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Abstract: In this paper, we investigate a validation process in order to assess the predictive capabilities
of a single degree-of-freedom oscillator. Model validation is understood here as the process of
determining the accuracy with which a model can predict observed physical events or important
features of the physical system. Therefore, assessment of the model needs to be performed with
respect to the conditions under which the model is used in actual simulations of the system and to
specific quantities of interest used for decision-making. Model validation also supposes that the model
be trained and tested against experimental data. In this work, virtual data are produced from a non-
linear single degree-of-freedom oscillator, the so-called oracle model, which is supposed to provide an
accurate representation of reality. The mathematical model to be validated is derived from the oracle
model by simply neglecting the non-linear term. The model parameters are identified via Bayesian
updating. This calibration process also includes a modeling error due to model misspecification
and modeled as a normal probability density function with zero mean and standard deviation to
be calibrated.

Keywords: Bayesian updating; single degree-of-freedom oscillator; validation; modeling error

1. Introduction

Quantifying uncertainty is a problem common to scientists dealing with mathemati-
cal models of physical processes. There are a wide range of numerical methods to solve
systems of ordinary differential equations, such as the Euler method, higher-order Taylor
methods, and Runge–Kutta methods. For systems of partial differential equations, we
consider several numerical methods, such as finite difference, finite element, finite vol-
ume, and spectral methods to produce solutions to physical models based on differential
equations. If numeral methods are used, the resulting solution is an approximation to the
true underlying solution and usually consists of a single solution set when parameter and
starting values are known and specified. However, in many processes there exist various
sources of noise to the process. Aleatoric uncertainty is an “external error” which may
take the form of measurement error or some other error associated with generating the
solution. The key to external (Aleatoric) error is that the error exists on the solution set.
Epistemic uncertainty is model uncertainty/misspecification uncertainty which exists in
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the formulation of the model. This can be a result of not accounting for various components
of a model. Epistemic uncertainty can be considered “internal error” as it exists before the
solution to the differential equation is generated. For a very good overview of Bayesian
model calibration, see [1], as it addresses many of the issues associated when quantifying
uncertainty for computer models, while, for quantifying uncertainty for differential equa-
tions models, see [2]. For a good reference for techniques dealing with model inadequacy,
see [3], and for work on model misspecification and model order see [4].

These two different types of uncertainty are manifested in different ways. For example,
external error is manifested by unstructured random noise about the solution set. In contrast,
internal error is propagated through the differential equation solver and may manifest itself as
structured changes in the solution set which is called uncertainty propagation [5]. To highlight
this issue consider the simple differential equation with no uncertainty introduced:

δP
δt

= kP (1)

this has the well known solution with initial condition P0:

P(t) = P0ekt (2)

To account for external error the solution to Equation (1) would be:

P(t) = P0ekt + ε(t) (3)

where ε(t) follows some appropriate probability distribution. However, if we have internal
error then Equation (1) would be:

δQ
δt

= kQ + ξ(t) (4)

where ξ(t) follows some appropriate probability distribution. Let Q(t) be the solution to
Equation (1), then if an external error is added to the model we have N(t) = Q(t) + ε(t),
where ε(t) follows some appropriate probability distribution. One can see the effects of
both types of errors in Figure 1.

To construct the plots in Figure 1, simulation was used to ensure that the error structure
was correctly represented, using 10,000 simulations. In panel (a) of Figure 1, the trajectory
for an exponential growth model with k = 0.3 and P0 = 20, which contains no error. This
subfigure shows exactly what one would expect. For panel (b), the exponential growth
model with k = 0.3 with external error ε(t) ∼ N(0, 5). Notice that the error bands are
virtually equidistant from the mean line. For panel (c), the exponential growth model
the k = 0.3 with internal error ξ(t) ∼ N(0, 3) is plotted. In contrast to the external error
only model the error bands increase in width as the time increases. Panel (d) shows the
internal error ξ(t) ∼ N(0, 3) with external error ε(t) ∼ N(0, 5) added to it. Notice that the
internal plus external error is not simply and addition of the two error as might think. This
phenomenon is our motivation for this research.

The question we focus on here is can a model be purposely misspecified in order
to improve computation time while still accounting for uncertainty induced due to this
misspecification? Model misspecification is an important question especially when using
deterministic models as they are typically assumed to be correct [6]. To approach this
problem the Bayesian framework will be used from a fully Bayesian perspective [7,8] as it
allows for a natural method to quantify uncertainty from different sources.

Notation

We have two major steps producing attributes, e.g., forcing, displacement, velocity
and acceleration. All attributes in the training step will be denoted by superscript T while
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attributes in the validation step will not have any superscript. In each of the major step we
have four different sets of attributes:

1. The true unobserved attributes u, v, a produced by the system; i.e., the solution of the
non-oracle differential equation using the true parameters θ, forcing f and no internal
or external errors. This is our target.

2. The observed attributes ū, v̄, ā produced by the system; i.e., the solution of the non-
oracle differential equation using the true parameters θ and the true forcing f with
true external and internal errors added. This together with the forcing f̄ are our data.

