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Abstract: Rubin’s variance estimator of the multiple imputation estimator for a domain mean is not
asymptotically unbiased. Kim et al. derived the closed-form bias for Rubin’s variance estimator. In
addition, they proposed an asymptotically unbiased variance estimator for the multiple imputation
estimator when the imputed values can be written as a linear function of the observed values.
However, this needs the assumption that the covariance of the imputed values in the same imputed
dataset is twice that in the different imputed datasets. In this study, we proposed a bootstrap variance
estimator that does not need this assumption. Both theoretical argument and simulation studies
show that it was unbiased and asymptotically valid. The new method was applied to the Hox pupil
popularity data for illustration.
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1. Introduction

Surveys are popular tools for empirical research in many fields, such as the social
sciences, marketing, and public health. One of the goals of survey data analysis is the
estimation of subpopulations, which are called domains. The estimator of the domain mean
θ usually involves weights in survey data analysis [1–5], which is written as

θ̂ = ∑{i∈A} αiyi (1)

where A represents the set of indices of the sample elements, yi are the observed sample
values in A, and αi is the known weight function that is free of yi. The αi can be used to
adjust the non-response items or for calibration purposes.

Imputation is commonly used in survey data analysis to handle the non-response items
in survey samples. It replaces the non-response items in the survey sample with substituted
values. Single imputation leads to underestimating the variances of the estimators [6].
To overcome this, a multiple imputation method [6,7] was proposed to account for the
variances in the analysis when substituted values are used instead of the true observations.
The basic idea of multiple imputations is to impute each non-response value M times to
create M imputed datasets. Then, each imputed dataset is analyzed using standard data
analysis techniques. Finally, Rubin’s rule is used to obtain Rubin’s estimator and Rubin’s
variance estimator by combining the results from each imputed dataset.

Research on multiple imputations is motivated by a Bayesian framework. Rubin [6]
claimed that multiple imputations can provide a valid frequentist inference in many ap-
plications, assuming “proper” imputation [6] or congeniality condition [8] for both the
imputation model and the analysis model. However, Fay [9,10] and Binder and Sun [11]
found that it is difficult to satisfy the conditions for “proper” imputation for general complex
sampling schemes. In a parametric model setting, Wang and Robin [12] and Nielsen [13]
showed that Rubin’s variance estimator is unbiased when the complete-sample estimator is
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the maximum likelihood estimator. Then, Robin and Wang [14] showed the bias of Rubin’s
variance estimator for nonparametric inference procedures and proposed a new variance
estimator. Yang and Kim [15] showed the bias of Rubin’s variance estimator for the method
of moments estimator. They also proposed a new variance estimator when the complete-
sample estimator is the method of moments estimator or maximum likelihood estimator.
However, these proposed variance estimators cannot be directly used when the complete-
sample estimator is given as (1) for the domain mean. For estimator (1), Kim et al. [16]
derived the closed-form bias of Rubin’s variance estimator and proposed a new variance
estimator when the imputed values can be expressed as a linear function of the response
items. However, it requires an assumption that the covariance of the imputed values in
the same imputed datasets is twice that of the different imputed datasets. Kim et al. [16]
did not discuss how to check this assumption. Our simulation study results presented in
Section 3.1 for the domain mean estimation showed that Kim’s variance estimator is biased,
which indicated that this assumption may not be satisfied.

In this study, we proposed a bootstrap variance estimator without this assumption.
Traditional bootstrapping [17] is usually used to estimate the properties of an estimator by
sampling from an approximating distribution. For independent and identically distributed
sample data with n observations, it obtains bootstrap samples, each with n observations, by
randomly drawing observations with replacement from the original sample. It was used for
variance estimation in the presence of single imputation for missing data analysis [18–25].
Recently, researchers [26–31] applied the traditional bootstrap for multiple imputations.
They applied multiple imputations for each bootstrap sample to obtain the parameter
estimator. Then, the variance of the estimator is estimated by the sample variance of the
estimators from the bootstrap samples. Therefore, they need to refit the model M × B times,
where M is the number of imputed samples and B is the number of bootstrap samples.
Obviously, the traditional bootstrap methods are computationally intensive. In this study,
we proposed a computationally efficient approach for a bootstrap procedure. We used the
bootstrap samples with single imputation and multiple imputation samples to estimate the
variance. Therefore, it only needed to refit the model M + B times to estimate the variance
of the multiple imputation estimator with the complete-sample estimator in the form of (1).

