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Abstract: Motivated by the recent popularization of the beta prime distribution, a more flexible
generalization is presented to fit symmetrical or asymmetrical and bimodal data, and a non-monotonic
failure rate. Thus, the Weibull-beta prime distribution is defined, and some of its structural properties
are obtained. The parameters are estimated by maximum likelihood, and a new regression model is
proposed. Some simulations reveal that the estimators are consistent, and applications to censored
COVID-19 data show the adequacy of the models.
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1. Introduction

The beta prime (BP) distribution has become popular for analyzing lifetime and
monotonic failure rate phenomena. For modeling monotonic failure rates, the Weibull,
log-logistic, and log-normal distributions can also be good choices, but they do not model
bathtub-shaped, unimodal, and bimodal failure rates that are common in survival analysis.
Because of this, several models have been proposed in recent years.

In this context, the Weibull-G (W-G) family [1] proved itself to be a good competitor
to the Beta-G (B-G) [2] and Kumaraswamy-G (Kw-G) [3] classes. In this family, a > 0 and
b > 0 are two additional parameters to those of the G distribution as well as for the B-G
and Kw-G classes. It is emphasized that the cumulative distribution function (cdf) of the
beta distribution involves the incomplete beta function, whereas the Kumaraswamy cdf
has a closed-form. In addition, the W-G family can be better explored and disseminated as
the B-G and Kw-G classes have been highly cited in Google Scholar.

Recently, Ref. [4] defined a new extension of the W-G family, also a competitor of
the B-G and Kw-G classes. Ref. [5] proposed a bivariate W-G family. The estimation of
the parameters of the Weibull Generalized Exponential distribution based on the adaptive
progressive type II (APTII) censored sample was explored by [6].

Ref. [7] addressed the estimation of the BP distribution and discussed some properties.
A generalized BP model defined by [8–10] introduced regression models based on the BP
distribution. Other recent works studied this distribution [11,12]. Through the McDon-
ald’s inverted beta (McIB) distribution [13], we can obtain other generalizations of the BP
distribution, for example, the Kumaraswamy Beta Prime and Beta Beta Prime models.

In this context, our main objective is to introduce the Weibull-beta prime (WBP) distribu-
tion. We illustrate the applicability of the new distribution to three real COVID-19 data sets.
Currently, the USA has the highest number of COVID-19 cases worldwide. Brazil is the
second country with most deaths (688,316 total deaths) [14], and several factors demand
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analysis of this number, including the continental dimension of the country, the proportion
of elderly people, greater social vulnerability, and also the high rate of chronic diseases.
In this way, we first verify the flexibility of the new distribution through graphical analyses
and statistical tests using data on the number of new daily deaths due to COVID-19 in
the US. Second, we provide an application to the times to death by this coronavirus in a
Brazilian capital. In addition, a third application for regression modeling is done, in which
we investigate the influence of covariates on the time to death from COVID-19 in the
city of Campinas, Brazil. For these studies, we aim to contribute to the literature of new
distributions and survival analysis, as well as direct efforts to estimate the impact caused
by the disease.

The BP random variable W has cumulative distribution function (cdf)

G(x; α, β) = Iz(α, β) , x ≥ 0 , (1)

where z = z(x) = x/(1 + x), α > 0 and β > 0 are shape parameters, Iz(α, β) =

B(α, β)−1
∫ z

0 tα−1(1 − t)β−1dt and B(α, β) =
∫ 1

0 tα−1(1 − t)β−1dt (for z ∈ [0, 1]) are the
incomplete beta and beta functions, respectively.

The probability density function (pdf) of W has the form

g(x; α, β) =
xα−1(1 + x)−α−β

B(α, β)
, x ≥ 0 , (2)

whose sth ordinary moment (for s < β) becomes

E(Ws) =
B(α + s, β− s)

B(α, β)
· (3)

Some other properties of W were tackled by [7]. The arguments in the functions are
omitted from now on.

This article is organized as follows. Section 2 defines the Weibull-beta prime (WBP)
model with four positive parameters. Section 3 provides some of its properties. Section 4
addresses the estimation and a simulation study. Section 5 develops a WBP regression
model. Applications to three COVID-19 data sets in Section 6 confirm the potentiality of
the new models. Some conclusions are found in Section 7.