3. The fitted/predicted attributes û, v̂, â, defined as the solution of either the oracle
or non-oracle differential equation using estimated parameters θ̂, f̄ with predicted
external and internal errors added.

4. Attributes ũ, ṽ, ã that are the solution of the oracle or non-oracle differential equation
using estimated parameters θ̂ with predicted internal and no external error added.
These will be used for estimation of maximum.

(a) (b)
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Figure 1. Trajectoriesfor simple population growth equation with: No Error (a), External Error (b),
Internal Error (c), and Internal and External Error (d).

2. Models

Suppose that the dynamics of a given system be modeled by an abstract initial-value
problem:

F
(
t, u, u̇, ü, . . . , u(n)) = 0, ∀t ∈ (0, T) (5)
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with appropriate boundary conditions, where u(n) denotes the nth derivative of u with
respect to the time variable t. Furthermore, we suppose that the function F(t, u, u̇, . . . , u(n))
can be separated into lower- and higher-order dynamics, G and H, respectively, such as:

F(t, u, u̇) = G(t, u, u̇, . . . , u(`)) + H(t, u, u̇, . . . , u(n)), ∀t ∈ (0, T) (6)

for some ` smaller than or equal to n and assume that the higher-order term H has smaller
effects than the lower-order term for some values of the input parameters of the model. Due
to the added complexity and computational cost associated with the solution of the higher-
order dynamics model, one may want to introduce a misspecified model by retaining the
lower-order dynamics in the following manner:

G(t, u, u̇, . . . , u(`)) + ε(t) = 0, ∀t ∈ (0, T) (7)

where ε(t) is a random process governed by some probability distribution with mean 0
and variance σ2

ε . This model ignores the additional complexity of full model but accounts
for the associated uncertainty through ε. In the following, we consider a non-linear single
degree-of-freedom oscillator as the full model, which we will hereafter refer to as the oracle
model, and a linear single degree-of-freedom oscillator as the misspecified model.

2.1. Non-Linear Single Degree-of-Freedom Oscillator

The displacement u = u(t) around the equilibrium position of a non-linear single
degree-of-freedom oscillator is governed by:

mü + γu̇ +
(
kl + knu2)u = f (t) in (0, T)

u = u0 at t = 0

u̇ = v0 at t = 0

(8)

where u̇ denotes the time-derivative of u, kl is the linear component of the spring stiffness
coefficient, kn is the higher-order component of spring stiffness, m is the mass of the object
attached to the spring, and γ is the damping coefficient. Moreover, the system is subjected
to the external forcing f = f (t) and initial displacement u0 and velocity v0.

A single degree-of-freedom oscillator is a popular model for modeling spring behavior.
In an experimental setting, one can imagine that the spring be subjected to a sinusoidal
forcing term by using a cam to apply a periodic and continuous force to the spring. From a
mathematical point of view, any sufficiently smooth function can be represented as a Fourier
series, in which case, the forcing term is given as a linear combination of trigonometric
functions. In this work, the external forcing used in the generation of data for parameter
identification will be chosen in the form:

f (t) = Ac sin
(

2πnct
T

)
(9)

where Ac is the amplitude and nc is an input parameter to control the angular frequency
ω = 2πnc/T of the forcing term.

We also suppose that the external forcing f (t) is subjected to unforeseen errors. These
errors are collectively denoted by ε f such that the system is modeled by:

mü + γu̇ +
(
kl + knu2)u + ε f (t) = f (t) in (0, T)

u = u0 at t = 0

u̇ = v0 at t = 0

(10)

In the following, we assume that above system is too complex to solve and has to be
simplified in order to be tractable. Another point of view is that one does not necessarily
know how to model all the physical phenomena occurring in the system.
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2.2. Linear Single Degree-of-Freedom Oscillator

The model given in (10) can be decomposed into linear and non-linear components.
Using the notation of (6), we have:

G(t, u, u̇, ü) = mü + γu̇ + klu− f (t) (11)

H(t, u, u̇, ü) = knu3 (12)

with n = 2 and ` = 2. Considering a model that retains the linear component, G(t, u, u̇, ü),
as defined in (11), and omitting the non-linear component, H(t, u, u̇, ü), we arrive at the
misspecified model:

mü + γu̇ + klu + ε(t) = f (t) in (0, T)

u = u0 at t = 0

u̇ = v0 at t = 0

(13)

Note that the variable ε(t) in (13) accounts for both the model misspecification
H(t, u, u̇, ü) and errors ε f (t) in the forcing. Due to ε f (t) being governed by a probability
distribution, then ε(t) will also be governed by some probability distribution with some
mean and variance σ2

ε . In fact, the proposed formulation does not allow one to separate
the uncertainty due to the non-linear component from possible errors when observing the
forcing term. In other words, ε can be viewed as a modeling error, “internal” to the system,
in contrast to the traditional approach in which one considers an “external” error, to explain
the error associated with the system solution. Finally notice, that if we fit Equations (10)
and (13) to data, the estimated values of γ and kl will be different depending on whether
the cubic term is included or not.