2. Methods
2.1. Rubin’s Method

We consider data generated from a superpopulation model, i.e., a random sample
from an infinite population. The sampling mechanism and the response mechanism are
assumed to be ignorable under the superpopulation model in the sense of Rubin [6]. Let
y1, · · · , yn be the complete sample for the random variable Y. Without loss of generality,
assume that the first r observations are observed and the remaining n − r observations are
missing, i.e., Yobs = {y1, · · · , yr} and Ymis =

{
yr+1, · · · , yn

}
. Denote Ri as the indicator

of whether the ith observation is observed. If Ri = 1, yi is observed and if Ri = 0, yi is
missing. The multiple imputation method uses the following three steps to estimate the
parameter domain mean θ for the complete-sample estimator in the form of (1).

Step 1. Create m = 1, · · · , M, imputed datasets, where the observations y∗mi , i = 1, · · · , n,
are imputed only for the missing values; otherwise, they remain as observed.

Step 2. Apply the complete-sample estimation procedure to each imputed dataset.
Let θ̂m

n be the imputed-sample estimator of θ for the mth imputed dataset and V̂m
n be the

imputed-sample variance estimator of θ̂m
n .

Step 3. Combine the results from the imputed datasets using Rubin’s rule [6]. Rubin’s
estimator of θ is θ̂MI = M−1 ∑M

m=1 θ̂m
n , and Rubin’s variance estimator is

V̂MI(θ̂MI) = WM + (1 + M−1)BM (2)

where WM = M−1 ∑M
m=1 V̂m

n is the within-imputation variance and BM = (M− 1)−1 ∑M
m=1

(θ̂m
n − θ̂MI)

2
is the between-imputation variance.
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Rubin’s variance estimator is based on the decomposition

var(θ̂MI) = var(θ̂n) + var(θ̂MI − θ̂n) + 2cov(θ̂MI − θ̂n, θ̂n) (3)

where θ̂n is the complete-sample estimator of θ. In Rubin’s variance estimator (2), WM esti-
mates the first term of (3) and (1 + M−1)BM estimates the second term of (3). Kim et al. [16]
showed that for estimators in the form of (1), (1 + M−1)BM is an asymptotically unbiased
estimator of the second term of (3) based on the covariance assumption, that is, the co-
variance between y∗m1

i and y∗m1
j is twice that of the covariance between y∗m1

i and y∗m2
j for

i 6= j and m1 6= m2. Therefore, if WM is an unbiased estimator of the first term of (3), the
asymptotic bias of Rubin’s variance estimator is

bias(V̂MI) = −2cov(θ̂MI − θ̂n, θ̂n). (4)

Kim et al. [16] derived the closed-form bias of (4) for the estimators in the form of
(1) when the imputed values can be expressed as a linear function of the observed items.
We can see that Kim’s method [16] requires the covariance assumption. In this study, we
proposed a bootstrap variance estimator for θ̂MI that does not need this assumption, and
hence, this new method has a much wider range of applications.

2.2. The Bootstrap Estimation Method
2.2.1. Assumptions

We employed the regularity assumptions for the data and the imputation mechanism
in Kim et al. [16] for the newly proposed method.

(C.1) Both the complete-sample point estimator and variance estimator are asymptoti-
cally unbiased, i.e.,

E(θ̂n) = θ +O(n−1) and E(V̂n) = var(θ̂n)+O(n−1), where V̂n is the complete-sample
variance estimator of θ̂n.

(C.2) The conditional expectations of the imputed values are the same as those of the
real values, i.e.,

E(y∗mi

∣∣A, AR ) = E(yi|A, AR ), m = 1, · · · , M, where AR is the set of indices of the
observed items.

(C.3) The conditional variances of the imputed values are asymptotically the same as
those of the real values, i.e.,

max
i,j

∣∣∣∣cov(y∗mi , y∗mj

∣∣∣∣A, AR)− cov(yi, yj

∣∣∣∣A, AR)

∣∣∣∣= o(1), m = 1, · · · , M.

(C.4) Conditional on A, AR and Yobs, the imputed values y∗mj of yj, j ∈ Ak are
conditionally independent and identically distributed, where Ak is the set of indices of the
missing items.

Assumptions (C.1) and (C.2) ensure that the imputed-sample estimators of the form (1)
are approximately unbiased. Assumption (C.3) ensures that the covariances of the im-
puted values are asymptotically the same as those of the original values. Therefore, we
can treat the imputed values similarly to the original values in the inference procedure.
Assumption (C.4) ensures both the estimators θ̂m

n , m = 1, · · · , M, and the naive variance
estimators V̂m

n , m = 1, · · · , M, are identically distributed. Therefore, the imputed values
and the imputed samples can be treated equally in the inference procedure.

2.2.2. Variance Decomposition

Instead of the decomposition (3), we decomposed the variance as

var(θ̂MI) = V1 + V2 + V3 + V4, (5)
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where V1 = var(∑i∈AR
αiyi), V2 = M−1E{var(∑j∈Ak

αjy∗mj

∣∣∣Yobs) , V3 = var{E(∑j∈Ak
αjy∗mj

∣∣∣Yobs) ,

and V4 = 2cov(∑j∈Ak
αjy∗mj , ∑j∈AR

αiyi). V1 is the sum of the variances for the observed
observations. The sum of V2 and V3 is the sum of the variances for the imputed observations
based on the law of total variance. V4 is the sum of the covariances of the observed
observations and the imputed observations.