2. WBP Distribution

By substituting (1) and (2) in the W-G family [1], the WBP pdf follows as (for x ≥ 0)

f (x) =
a b xα−1 (1 + x)−α−β Iz(α, β)b−1

B(α, β)[1− Iz(α, β)]b+1 exp

{
−a
[

Iz(α, β)

1− Iz(α, β)

]b
}

, (4)

and the corresponding hazard rate function (hrf) becomes

h(x) =
ab xα−1(1 + x)−α−β Iz(α, β)b−1

B(α, β) [1− Iz(α, β)]b+1 · (5)

Henceforth, let X ∼ WBP(a, b, α, β) have pdf (4). Figures 1 and 2 report plots of the
pdf and hrf of X, respectively. Figure 1a shows that the WBP distribution can model data
with bimodality. The hrf in Figure 2 can have four main shapes.
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Figure 1. Density functions: (a) WBP(a, b, α, β) and (b) WBP(a, b, 5, 2.5).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

x

h
(x

)

a = 3, b = 0.3
a = 3, b = 0.5
a = 3, b = 0.8
a = 2, b = 1.5

0 1 2 3 4 5

0
1

2
3

4

x

h
(x

)

a = 1.5, b = 0.5
a = 1.3, b = 0.2
a = 0.5, b = 0.6
a = 0.02, b = 1.2

(a) (b)

Figure 2. Hazard rates: (a) WBP(a, b, 5.5, 3) and (b) WBP(a, b, 2, 4).

The main motivation to introduce the WBP distribution is due to the wide use of the
BP distribution and the fact that the current generalization provides better fits to complex
real data.

3. Properties
3.1. Quantile Function

By inverting the W-G family cdf, the quantile function (qf) of X reduces to

x = Q(u) = F−1(u) = G−1

( {
log
[
−a−1(1− u)

]}1/b

1 + {log[−a−1(1− u)]}1/b

)
, (6)

G−1(u) follows by inverting (1)

G−1(u) ==
I−1
u (α, β)

1− I−1
u (α, β)

,

where I−1
u (α, β) is the inverse incomplete beta function, which can be calculated from

InverseBetaRegularized[u,a,b] (in MATHEMATICA) as

I−1
u (α, β) ≈ u +

β− 1
α + 1

u2 +
(β− 1)(α2 + 3βα− α + 5β− 4)

2(α + 1)2(α + 2)
u3 + · · ·

Plots of the Bowley skewness (B) [15] and Moors kurtosis (M) [16] of X based on octiles
are given below.

For any fixed value of b, Figure 3a shows that the skewness decays when parameter
a increases, showing more pronounced curvature for b = 3.5. For a = 0.09 and a = 0.1,
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Figure 3b shows that the skewness starts constantly when b grows and then decays. For
a = 0.2 and a = 0.4, it decreases almost instantly.

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

S
ke

w
ne

ss
(a

)

b = 0.5
b = 1.0
b = 1.5
b = 3.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
96

0.
97

0.
98

0.
99

1.
00

b

S
ke

w
ne

ss
(b

)

a = 0.09
a = 0.1
a = 0.2
a = 0.4

Figure 3. Plots of B for the WBP(a, b, 2.5, 3) distribution: (a) for b fixed and (b) for a fixed.

The behavior of the kurtosis is analogous as shown in Figures 4a,b. In Figure 4a,
for any fixed value of b, the kurtosis decreases and then asymptotically approaches a
constant when a increases. For b = 0.5, this behavior is slower. In Figure 4b, the kurtosis
decreases and becomes asymptotically constant when b grows. For a = 0.2 and a = 0.4,
this behavior happens quickly.
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Figure 4. Plots of M for the WBP(a, b, 2.5, 3) distribution: (a) for b fixed and (b) for a fixed.

3.2. Linear Representation

Proposition 1. The WBP pdf (4) has the linear representation

f (x) =
∞

∑
i,m=0

Bi,m g(x; α?i,m, β) , (7)

where Bi,m’s are real numbers and α?i,m(α) = (i + 1)α + m.

Proof of Proposition 1. The density of X (except for typos) was determined by [1]

f (x) =
∞

∑
j,k=0

ωj,k h(k+1)b+j(x) , (8)

where hp(x) = p g(x) G(x)p−1 (for p > 0) and

ωj,k = ωj,k(a, b) =
(−1)j+k b ak+1

[(k + 1)b + j] k!

(
−[(k + 1)b + 1]

j

)
.