In the following, the model defined in (10) will be referred to as the Oracle model and
the misspecified model defined in (13) as the non-Oracle model. Figure 2 shows an example
of sampled data for f versus u using forcing (9) with Ac = 5 and σε = 0.1. As expected
the data show a cubic relationship between displacement and forcing. The least squares
estimated Oracle and non-Oracle models are overlaid on the data and show that the
Oracle model fits extremely well the data while the non-Oracle model seems to provide a
reasonable approximation. From a computational standpoint, the non-Oracle model is very
appealing since its solution is far less computationally demanding than the Oracle model.

Version November 15, 2022 submitted to Stats 6
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Figure 2. Force versus Displacement with Oracle and Non-Oracle models using forcing given by (9)
with Ac = 5 and centered Gaussian internal error with σϵ = 0.1.

Figure 3 shows an example forcing (9) with σϵ = 0 (Panel a) and the resulting solutions 119

of displacement (Panel b), velocity (Panel c), and acceleration (Panel d). Notice that the 120

solutions for displacement are quite close in behavior with the Non-Oracle model being 121

somewhat smoother than the Oracle model. For velocity (Panel b), we observe that there 122

is a marked difference between the Oracle and Non-Oracle solutions. Specifically, the 123

Non-Oracle solutions do not fit well in the extremes and lack some dynamics exhibited by 124

the Oracle model. The acceleration trajectories (Panel d) show that there is also a much 125

stronger difference between the Oracle and Non-Oracle models. Again, the Non-Oracle 126

model performs poorly at the extremes and lacks much of the dynamic behavior versus 127

the Oracle model. One question of interest is whether the uncertainty associated with the 128

Non-Oracle model can be correctly quantified so that the model can be reliably used to 129

create prediction intervals that have well calibrated coverage probabilities. 130

3. Model Estimation 131

In an experimental setting, the data that will be observed at regular sampling times
and contaminated with errors. For any time t the following likelihood is employed:

ūt, v̄t, āt|θ, f, ε ∼ MVN[(ut, vt, at), Σ]

where (ut, vt, at) is the solution of the differential equation at time t given the parameter 132

values θ =
(
m, g, kl , kn, σ2

ϵ , σ2
u , σ2

v , σ2
a
)
, forcing f and internal errors ε; Σ is a 3× 3 matrix with 133

diagonal elements σ2
u , σ2

v , σ2
a and zeros elsewhere. It is assumed that the given the parame- 134

ters and the resulting solution to the differential equations the residuals are independent 135

across time. For notation let D̄ = (ū, v̄, ā) be the observed data. 136

A Bayesian approach is employed for inferences about the parameters and to create
posterior predictive intervals. To obtain the posterior distribution of θ we use Bayes theorem
given by (See [2]):

p(θ, ε|D̄, f) =
L(D̄|f, θ, ε)p(θ, ε)∫
L(D̄|f, θ, ε)p(θ, ε)dθ

.

Figure 2. Force versus displacement with Oracle and non-Oracle models using forcing given by (9)
with Ac = 5 and centered Gaussian internal error with σε = 0.1.
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Upon applying a force f (t) to the system, we suppose that we can track the state of the
system at times t = t0, t1, . . . , T, which will result in the forcing vector f = ( f0, f1, . . . , fT),
internal errors ε = (ε0, ε1, . . . , εT), as well as the solution vectors u = (u0, u1, ..., uT) for dis-
placement, v = (v0, v1, . . . , vT) for velocity, and a = (a0, a1, . . . , aT) for acceleration. These
unobserved quantities will be considered as a target for our estimation procedure. The solu-
tion vectors are actually observed contaminated with external errors and the observed solu-
tion vectors will be denoted by ū = (ū0, ū1, . . . , ūT) for displacement, v̄ = (v̄0, v̄1, . . . , v̄T),
for velocity and ā = (ā0, ā1, . . . , āT) for acceleration. These quantities will be referred to as
data in our estimation procedure.

Figure 3 shows an example forcing (9) with σε = 0 (Panel a) and the resulting solutions
of displacement (Panel b), velocity (Panel c), and acceleration (Panel d). Notice that the
solutions for displacement are quite close in behavior with the non-Oracle model being
somewhat smoother than the Oracle model. For velocity (Panel b), we observe that there is
a marked difference between the Oracle and non-Oracle solutions. Specifically, the non-
Oracle solutions do not fit well in the extremes and lack some dynamics exhibited by
the Oracle model. The acceleration trajectories (Panel d) show that there is also a much
stronger difference between the Oracle and non-Oracle models. Again, the non-Oracle
model performs poorly at the extremes and lacks much of the dynamic behavior versus
the Oracle model. One question of interest is whether the uncertainty associated with the
non-Oracle model can be correctly quantified so that the model can be reliably used to
create prediction intervals that have well calibrated coverage probabilities.

(a) (b)

(c) (d)

Figure 3. Force (a) Displacement (b), Velocity (c), and Acceleration (d) trajectories for Oracle and
non-Oracle models with σε = 0.