2.2.3. Bootstrap Variance Estimator and Its Properties

To estimate (5), we generated bootstrap data as follows. For b = 1, · · · , B:
Step 1: Take a random sample of size n with a replacement from the original sample,

which consists of independent and identical observations Denote the bootstrap sample as
(yb

1, Rb
1), · · · , (yb

n, Rb
n). Denote the observed items as Yb

obs =
{

yb
1, · · · , yb

r′

}
and the missing

items as Yb
mis =

{
yb

r′+1, · · · , yb
n

}
in the bootstrap method. Let Ab, Ab

R, and Ab
k represent

the set of indices of the sample elements, the set of indices of the observed items, and the
set of indices of the missing items in the bth bootstrap sample, respectively.

Step 2: With the resultant bootstrap sample, calculate the imputed values y∗bj for

missing items yb
j using a single imputation method, which is the same as the multiple

imputation method with M = 1. The imputed-sample estimator in the bth bootstrap sample
is θ̂b = ∑i∈Ab αb

i y∗bi .
We estimated V1 and V2 using multiple imputed samples and estimated V3 and V4 using

bootstrap samples. V1 can be estimated from the imputed-sample output based on condition (C.1),
i.e., V̂1 = r(nM)−1 ∑M

m=1 V̂m
n . V2 is estimated using the empirical conditional variance, which is

V̂2 = M−1(M− 1)−1 ∑M
m=1 (∑j∈Ak

αjy∗mj − H1)
2, where H1 = M−1 ∑M

m=1 ∑j∈Ak
αjy∗mj . V3

is estimated using V̂3 = (B− 1)−1 ∑B
b=1 (∑j∈Ab

k
αb

j ηb
j − H2)

2
, where ηb

j ≡ E(y∗bj

∣∣∣Yb
obs) and

H2 = B−1 ∑B
b=1 ∑j∈Ab

k
αb

j ηb
j . V4 is estimated using V̂4 = 2 ∑j∈Ak

αj ∑i∈AR
αi(B− 1)−1 ∑B

b=1

(ηb
j − H3)(Y

b
r′ − H4) , where ηb

j = (n− r′)−1 ∑j∈Ab
k

ηb
j , Yb

r′ = (r′)−1 ∑i∈Ab
R

yb
i ,

H3 = B−1 ∑B
b=1 ηb

j , and H4 = B−1 ∑B
b=1 Yb

r′ . Therefore, the bootstrap variance estimator is
V̂ = V̂1 + V̂2 + V̂3 + V̂4.

The newly proposed bootstrap variance estimator is an asymptotically unbiased
estimator for the variance of the multiple imputation estimator. Under the conditions
(C.1)–(C.4), V̂1 is an asymptotically unbiased estimator of V1. V̂2 is an asymptotically
unbiased estimator because E(V̂2) = E{E( V̂2

∣∣Yobs )}. V̂3 is an asymptotically unbiased
estimator of V3 because it is based on the Glivenko–Cantelli Theorem:

E(V̂3) = E[E
{
(∑j∈Ab

k
αb

j ηb
j )

2
∣∣∣Yobs

}
−
{

E(∑j∈Ab
k

αb
j ηb

j

∣∣∣Yobs )
}2

] ,

where ηb
j = E(y∗bj

∣∣∣Yobs) .

For V̂4, we derived
E{cov( Yb

r′ , ηb
j

∣∣∣A, AR, Yobs )} = cov(yi, y∗mj

∣∣∣A, AR ) + O( 1
r ),

and
E( 1

B−1 ∑B
b=1 (η

b
j − H3)(Y

b
r′ − H4))

=E{ 1
B−1 E(∑B

b=1 ((η
b
j − µ1) + (µ1 − H3))((Y

b
r′ − µ2) + (µ2 − H4))|Yobs)}

=E{cov(ηb
j , Yb

r′ |Yobs)},

where µ1 ≡ E(ηb
j |Yobs) and µ2 ≡ E(Yb

r′ |Yobs). Thus, V̂4 is an asymptotically unbiased
estimator of V4.

