-not-resuscitate
status on day 1, cancer (none, localized, metastatic), SUPPORT model estimate of the
probability of surviving 2 months, acute physiology component of the APACHE III score,
Glasgow Coma Score, weight, temperature, mean blood pressure, respiratory rate, heart
rate, PaO2/FIO2 ratio, PaCO2, pH, WBC count, hematocrit, sodium, potassium, creatinine,
bilirubin, albumin, urine output, and 13 categories of comorbid illness. We included the
same set of covariates in the outcome model as those in the propensity score model. Again,
a total of 20 equally spaced knots and a truncated linear spline were used.

Table 8 shows the results for different estimands. All the estimates suggest that
RHC use led to a higher mortality rate. When targeting the ATE estimand, PENCOMP
had a similar estimate to IPTW and AIPTW and had a smaller standard error (SE) and a
narrower 95% confidence interval length than IPTW and AIPTW. Restricting PENCOMP to
truncated populations achieved similar results to those achieved by using ATO and ATM
weights. However, targeting the ATM and ATO estimands, PENCOMP had larger SEs and
confidence intervals compared to the IPTW and AIPTW.

Table 8. RHC dataset: Estimated log odds ratio of death obtained using different methods. Standard
errors were calculated based on 1000 bootstrap samples. ATE = Average treatment effect; ATM = av-
erage treatment effect on an evenly matchable set; ATO = average treatment effect on the overlap
population; TATEα = truncated average treatment effect with a truncation at a pre-defined α level.

Estimand Estimator Estimate SE 95% CI Length
×102 ×102 ×102

ATE IPTW 5.84 1.69 6.63
ATE AIPTW 6.51 1.58 6.21
ATE PENCOMP 6.55 1.46 5.73

ATM IPTW 6.52 1.39 5.44
ATM AIPTW 6.80 1.39 5.45
ATM PENCOMP 6.44 1.50 5.87

ATO IPTW 6.53 1.36 5.32
ATO AIPTW 6.72 1.36 5.34
ATO PENCOMP 6.47 2.16 8.45

TATE0.05 IPTW 6.26 1.54 6.05
TATE0.05 AIPTW 6.31 1.49 5.84
TATE0.05 PENCOMP 6.38 1.37 5.36

6. Discussion

The restricted estimands considered in this paper are defined based on propensity
scores. The subpopulations targeted by the restricted estimands are arguably harder to
interpret and not clearly defined in terms of the observed covariates. When there is limited
overlap in the propensity score distributions, reporting more precise causal estimates for
some subpopulations can be more informative than reporting an imprecise causal estimate
for the entire population. However, there is a trade-off between internal and external
validity since restriction of causal comparison to some subpopulations also limits the
generalizability of the results. Applied researchers have to decide which estimand is more
appropriate given the research questions at hand. For example, in the presence of treatment
heterogeneity, looking at the restricted estimands could also allow researchers to assess
whether there are subpopulations that could benefit from some treatment.

Discarding subjects can reduce the effective sample size and increase the variance
of causal estimate. When there is limited overlap, restriction of causal comparison to
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some subpopulations with more covariate balance decreases the variance of causal effects.
However, the restricted estimands deviate from the ATE estimand when treatment effects
are heterogeneous. As the sample size increases, there are often more observed subjects in
the treatment and control groups with similar propensity scores and causal effects can be
estimated more accurately. Therefore, the range of propensities where the causal effects
can be estimated should depend on sample size. If we allow the truncation threshold α to
decrease as sample size increases, the truncated estimands approach the ATE estimand. On
the contrary, the ATO and the ATM estimands are fixed and might be less relevant when
the sample size is large and the target estimand is the ATE.

Simulation results show that the performance of all estimation methods can be im-
proved by defining restricted estimands when the overlap in propensity score distributions
is low. When there are extreme weights, PENCOMP tends to outperform the weighted
estimators for ATE and perform similarly for restricted estimands. The weighted estimators
tend to undercover when there are extreme weights. PENCOMP tends to overcover more,
as fitting separate splines by treatment groups could increase variance. For example, when
the relationship between outcome and propensity score is linear, fitting separate spline
models could be too conservative. Nevertheless, when the weights are extreme, fitting a
penalized spline on the propensity score as seen in PENCOMP with a null outcome model
can perform much better than just weighting subjects by the inverse of the propensity score.
PENCOMP is a viable alternative to the weighted estimators, especially when the ATE is
the estimand of interest in the presence of variable weights. To improve the performance of
PENCOMP, truncated estimands seem to be better alternative estimands than ATO or ATM
estimand. When ATO and ATM are the alternative estimands of interest, the weighted
estimators seem to perform better than PENCOMP, as including a misspecified outcome
model does not necessarily improve the estimation and including a spline could increase
variance in small samples.

Several extensions of our work are possible. Here we have focused on complete case
analysis. However, in many practical settings missing data and/or truncation by death is
present. In such situations, multiple imputation is often used. PENCOMP, being a multiple
imputation procedure, can be built into the multiple imputation procedure for missing data.

Another issue for further exploration is variable selection in the development of the
propensity scores. Early developers of the propensity score have argued that all potential
pre-treatment potential confounders should be included in the propensity model to avoid
“data snooping” and better approximate a randomized trial, where randomization occurs
prior to observing the outcomes [37]. On the other hand, including strong predictors of
the treatment that are not predictors of the outcome can inflate the variance of the causal
estimate [38]. Furthermore, the propensity score plays an important role in identifying
the overlap region. Including predictors of the treatment that are not predictors of the
outcome could unnecessarily shrink the overlap region in the propensity score distributions.
Low overlap then results in fewer matched subjects when matching methods are used or
extreme weights when weighting methods are used or shrinks the subset of the population
about which can make inference using the approaches discussed in this paper. While
previous work has shown that PENCOMP is more stable than competing doubly-robust
weighted estimators when non-confounding variables are included in the propensity score
model [23], none of these approaches will deal with shrinking overlap. Exploring the
tradeoff between risking bias due to inappropriate exclusion of true confounders and
inefficiency due to the inclusion of strong predictors of the treatment only remains an open
area for research in future studies.
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Appendix A. Supplementary Results from Applications

Table A1. MACS dataset: Balance of covariates between the treated and the control groups. We
regressed each covariate on the spline of the logit of the propensity of treatment; a truncated linear
basis with 10 equally spaced knots was used.

Before Adjusting After Adjusting
Covariates Mean Mean Standardized T Stats Standardized T Stats

Treated Control Mean Difference Mean Difference

CD4 visit 12 17.15 23.97 −1.13 17.32 0.0086 −0.13
CD4 visit 13 17.01 23.65 −0.99 15.09 −0.0072 0.11
CD8 visit 12 30.46 31.16 −0.094 1.43 −0.015 0.23
CD8 visit 13 29.53 30.34 −0.11 1.61 −0.012 0.18
WBC visit 12 67.03 74.33 −0.68 10.38 0.00013 −0.0020
WBC visit 13 65.61 72.18 −0.59 8.94 −0.030 0.46
RBC visit 12 1.99 2.18 −1.30 19.45 0.012 −0.18
RBC visit 13 1.93 2.18 −1.96 29.65 −0.018 0.28
Platelet visit 12 14.76 15.03 −0.12 1.75 −0.0044 0.067
Platelet visit 13 14.57 14.69 −0.054 0.82 −0.019 0.28
age 39.78 38.11 0.24 −3.65 0.00062 −0.0095
white 0.94 0.85 0.28 −4.33 0.011 −0.17
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