3. Model Estimation

In an experimental setting, the data that will be observed at regular sampling times
and contaminated with errors. For any time t the following likelihood is employed:

ūt, v̄t, āt|θ, f, ε ∼ MVN[(ut, vt, at), Σ]
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where (ut, vt, at) is the solution of the differential equation at time t given the parameter
values θ =

(
m, g, kl , kn, σ2

ε , σ2
u , σ2

v , σ2
a
)
, forcing f and internal errors ε; Σ is a 3× 3 matrix with

diagonal elements σ2
u , σ2

v , σ2
a and zeros elsewhere. It is assumed that the given the parame-

ters and the resulting solution to the differential equations the residuals are independent
across time. For notation, let D̄ = (ū, v̄, ā) be the observed data.

A Bayesian approach is employed for inferences about the parameters and to create
posterior predictive intervals. To obtain the posterior distribution of θ we use Bayes theorem
given by (see [9]):

p(θ, ε|D̄, f) =
L(D̄|f, θ, ε)p(θ, ε)∫
L(D̄|f, θ, ε)p(θ, ε)dθ

.

where :

L(D̄|f, θ, ε) = L(ū, v̄, ā|f, θ, ε) =
T

∏
t=0

L(ūt, v̄t, āt|f, θ, ε).

The following vague prior distributions are employed:

εt|σ2
ε ∼ N(0, σ2

ε ), t = 0, 1, . . . , T

σ2
ε ∼ Uniform(0, Maxσ2

ε )

m ∼ P(m = 1) = 1

g ∼ N(0, 100)

kl ∼ N(0, 100)

kn ∼ N(0, 100)

σ2
u ∼ χ2

2

σ2
v ∼ χ2

2

σ2
a ∼ χ2

2

Using this prior distribution and likelihood specification the posterior distribution is
not analytically tractable, hence sampling is employed. In this work, Maxσ2

ε is set to 10 for
σ2

ε , which allows for high values (near 10) without the need to worry about extreme values
as other distributions, such as an Inverse-Gamma, might provide. A Metropolis–Hastings
embedded in a Gibbs sampler, where each parameter is sampled from its full conditional
distribution using the Metropolis–Hastings algorithm, is implemented in MATLAB to
obtain samples from the posterior distribution, with details given in Section 4. This
algorithm was chosen as it is easy to implement in MATLAB.

3.1. Solving the Differential Equation

At each step of the Metropolis-Hastings sampler the differential equation needs to be
solved regardless of whether the model is the Oracle or non-Oracle models. To solve the
differential equation, the time interval [0, T] is partitioned into N subintervals [tn, tn−1],
n = 1, . . . , N, with t0 = 0 and tN = T. For simplicity here, the time step ∆t is taken uniform.
Given u0 and v0, the initial acceleration is estimated as:

a0 =
1
m
(

f (0)− ku0 − γv0
)

The acceleration, velocity, and displacement are updated at the subsequent time tn,
n = 1, . . . , N, as:

an =
f (tn)− kun−1 − (γ + ∆tλ)vn−1 − [γ∆t(1− λ) + 0.5k∆t2(1− 2β)]an−1

m + γ∆tλ + k∆2β
(14)

vn = vn−1 + ∆t[λan + (1− λ)an−1] (15)

un = un−1 + ∆tvn−1 + 0.5∆t2an−1 + ∆t2β(an − an−1) (16)
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where β and λ are the standard parameters of the Newmark scheme. The parameters are
chosen here as β = 0.25, γ = 0.5, ∆t = 0.1, and λ = 0.5. By choosing λ = 0.5 and β = 0.25
this represents the average constant acceleration scheme for the Newmark solver to ensures
unconditional stability is achieved [10]. It should be noted that the settings for λ and β can
influence the computational time for the solver. For example, λ = 0.5 and β = 0.25 the
solver takes approximately 0.010 s to solve 1000 time steps, compared to when λ = 0.75
and β = 0.25 where the solver takes approximately 0.021 s to complete the computations;
and when λ = 0.25 and β = 0.25, the solver takes approximately 0.018 s to complete the
computations. Similarly, when λ = 0.5 and β = 0.5, the solver takes approximately 0.017 s
to complete the same computations.

3.2. Verification Example

As a verification that the approach is viable, a dataset was generated using the sinu-
soidal forcing f given by Equation (9) with forcing parameters Ac = 5, nc = 5, σε = 0.5,
and model parameters g = 0.2, kl = 2.0, kn = 1.0 and σε = 0.5. A total of 120,000 samples
are taken from the posterior distribution using 10 chains of 12,000 with the first 2000 samples
discarded as burn-in samples and the remaining 10,000 samples thinned by 10 resulting in
10 sets of 1000 samples resulting in 10,000 samples from which all inferences will be made.
For the non-Oracle model the computing time is approximately 73.2 s and for the Oracle
model the computing time is approximately 764.4 s. Sampler diagnostics, such as traceplots,
as well as autocorrelation within chains, were examined for convergence, mixing, and to
determine the thinning rate. Full computation details are presented in Section 4.

Table 1 shows the true values for the Oracle model and the 95% credible intervals
based on sample quantiles, (Q2.5, Q50, Q97.5), for both the Oracle and non-Oracle models.
Notice that the posterior credible intervals correctly capture the true values of the model
parameters. This provides evidence that the model parameter estimation approach is valid.