To account for the uncertainty in the variance estimator with a small-to-moderate
imputation size and bootstrap replicates, a t-distribution is used to calculate 100(1− α)%
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confidence intervals for θ, i.e., θ̂MI ± tv,1−α/2V̂1/2. The degrees of freedom v is an approxi-
mate number along the lines of the Satterthwaite [32] method, which is derived as

v =
V̂2

(M− 1)−1V̂2
2 + (B− 1)−1[V̂2

3 + V̂2
5 + V̂2

6 + V̂2
7 + 2(1− π2)V̂5(V̂3 − V̂7)− 2V̂3V̂7 − 2V̂5V̂6π2]

,

in which π is the response rate of the interested domain, V̂5 = (B− 1)−1 ∑B
b=1 (H5 + H6)

2,

V̂6 = (B− 1)−1 ∑B
b=1 H2

5 , and V̂7 = (B− 1)−1 ∑B
b=1 H2

6 , where H5 = ∑i∈AR
αi(Y

b
r′ − H4) and

H6 = ∑j∈Ak
αj(η

b
j − H3) . The detailed derivation of v is provided in the Appendix A.

3. Examples and Results

Simulations and a real data analysis were conducted to investigate the performance
of the proposed bootstrap variance estimator (V̂). We compared it with Rubin’s variance
estimator (V̂MI), Kim’s method (V̂k) [16], and the traditional bootstrapping method (V̂B). As
in Yang and Kim [15], we report the relative bias (Rbias) of the variance estimators, mean
width (mwidth), and coverage probabilities of the 95% confidence intervals (95cov) for θ.
The relative bias was calculated using (E(Ṽ)− var(θ̂MI))/var(θ̂MI)× 100%, where Ṽ is a
variance estimator. The 95% confidence intervals were calculated based on a t-distribution
with v degrees of freedom. We considered different values of B, M, and n to investigate
their effects. These results were based on 5000 Monte Carlo runs for each setting. The R
code used for these simulations is available from the first author upon request.

3.1. Simulation 1: Domain Mean Estimation

We simulated a sample y1, · · · , yn from N(µ, σ2), where µ = 2, σ2 = 4, and n = 500 or
1000. Then non-respondents were generated based on the response rate π and using the
ampute function in the mice package of R. We considered two response rates, which were 0.8
and 0.5. To indicate whether an observation belonged to a domain Z, we generated zi from
Bernoulli distribution with probability d, which was 0.2 or 0.6 in the simulation study. If
zi = 1, this meant that yi was in domain Z and was 0 otherwise. The zi, i = 1, · · · , n, were
always observed.

Now we would like to estimate the mean θ of the domain Z. Without loss of generality,
denote the first r observations as respondents (y1, · · · , yr) and the remaining (n − r)
observations as the non-respondents (yr+1, · · · , yn). Then, the complete-sample estimator
of θ is

θ̂n =
n

∑
i=1

zi

∑n
i=1 zi

yi.

Let nd = ∑n
i=1 zi be the size of the domain Z and rd = ∑r

i=1 zi be the number of
response items in the domain Z. It is obvious that αi = zi/nd.

To handle the missing observations, we used the multiple imputation method with
M = 10 or 30. The mth imputed-sample estimator is

θ̂m
n =

n

∑
i=1

zi

∑n
i=1 zi

y∗mi .

If yi is missing, the conditional expectation of the imputed value is ηi ≡ E( y∗mi

∣∣y1, · · · , yr )

= yr and yr = ∑r
i=1 yi/r.

Now we used the newly proposed bootstrap method with B = 200 or 500 in Section 3
to estimate the variance of the multiple imputation estimator. Denote the bootstrap sample
as
{

yb
1, · · · , yb

n

}
in which the response items are Yb

obs =
{

yb
1, · · · , yb

r′

}
, the non-response

items are Yb
mis =

{
yb

r′+1, · · · , yb
n

}
, and the corresponding indicators for domain Z are

zb
i , i = 1, · · · , n. Let nb

d be the size of the domain Z in the bth bootstrap sample. Then,
we calculate
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V̂1 = rd
n2

d(n−1)M ∑M
m=1 ∑n

i=1 (y
∗m
i − ym)2, where ym = 1

n ∑n
i=1 y∗mi ;

V̂2 = 1
M(M−1) ∑M

m=1 (∑
n
j=r+1

zj
nd

y∗mj − H1)
2
, where H1 = 1

M ∑M
m=1 ∑n

j=r+1
zj
nd

y∗mj ;

V̂3 = 1
B−1 ∑B

b=1 (∑
n
j=r′+1

zb
j

nb
d
Yb

r′ − H2)
2

, where H2 = 1
B ∑B

b=1 ∑n
j=r′+1

zb
j

nb
d
Yb

r and

Yb
r′ =

∑r′
i=1 yb

i
r′ ;

V̂4 = 2 ∑n
j=r+1

zj
nd

∑r
i=1

zi
nd
(B− 1)−1 ∑B

b=1 (Y
b
r′ − H3)(Y

b
z − H4), where Yb

z =
∑r′

i=1 zb
i yb

i

∑r′
i=1 zb

i
,

H3 = B−1 ∑B
b=1 Yb

r′ and H4 = B−1 ∑B
b=1 Yb

z.
To compare the newly proposed method with the method proposed by Kim et al. [16],

we used the following formula derived by them [16]:
V̂k = WM + (1 + M−1)BM + 2n−2

d md(1− r−1rd)σ̂
2, where md = nd − rd and

σ̂2 = (n− 1)−1M−1 ∑M
m=1 ∑n

i=1 (y
∗m
i − ym)2.

The simulation results are summarized in Table 1. They show that the newly proposed
method V̂ had a smaller relative bias than both Rubin’s method V̂MI and Kim’s method V̂k,
especially for cases with a small response rate. We notice that the relative bias was larger
for the proposed method when the sample size became larger. This may have been due to
the smaller value of var(θ̂MI) for the larger sample size. Other methods have this pattern
as well. The width of the confidence interval of Rubin’s method was usually larger, while
that of Kim’s method was usually smaller than that of the newly proposed method. The
coverage rate of the newly proposed method was close to the nominal level. However,
Rubin’s method had a larger coverage rate and Kim’s method had a smaller coverage rate
than the nominal level. These results indicated that the covariance assumption required in
Kim’s method may not be satisfied, and hence, (1 + M−1)BM may not unbiasedly estimate
var(θ̂MI − θ̂n) for the domain mean estimation. The newly proposed method V̂ had a
similar performance to the traditional bootstrap method V̂B. However, it was much faster
than the traditional bootstrap method V̂B, especially for cases with large n, B, and M. For
example, for a case with n = 1000, B = 500, M = 30, and 5000 Monte Carlo runs, the new
method needed about half an hour, while the traditional bootstrap method needed about
four hours. In addition, the values of B considered in these examples had no significant
effects on these methods. Larger values of n and M resulted in smaller widths of the
confidence intervals.

3.2. Simulation 2: Linear Regression

The variance estimation method proposed in this study can not only be applied to the
domain mean estimation but also to any other estimator that has the form of (1). In this
example, we showed its performance for the mean estimation of the response variable in
the linear regression model. We considered the model used in Yang and Kim [15] as follows:

yi = βxi + ei, i = 1, · · · , n,

Where n = 500 or 1000, β = 0.1, xi ∼ exp (1), and ei ∼ N(0, σ2
e ) with σ2

e = 0.25. In this
data setup, we assumed that xi were observed fully. The missingness in yi was controlled
by δi, which followed δi ∼ Ber(pi) and pi = 1/{exp(−φ0 − φ1xi)}. Two scenarios were
considered, namely, (φ0, φ1) = (−1.5, 2) and (φ0, φ1) = (3, −3), which yielded the approxi-
mate average response rate of 0.5. We were interested in estimating θ = E(yi). The normal
imputation procedure [33] was used to generate the imputed values for the missing obser-
vations. Let Yobs = {y1, · · · , yr} be the observed observations and Ymis = {yr+1, · · · , yn}
be the missing observations. In the simulations, we set B = 200 or 500 and M = 10 or 30.
Then, the complete-sample estimator was θ̂n = ∑n

i=1 yi/n.
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Table 1. Simulation results for the domain mean estimation.

Rbias (%) Mwidth (×102) 95cov (×102)

n B M π d V̂ V̂MI V̂K V̂B V̂ V̂MI V̂K V̂B V̂ V̂MI V̂K V̂B

500 500 10 0.8 0.2 0.6 146.2 −12.5 0.5 65 102 58 65 95 99 89 95
0.6 1.6 21.6 −4.9 1.5 48 53 46 48 95 97 95 95

0.5 0.2 −1.3 237.7 −41.1 0.7 61 113 36 61 95 99 58 96
0.6 −0.7 18.1 −40.5 −0.6 55 61 42 56 95 96 85 95

30 0.8 0.2 1.0 156.8 −12.6 0.9 63 100 57 62 95 99 92 95
0.6 1.3 21.6 −5.3 1.3 47 52 46 47 95 97 95 95

0.5 0.2 −2.2 261.4 −54.3 0.6 58 109 33 57 95 100 63 95
0.6 −1.4 17.8 −42.2 −1.4 54 59 41 54 95 97 86 95

200 10 0.8 0.2 0.5 146.2 −12.5 0.2 65 102 58 65 95 99 89 95
0.6 1.6 21.6 −4.9 1.5 48 53 46 48 95 97 95 95

0.5 0.2 −1.4 237.7 −41.1 0.7 62 113 36 61 95 99 58 96
0.6 −0.8 18.1 −40.5 −0.7 55 61 42 56 95 96 85 95

30 0.8 0.2 1.1 156.8 −12.6 1.0 63 100 57 62 95 99 92 95
0.6 1.3 21.6 −5.3 1.3 47 52 46 47 95 97 95 95