Table 1. Parameter estimates given by approximately 95% credible intervals, (Q2.5, Q50, Q97.5),
for both Oracle and non-Oracle models using simulated forcing data with Ac = 5, σε = 0.5. Based on
10,000 posterior samples.

Ac

Model θ True (Q2.5, Q50, Q97.5)

Oracle g 0.2 (0.145, 0.183, 0.267)
kl 2.0 (1.876, 2.065, 2.150)
kn 1.0 (0.896, 0.935, 1.088)
σε 0.5 (0.469, 0.504, 0.545)

Non-Oracle g – (0.247, 0.333, 0.415)
kl – (3.471, 3.526, 3.581)
σε – (0.707, 0.787, 0.874)

4. Simulation Study

Of particular interest is model validation. Specifically, under what training dataset
conditions are the models valid? Furthermore, under what conditions is the non-Oracle
model competitive with the Oracle model? In this case, model validity is defined to be
the predictive performance of the models for predicting both future values and maximum
values. As this is a predictive study, a training dataset D̄T = (ūT , v̄T , āT ) obtained
using a training forcing fT is used to obtain samples from the posterior distribution of θ.
Additionally, a separate and independent validation forcing f is applied to obtain solutions
u, v, a. To validate the models the validation trajectories are compared with their posterior
predictive distribution given by

p(û, v̂, â|f̄, fT , DT ) =
∫

p(û, v̂, â|f̄, θ, ε)p(ε|θ)p(θ|fT , DT ) dε dθ.
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To make the situation more realistic we accommodate possible internal errors in the
system by using instead of the true forcing f a forcing contaminated by fixed realization
of internal errors f̄ = f− ε, where ε are independent centered Gaussian random variables
with standard deviation σe. The training datasets are generated using Equation (9) with
amplitude Ac at the levels of 1 (low) , 5 (medium), and 10 (high), and forcing error σε at
0.05 (low), 0.5 (medium), and 1.75 (high). The model parameters are specified as g = 0.2,
kl = 2.0, kn = 1.0, and σε = 0.5 for all simulations. Since the interest is in estimating both
future values and maximum value, the predictive distribution of the trajectories for all N
time steps ahead are considered. Note that this is different from the traditional one, two,
ten, etc., step ahead approach.

The validation forcings are generated using two regimes: Sinusoidal and Erratic. The Si-
nusoidal regime is uses Equation (9) with Ac = 5 and centered Gaussian internal errors
with σε = 0.5. Panel (a) of Figure 4 shows a representative realization of the Sinusoidal
regime when the training dataset is generated using the same parameters. Furthermore,
Figure 4 show the validation trajectories for displacement u (Panels b), velocity v (Panel c),
and acceleration a (panel d) all with their 95% posterior predictive intervals. Notice that the
posterior predictive intervals appear to have high coverage probabilities for displacement,
velocity, and acceleration. This gives evidence that using sinusoidal training dataset gives
a valid model for predicting the same system.

To understand how the sinusoidal training regime performs on a process that is
dramatically different the Erratic regime is employed. The Erratic regime validation data
generation processes is a realization of a sum of two stochastic processes. The first is a
Gaussian moving average process with a small variance, ψ2

b , serving as a background
noise. The second process is a smoothed version of a marked Poisson process and models
large shocks. The time of the large shocks is given by Poisson process with the amplitude
modelled by a Gaussian random variable with a relatively large variance, ψ2

s . Panel (a) of
Figure 5 shows a representative realization. Notice that the process is very different from
the sinusoidal process. However, by considering Panels (b, c, and d) one can see that the
posterior predictive intervals appear to capture the process quite well.

A simulation study is conducted by varying the training amplitude and assessing the
performance of posterior predictive intervals on capturing the true value. The training
datasets were created using the sinusoidal regime with amplitude, Ac at levels 1, 5, and
10. These levels of Ac are chosen so that there is a scenario in which a small, an accurate,
and a large training amplitude is considered. The internal error standard deviation σε is
also varied and set to levels 0.05, 0.5, and 1.75 which correspond to a small, an accurate,
and a large training noise. For each amplitude and noise combination 100 datasets were
generated and MCMC samples from the posterior predictive distribution were obtained
for each dataset for both the Oracle and non-Oracle models. For each amplitude, noise and
Oracle/non-Oracle combination datasets two validation forcing datasets were generated,
one using sinusoidal forcing and the other using erratic forcing. The simulation study was
replicated 100 times. A Metropolis–Hastings embedded in a Gibbs sampler was imple-
mented in MATLAB to obtain samples from the posterior predictive distribution. A total
of 30,000 samples were taken from the posterior distribution with the first 20,000 samples
discarded as burn-in samples and the remaining 10,000 samples thinned by 10 resulting in
a set of 1000 samples from which all inferences will be made. Sampler diagnostics, such as
traceplots, as well as autocorrelation within chains, were examined for convergence, mixing,
and to determine the thinning rate. Example traceplots and auto-correlation plots for the
Oracle model can be found in Figures A1 and A2, respectively. Notice the chains appear to
have converged and a thinning of every 10th sample will keep the auto-correlation between
samples below 0.25. As one may be concerned with the choice of Maxσ2

ε on its impact on the
posterior distribution of σ2

ε , a small sensitivity study is presented in Figure A3 that shows
the kernel density estimates of the posterior distribution of σ2

ε when Maxσ2
ε = 0.5, 1, 2, 5,

and 10. Notice that the posterior distributions in all cases essentially agree with each other,
hence choice of Maxσ2

ε = 10 should not have any large influence on the inferences.
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(a) (b)

(c) (d)

Figure 4. Training Force Contaminated with internal error (a) Displacement (b), Velocity (c) and
Acceleration (d) trajectories. The Displacement, Velocity, and Accelerations have 95% posterior
predictive intervals as well.