0.5 0.2 −2.2 261.4 −54.3 0.6 61 108 33 57 96 100 63 95
0.6 −1.3 −42.2 17.8 −1.3 54 59 41 54 95 97 86 95

1000 500 10 0.8 0.2 −1.1 141.4 13.1 −1.1 46 72 42 46 95 99 89 95
0.6 −4.0 53.4 −9.7 −4.0 34 37 33 34 95 97 94 95

0.5 0.2 −3.7 255.4 −44.3 −3.2 43 80 25 44 95 99 57 95
0.6 −0.3 19.5 −39.2 −0.3 39 44 30 40 95 97 85 95

30 0.8 0.2 −1.5 148.6 −14.6 −1.6 44 71 41 44 95 99 92 95
0.6 −3.7 15.7 −9.8 −3.6 33 37 32 34 95 96 94 95

0.5 0.2 −3.9 251.2 −55.3 −3.3 41 77 23 40 94 99 63 94
0.6 −0.1 20.0 −40.8 −0.1 38 42 29 39 95 97 85 95

200 10 0.8 0.2 −1.0 141.4 −13.1 −1.0 46 72 42 46 95 99 89 95
0.6 −3.9 15.3 −9.7 −4.0 34 37 33 34 94 97 94 95

0.5 0.2 −3.8 225.4 −44.3 −3.3 44 80 25 44 96 99 57 95
0.6 −0.3 19.5 −39.2 −0.6 39 44 30 40 95 97 85 95

30 0.8 0.2 −1.6 148.6 14.6 −1.5 45 71 41 44 95 99 92 95
0.6 −3.7 15.7 −9.8 −3.6 33 37 32 34 95 96 94 94

0.5 0.2 −4.0 251.2 −55.3 −3.3 42 77 23 40 95 99 63 94
0.6 −0.1 20.0 −40.8 −0.1 38 42 29 39 95 97 85 95

Therefore, αi = 1/n. It is a special case of the estimator with form (1), that is, αi,
i = 1, · · · , n, were all same. The mth imputed-sample estimator is θ̂m

n = ∑n
i=1 y∗mi /n.

If yi was missing, the conditional expectation of the imputed value was ηi ≡ E
(y∗mi

∣∣y1, · · · , yr ) = xi(XT
r Xr)

−1XT
r Yobs for m = 1, · · · , M, where Xr was a r × 2 matrix

with rows Xi = [1 xi], i = 1, · · · , r. To estimate the variance of the multiple imputation
estimator, we used the bootstrap procedure described in Section 3. Denote the bootstrap
sample as

{
yb

1, · · · , yb
n

}
, the response items as Yb

obs =
{

yb
1, · · · , yb

r′

}
and the non-response

items as Yb
mis =

{
yb

r′+1, · · · , yb
n

}
in the bootstrap sample. The corresponding independent

variable for yb
i is xb

i . Then, we calculated
V̂1 = r

n2(n−1)M ∑M
m=1 ∑n

i=1 (y
∗m
i − ym)2, where ym = n−1 ∑n

i=1 y∗mi ;

V̂2 = 1
M(M−1) ∑M

m=1 (∑
n
j=r+1

1
n y∗mj − H1)

2
, where H1 = 1

M ∑M
m=1 ∑n

j=r+1
1
n y∗mj ;

V̂3 = 1
B−1 ∑B

b=1 (∑
n
j=r′+1

1
n ηb

j − H2)
2
, where H2 = 1

B ∑B
b=1 ∑n

j=r′+1
1
n ηb

j and

ηb
j = xb

j (X
bT
r Xb

r )
−1

XbT
r Yb

obs;

V̂4 = 2 ∑n
j=r+1

1
n ∑r

i=1
1
n (B− 1)−1 ∑B

b=1 (η
b
j − H3)(Y

b
r′ − H4), where ηb

j = (n− r′)−1

∑n
j=r′+1 ηb

j , Yb
r′ = (r′)−1 ∑r′

i=1 yb
i , H3 = B−1 ∑B

b=1 ηb
j , and H4 = B−1 ∑B

b=1 Yb
r′ .
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We derived the variance estimator based on Kim’s method [16]: V̂k = WM +(1 + M−1)

BM + 2
n2 1TXT

n−r(X
T
r Xr)

−1Srσ̂2,
where 1 is a vector with elements 1 of length (n − r); Xn−r is an (n − r)× 2 matrix
with rows Xj =

[
1 xj

]
, j = r + 1, · · · , n; Sr = [r ∑r

i=1 xi] is a 2 × 1 matrix; and
σ̂2 = (n− 1)−1M−1 ∑M

m=1 ∑n
i=1 (y

∗m
i − ym)2.