(a) (b)

(c) (d)

Figure 5. Validation Force (a) Displacement (b), Velocity (c), and Acceleration (d) trajectories. The Dis-
placement, Velocity, and Accelerations have 95% posterior predictive intervals as well.

Using the 2.5% and 97.5% quantiles from the MCMC samples from the posterior
predictive distribution a 95% predictive interval is created for each ût, v̂t, and ât using each
contaminated validation forcing f̄. Let Z be the solution attribute of interest, such as u, v
or a and Zti be the true value of the attribute at time t for simulation replicate i and Ẑti be
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the 95% posterior predictive interval for the attribute at time t for simulation replicate i.
The posterior predictive coverage rates for attribute Z were calculated using:

C(Z) =
1

100T

100

∑
i=1

T

∑
t=0

I{Zti ∈ Ẑti},

where I{Zti ∈ Ẑti} is an indicator function taking on the value 1 if Zti ∈ Ẑti and
0 otherwise.

Table 2 shows the results from the simulation study of the average coverage probability
of the 95% posterior predictive intervals for û, v̂, and â for both Oracle and non-Oracle
models across both validation regimes. Notice that for scenarios when σε is 0.5 or higher
the coverage probabilities are quite good for all attributes, across all training amplitudes
for both the Oracle and non-Oracle models using both Sinusoidal and Erratic validation
forcing. Additionally, notice that the Oracle model performs reasonably well when σε is
0.05 when Ac is 5 or 10. Furthermore, when the training Amplitude is higher the coverage
probabilities are improve in all cases. This suggests that provided the typical range of
the training forcing amplitude plus the internal error, Ac + 2σε, is larger than the typical
forcing that would be applied in practice the non-Oracle model is valid for predicting the
attributes. In cases where the typical forcing that would be applied in practice has low
noise the Oracle model should be preferred.

Table 2. Average coverage probabilities of u, v, and a for both Oracle and non-Oracle models.
The models were trained on a sinusoidal training system with amplitudes Ac = 1, 3, 5, force error
σε = 0.05, 0.5, 1.75 and validated on both Erratic and Sinusoidal systems with Erratic system with
typical validation amplitude of 5, created using Erratic system variances ψ2

b = 1, ψ2
s = 2.25 and

Sinusoidal parameters Ap = 5, σε = 0.5. Based on 100 simulations.

Sinusoidal Erratic
Ac Ac

σε Attribute Oracle 1 5 10 1 5 10

0.05 u Y 0.076 0.962 1.000 0.225 0.882 0.998
N 0.243 0.215 0.197 0.221 0.189 0.178

v Y 0.113 0.962 1.000 0.211 0.927 0.998
N 0.209 0.213 0.210 0.215 0.214 0.211

a Y 0.118 0.946 1.000 0.206 0.979 0.999
N 0.204 0.216 0.239 0.213 0.235 0.261

0.5 u Y 0.734 0.986 1.000 0.849 0.926 0.998
N 0.929 0.989 0.988 0.989 0.969 0.972

v Y 0.910 0.987 1.000 0.849 0.963 0.999
N 0.941 0.989 0.994 0.989 0.984 0.990

a Y 0.918 0.987 1.000 0.875 0.995 0.999
N 0.946 0.991 0.997 0.991 0.994 0.998

1.75 u Y 0.999 1.000 1.000 0.997 0.999 0.999
N 0.990 1.000 1.000 0.995 1.000 0.999

v Y 1.000 1.000 1.000 0.996 0.999 1.000
N 0.990 1.000 1.000 0.995 1.000 1.000

a Y 1.000 1.000 1.000 0.998 1.000 1.000
N 0.990 1.000 1.000 0.995 1.000 1.000

Since the coverage probabilities are quite good when the training set exhibits more
extreme amplitudes than the validation data one would like to determine the difference
in the widths of the prediction intervals. Again, let Z be the solution attribute of interest,
such as u, v or a, and Zti be the true value of the attribute at time t for simulation replicate i
and Ẑti be the 95% posterior predictive interval for the attribute at time t for simulation
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replicate i. The average posterior predictive interval widths, using an L1 norm, for attribute
Z were calculated using:

W(Z) =
1

100T

100

∑
i=1

T

∑
t=0
|Ẑti|.

Table 3 shows the average posterior predictive interval widths for u, v, and a for both
Oracle and non-Oracle models using a training system with Ac = 1, 3, 5 and internal error
standard deviation σε = 0.05, 0.5, 1.75, and validated using both Erratic and Sinusoidal
systems. Notice that the average interval widths are systematically higher for the non-
Oracle versus the Oracle. This is to be expected since the non-Oracle model will always have
a larger estimated internal error which is then propagated through the system. Furthermore,
notice that the interval widths for the non-Oracle models are about twice the interval width
of the Oracle models. Hence, the trade off of using the non-Oracle model is much wider
predictive intervals.

Table 3. Average posterior predictive interval widths of u, v and a for both Oracle and non-Oracle
models. The models were trained on a sinusoidal training system with amplitudes Ac = 1, 3, 5, force
error σ2

ε = 0.05, 0.5, 1.75 and validated on both Erratic and Sinusoidal systems with Erratic system
with typical validation amplitude of 5, created using Erratic system variances ψ2

b = 1, ψ2
s = 2.25 and

Sinusoidal parameters Ap = 5, σε = 0.5 . Based on 100 simulations.

Sinusoidal Erratic
Ac Ac

σε Attribute Oracle 1 5 10 1 5 10

0.05 u Y 0.151 0.139 0.140 0.125 0.090 0.090
N 0.193 0.259 0.435 0.601 0.204 0.344

v Y 0.230 0.211 0.212 0.268 0.199 0.200
N 0.291 0.401 0.854 0.434 0.395 0.348

a Y 0.542 0.517 0.520 0.741 0.613 0.613
N 0.621 0.757 1.833 0.963 0.955 0.848

0.5 u Y 0.309 0.152 0.135 0.292 0.096 0.090
N 0.631 0.264 0.430 0.616 0.204 0.344

v Y 0.472 0.231 0.205 0.454 0.211 0.199
N 0.951 0.411 0.843 0.586 0.394 0.360

a Y 0.820 0.540 0.513 1.136 0.635 0.612
N 1.533 0.770 1.811 1.132 0.954 0.875

1.75 u Y 0.294 0.276 0.232 0.477 0.243 0.151
N 1.314 0.360 0.375 0.715 0.226 0.356

v Y 0.512 0.436 0.361 0.488 0.343 0.278
N 2.178 0.622 0.696 1.139 0.408 0.384

a Y 0.840 0.809 0.711 1.706 0.958 0.770
N 3.677 1.206 1.465 2.049 0.977 0.931

The results from the simulation study above show that both the Oracle and non-Oracle
models perform well when considering estimating the true value of the system. Since
mechanical systems often fail at the extremes engineers are quite interested in predicting
the extreme values of the system across time. To study this a simulation study was con-
ducted using the same simulation experimental design, MCMC sampling scheme, and
replications as above with the maximum values of each of the attributes as the quan-
tity of interest. As above, let Z denote the attribute of interest, typically displacement,
velocity, or acceleration. To obtain a posterior predictive interval for M = max{Z} the
following approach is used. For the mth draw from the posterior distribution of θ, the
corresponding solution trajectory for Z is created without using external error. The solution
is denoted by Z̃(m)

t for times t = 0, 1, ...T, and the maximum value across t is obtained,
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M̃(m) = max{Z̃(m)
t : 0, 1, ..., T}. Finally, the external error with variance given by the

corresponding mth posterior sample is added to obtain {M̂(m)}1000
m=1. The 2.5% and 97.5%

quantiles for {M̂(m)}1000
m=1 are used to create a 95% posterior predictive interval for M

denoted by M̂. Let Mi be the true maximum value of the system under forcing fi for
simulation replicate i and M̂i be the corresponding 95% posterior predictive interval of the
maximum value. The coverage posterior predictive coverage rates for the maximum were
calculated using:

C(M) =
1

100

100

∑
i=1

I{Mi ∈ M̂i},

where I{Mi ∈ M̂i} is an indicator function taking on the value 1 if Zti ∈ Ẑti and
0 otherwise.

Table 4 shows the results of the coverage probabilities when using the posterior
predictive distribution to predict the maximum value for each attribute for both Oracle
and non-Oracle models across various Sinusoidal training amplitudes and noise for both
Sinusoidal and Erratic validation regimes. Notice that the results are much different when
attempting to predict the maximum value. Both the Oracle and non-Oracle methods
work well when the validation forcing has similar amplitude and error as the training
amplitude and errors. Consider when σε = 0.5 and Ac = 5 then coverage probabilities for
the maximum value are high across both Sinusoidal and Erratic validation regimes and
across all attributes. When σε = 0.05 and Ac = 5 then the Oracle model appears to work
well but the non-Oracle model does not. This is consistent across all attributes and both
validation regimes. When σε is large relative to the training error and when the training
and validation amplitudes differ both the Oracle and non-Oracle models perform poorly
across both validation regimes.

Table 4. Coverage probabilities of maximum values for u, v, and a for both Oracle and non-Oracle
models. The models were trained on a sinusoidal training system with amplitudes Ac = 1, 3, 5, force
error σε = 0.05, 0.5, 1.75 and validated on both Erratic and Sinusoidal systems with Erratic system
with typical validation amplitude of 5, created using Erratic system variances ψ2

b = 1, ψ2
s = 2.25 and

Sinusoidal parameters Ap = 5, σε = 0.5. Based on 100 simulations.