The simulation results are shown in Table 2. We noticed that the biases of both Rubin’s
method and Kim’s method were close to zero and the coverage rates were close to the
nominal level. This indicated that the covariance assumption was satisfied and the bias
term (4) was close to zero. The newly proposed method and the traditional bootstrap
method had a similar performance as Rubin’s method and Kim’s method. This showed that
they performed as well as the other two methods when their assumptions were satisfied.
The newly proposed method was much faster than the traditional bootstrapping method.
For a case with n = 1000, B = 500, M = 30, and 5000 Monte Carlo runs, the new method
needed about half an hour, while the traditional bootstrap method needed about eight
hours. In addition, same as in example 1, the B considered in example 2 had no significant
effects, while larger n and M values led to smaller widths of the confidence intervals.

Table 2. Simulation results for the linear regression mean estimation.

Rbias (%) Mwidth (×102) 95cov (×102)

Scen n B M V̂ V̂MI V̂K V̂B V̂ V̂MI V̂K V̂B V̂ V̂MI V̂K V̂B

1 500 500 10 0.7 0.4 0.4 0.1 21 22 22 22 95 95 95 96
30 0.8 0.2 0.3 0.1 20 20 20 20 95 95 95 95

200 10 0.6 0.4 0.4 −0.1 21 22 22 22 95 95 95 96
30 0.7 0.2 0.3 0.0 20 20 20 20 95 95 95 95

1000 500 10 −1.8 −2.4 −2.3 −2.3 14 15 15 16 94 95 95 96
30 −2.4 −2.9 −2.9 −2.9 14 14 14 14 94 95 95 95

200 10 −2.0 −2.4 −2.4 −2.4 14 15 15 16 94 95 95 96
30 −2.4 −2.9 −2.9 −2.8 14 14 14 14 94 95 95 95

2 500 500 10 −6.0 −5.0 −5.0 −5.0 13 14 14 14 94 94 94 95
30 −5.0 −4.0 −4.0 −4.1 13 13 13 13 94 95 95 95

200 10 −6.0 −5.0 −5.0 −5.0 13 14 14 14 94 94 94 95
30 −5.0 −4.0 −4.0 −4.0 13 13 13 13 94 95 95 95

1000 500 10 −1.0 0.4 0.4 0.0 9 10 10 10 95 95 95 96
30 −0.6 0.8 0.8 0.6 9 9 9 9 95 95 95 95

200 10 −1.1 0.4 0.4 −0.1 9 10 10 10 95 95 95 96
30 −0.8 0.8 0.8 0.7 9 9 9 9 95 95 95 95

3.3. A Real Data Analysis

In order to illustrate the proposed method, we applied the newly proposed method to
the Hox pupil popularity data [34]. The dataset collects information about pupil popularity,
sex, school, and teacher experience. Pupil popularity is measured using a self-rating scale
that ranges from 0 (very unpopular) to 10 (very popular). The sex denotes the gender of
the students, which is boy or girl. The school variable indicates which schools the students
are from. It includes 100 schools. The teacher experience records the teacher’s teaching
experience in years. There are 2000 observations in the dataset.

Before doing any analysis on the dataset, we usually show descriptive statistics first.
We were interested in the average pupil popularity for the domain third school. We selected
the first 50 schools. Therefore, the data set had 998 observations. The values for the variable
school are always observed. For the variable pupil popularity, there were 405 missing
values. For the third school, there were 18 observations for pupil popularity and six were
missing among them. Therefore, the domain proportion was 1.8% and the total response
rate was approximately 60%. Then, the method used in example 1 in Section 4 was used
to calculate the average pupil popularity of the third school. We used M = 30 and B = 500.
Rubin’s point estimator was 6.41. The four methods used in the simulation study were
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used to estimate the variance of Rubin’s point estimator. The bootstrap variance estimator
V̂ was 0.059, with the corresponding 95% confidence interval of (5.935, 6.887). Rubin’s
variance estimator V̂MI was 0.109, with the corresponding 95% confidence interval of (5.762,
7.060). Kim’s variance estimator V̂k was 0.053, with the corresponding 95% confidence
interval of (5.961, 6.862). The traditional bootstrap variance estimator V̂B was 0.066, with
the corresponding 95% confidence interval of (5.932, 6.946). The results showed that the
new proposed bootstrap variance estimator results were close to the traditional bootstrap
variance estimator results. We observed that Rubin’s variance estimator V̂MI was larger
than the bootstrap variance estimator V̂ and Kim’s variance estimator V̂k was smaller than
the bootstrap variance estimator V̂. The results from the simulation studies indicated
that the covariance assumption may not have been satisfied In addition, Rubin’s variance
estimator may have resulted in a larger coverage probability and Kim’s variance estimator
may have resulted in a lower coverage probability of the confidence interval than the
nominal level.

4. Discussion and Conclusions

In this study, we proposed a new bootstrap variance estimator for a multiple imputa-
tion estimator with the complete-sample estimator in the form of (1). It does not need the
covariance assumption used in Kim’s method, and thus, it has a wider range of applications.
The simulations showed that it performed similarly to the traditional bootstrap method
but greatly saved computational time. Moreover, the new method performed well for both
situations with the covariance assumption satisfied or not. In addition, Kim’s method can
only be applied to a situation where the imputed values can be written as a linear function
of the observed values. However, the new method has no such restriction, and it can be
applied to the multiple imputation estimator with any form of imputed values. Further
research can be conducted to investigate its performance in such situations.

This newly proposed method can be extended to a more general class of estimators
with the form ∑i∈A g(yi), such as a maximum likelihood estimator, where the proportion
of y is less than any constant and the quantile of y. Future research can be conducted to
investigate the performance when using these estimators.
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Appendix A

Proof of the approximate number of degrees of freedom:
As in Rubin and Schenker [35], we derived the degrees of freedom of the t-distribution

using (i) the conditional on the observed observations, imputed observations, and bootstrap
observations; (ii) the assumption that V̂1 is fixed; and (iii) the assumption that V̂/V̂∞,∞,
where V̂∞,∞ is the probability limit of V̂ as both M and B go to infinity, is distributed
as χ2

v/v.
Let H5 = ∑i∈AR

αi(Y
b
r′ − H4), H6 = ∑j∈Ak

αj(η
b
j − H3), V̂5 = (B− 1)−1 ∑B

b=1

(H5 + H6)
2, V̂6 = (B− 1)−1 ∑B

b=1 H2
5 , and V̂7 = (B− 1)−1 ∑B

b=1 H2
6 . Let α = V̂2,∞/V̂2,

where V̂2,∞ = plimM→∞V̂2. Let β = V̂3,∞/V̂3, γ = V̂5,∞/V̂5, κ = V̂6,∞/V̂6, and φ = V̂7,∞/V̂7,
where V̂,∞ = plimB→∞V̂.. Let D∗ be the dataset, which consists of the observations, multiple
imputations, and bootstrap observations. Then, α−1 | D∗ follows an χ2 distribution with
degrees of freedom M − 1. Similarly, β−1 | D∗, γ−1 | D∗, κ−1 | D∗, and φ−1 | D∗ follow
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an χ2 distribution with degrees of freedom B − 1. Therefore, var(α−1
∣∣D∗ ) = 2/(M− 1),

var( β−1
∣∣D∗ ) = var(γ−1

∣∣D∗ ) = var(κ−1
∣∣D∗ ) = var(φ−1

∣∣D∗ ) = 2/(B− 1). Furthermore
cov( β−1, γ−1

∣∣D∗ ) = 2(1− r2)/(B− 1), cov( β−1, κ−1
∣∣D∗ ) = 2/(B− 1), cov(κ−1, γ−1

∣∣D∗ )
= 2(1− r2)/(B− 1), cov(φ−1, γ−1

∣∣D∗ ) = 2r2/(B− 1), and the covariances between any
other two terms are zero.

Then, we can write V̂ = V̂1 + V̂2 + V̂3 + V̂5 − V̂6 − V̂7. Let f = V̂2/V̂1, g = V̂3/V̂1,
h = V̂5/V̂1, a = V̂6/V̂1, and b = V̂7/V̂1. Using a Taylor expansion, we derived

V̂
V̂∞,∞

= 1+ f+g+h−a−b
1+α f+βg+γh−κa−φb

≈ 1 + f
1+ f+g+h−a−b (α

−1 − 1) + g
1+ f+g+h−a−b (β−1 − 1)

+1 + h
1+ f+g+h−a−b (γ

−1 − 1) + a
1+ f+g+h−a−b (κ

−1 − 1) − b
1+ f+g+h−a−b (φ

−1 − 1).
Let π be the response rate for the interested domain. We obtained

var( V̂
V̂∞,∞

∣∣∣D∗) = 2
M−1

f 2

(1+ f+g+h−a−b)2 +
2

B−1
g2+h2+a2+b2+2gh(1−π2)−2ga−2ha(1−π2)−2hbπ2

(1+ f+g+h−a−b)2

= 2 (M−1)−1 f 2+(B−1)−1(g2+h2+a2+b2+2gh(1−π2)−2ga−2ha(1−π2)−2hbπ2)

(1+ f+g+h−a−b)2 .

Thus, the degrees of freedom are

v = (1+ f+g+h−a−b)2

(M−1)−1 f 2+(B−1)−1(g2+h2+a2+b2+2gh(1−π2)−2ga−2ha(1−π2)−2hbπ2)

= V̂2

(M−1)−1V̂2
2 +(B−1)−1[V̂2

3 +V̂2
5 +V̂2

6 +V̂2
7 +2(1−π2)V̂5(V̂3−V̂7)−2V̂3V̂7−2V̂5V̂6π2]

.
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