Sinusoidal Erratic
Ac Ac

σε Attribute Oracle 1 5 10 1 5 10

0.05 u Y 0.00 1.00 0.85 0.25 0.93 0.39
N 0.24 0.12 0.10 0.31 0.15 0.13

v Y 0.18 0.99 0.00 0.31 0.99 0.06
N 0.09 0.09 0.19 0.17 0.17 0.23

a Y 0.00 0.83 0.00 0.03 0.97 0.02
N 0.01 0.00 0.00 0.11 0.05 0.09

0.5 u Y 0.00 1.00 0.64 0.31 0.96 0.24
N 0.41 1.00 1.00 0.40 1.00 0.99

v Y 0.66 1.00 0.01 0.33 1.00 0.03
N 0.58 1.00 1.00 0.42 0.99 0.99

a Y 0.98 1.00 0.00 0.63 0.98 0.01
N 0.61 1.00 1.00 0.60 0.99 1.00

1.75 u Y 0.00 0.58 0.31 0.01 0.61 0.33
N 0.07 0.71 0.98 0.07 0.48 0.86

v Y 0.00 0.58 0.14 0.01 0.56 0.21
N 0.01 0.32 0.93 0.04 0.39 0.89

a Y 0.00 0.50 0.03 0.00 0.35 0.06
N 0.00 0.10 0.74 0.04 0.22 0.85
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5. Discussion

This work introduced a novel approach to both quantify the uncertainty associate
with model misspecification, as well as create predictive distributions that incorporate this
uncertainty. By introducing an “inside” error term, ε into the system captures the model
misspecification and forcing noise which is quantified in the σε parameter. A Bayesian ap-
proach allows for the estimation of the model parameters, as well as the posterior predictive
distributions. The posterior distribution of σε allows for the study of the misspecification
uncertainty where large values of σε would indicate a large model misspecification and
small values would indicate the model is reasonably specified. Furthermore, by propagat-
ing the error associated with model misspecification the misspecified model can be can be
made into a valid predictive model for estimating the mean value of the system. In certain
conditions, one can also achieve this for estimating the maximum value of the system.
However, care should be taken in both of these cases to ensure that the training dataset is
representative of conditions that the real system may experience.

The single degree of freedom oscillator is used as a simple example to illustrate the
method. Extending this approach into systems such as Elasto-Plastic model, Accelerometer,
Seismometer, and Estimates of Peak Roof Displacement [6,11]. Other applications include
dynamic behavior of systems with fractional damping and dynamical analysis on single
degree of freedom semi-active control systems with a fractional order derivative [12,13].
Another extension of this work could be to model space-time phenomena similar to those
studied by [14], as there is inherent error in the model structure, as well as measurement
error. One important question that needs consideration is the structure of the internal
and external errors and their impact on resulting inferences. In the case that the Gaussian
likelihood assumption is not valid, one may need to consider other estimation procedures
than Metropolis-Hastings samplers and may wish to consider Approximate Bayesian
Computation (ABC). For a good overview of using ABC with dynamical models, see [15].

The approach presented is computationally intensive which may be prohibitive for
complex systems that in and of themselves are computationally demanding. Nevertheless,
as computation speed and capacity increases this approach may become viable for more
and more complex models.
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Appendix A

This appendix contains information regarding the MCMC sample evaluation and a
sensitivity study on the prior distribution for σc.

Appendix A.1

This section shows the MCMC diagnostics used for the samples obtained via the
Metropolis–Hastings sampler. The Oracle model was considered with g = 0.2, kl = 2,
kn = 1, sigε = 0.5, sigu = 1, and sigv = 1. Figure A1 shows the trace plots for the 10,000
MCMC samples for g (panel a), kl (panel b), kn (panel c), σε (panel d), σu (panel e), and σv
(panel f). Notice that the sampler appears to have converged for each of the parameters as
all traceplots are near stationary.

(a) (b)

(c) (d)

(e) (f)

Figure A1. Exampletraceplots from the MCMC samples g (panel a), kl (panel b), kn (panel c), σε

(panel d), σu (panel e), and σv (panel f).
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Figure A2 shows the auto-correlation plots for the pre-thinned 100,000 MCMC samples
for g (panel a), kl (panel b), kn (panel c), σc (panel d), σu (panel e), and σv (panel f). Thinning
by every 10th sample will keep the auto-correlation between sequential samples below 0.25.

(a) (b)

(c) (d)

(e) (f)

Figure A2. Example autocorrelation plots from the MCMC samples: g (panel a), kl (panel b), kn

(panel c), σε (panel d), σu (panel e), and σv (panel f).

Appendix A.2

Figure A3 shows the kernel density estimates for σ2
ε for prior specifications of σ2

ε ∼
Uni f orm(0, Maxσ2

ε ) where Maxσ2
ε = 0.5, 1, 2, 5, and 10. Notice that the posterior density

estimates agree with each other quite well across all values of Maxσ2
ε , suggesting that the

influence of Maxσ2
ε is minimal on inferences.
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Figure A3. Kernel density estimates of the posterior distribution for σ2
ε across prior distribution

parameter specifications of Maxσ2
ε = 0.5, 1, 2, 5, and 10.
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