In particular, for the BP baseline, we can expand
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Iz(α, β)(k+1)b+j−1 =
∞

∑
i=0

si,j,k Iz(α, β)i , (9)

where si,j,k = si,j,k(b) = ∑∞
l=i(−1)i+l ((k+1)b+j−1

l ) (l
i), and then from (8)

f (x) =
∞

∑
i=0

Ai xα−1 (1 + x)−α−β Iz(α, β)i , (10)

where Ai = Ai(a, b) = B(α, β)−1 ∑∞
j,k=0[(k + 1)b + j]ωj,k si,j,k.

The power series holds

Iz(α, β) =
zα

B(α, β)

∞

∑
m=0

qm zm , |z| < 1 ,

where qm = qm(α, β) = (1−β)m/m!(α+m) and (p)m = p(p− 1) . . . (p−m + 1) is the falling
factorial. For a natural number i ≥ 1, the Identity 0.314 in [17] gives(

∞

∑
m=0

qm zm

)i

=
∞

∑
m=0

e(i)m zm ,

where e(i)0 = qi
0, and

e(i)m =
1

m q0

m

∑
l=1

[ (i + 1)l −m ] ql e(i)m−l , i ≥ 1,

Hence,

Iz(α, β)i =
ziα

B(α, β)i

∞

∑
m=0

e(i)m zm , |z| < 1 .

Letting z = z(x) = x/(1+x),

Iz(α, β)i =
1

B(α, β)i

∞

∑
m=0

e(i)m
xm+iα

(1 + x)m+iα , x > 0 . (11)

Furthermore, for i = 0, let e(0)0 = 1, and e(0)m = 0 for m ≥ 1. Inserting (11) in
Equation (10), and under the previous conditions, gives

f (x) =
∞

∑
i,m=0

Bi,m g(x; α?i,m, β) , (12)

where α?i,m(α) = (i + 1)α + m, and

Bi,m = Bi,m(a, b, α, β) =
Ai(a, b) e(i)m B(α?i,m, β)

B(α, β)i ,

which completes the proof.

Equation (12) confirms that the WBP density is a linear combination of BP densities,
which is useful for finding properties of X. In fact, this representation is important since
complete and incomplete moments, generating function, mean deviations, and reliability
are well-known results for the BP distribution.
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3.3. Moments

We obtain µ′s = E(Xs). For s < β, we can write from (12) and (3)

µ′s =
∞

∑
i,m=0

Bi,m
B(α?i,m + s, β− s)

B(α?i,m, β)
· (13)

The sth incomplete moment of X (for s < b) follows from (12) as

Js(w) =
∫ w

0
xs f (x)dx =

∫ w

0
xs

∞

∑
1,m=0

Bi,m g(x; α?i,m, β)dx

=
∞

∑
i,m=0

Bi,m
B(α?m,l + s, β− s)

B(α?m,l , β)
Iw/(1+w)(α

?
i,m + s, β− s) .

The mean deviations and inequality measures are calculated from the first incom-
plete moment.

4. Estimation and Simulations

Let x1, . . . , xn be a sample from (4). The log-likelihood function for τ = (a, b, α, β)> is

ln(τ) = n log
[

a b
B(α, β)

]
+ (α− 1)

n

∑
i=1

log xi − (α + β)
n

∑
i=1

log(1 + xi)

+ (b− 1)
n

∑
i=1

log Izi (α, β)− (b + 1)
n

∑
i=1

log[1− Izi (α, β)]

− a
n

∑
i=1

[
Izi (α, β)

1− Izi (α, β)

]b

. (14)

The maximum likelihood estimates (MLEs) can be found via the Adequacymodel li-
brary [18] in R software by choosing a maximization method among those available.

Simulation Study

The simulation comprises the generation of samples from the WBP model from
Equation (6) and maximizes (14) through the use of the BFGS algorithm in R for
n ∈ {50, 75, 100} from 10,000 replications under three scenarios: a = 0.75, b = 1.5, α = 2.5
and β = 2 (Scenario 1); a = 0.75, b = 1.2, α = 1 and β = 1.5 (Scenario 2); and a = 0.75,
b = 1.2, α = 2 and β = 2.5 (Scenario 3).

The findings in Table 1 reveal (for all scenarios) that the biases and mean squared errors
(MSEs) of the estimates decrease when n grows. Note that b̂ and α̂ are underestimating b
and α for all cases. All estimators improve when n increases.

Table 1. Simulation findings for the MLEs of the WBP distribution.

Scenario n Measures
Estimators

â b̂ α̂ β̂

Scenario 1

50

Average 0.87959 1.22248 2.33968 2.05307
Bias 0.12959 −0.27752 −0.16032 0.05307
MSE 0.05690 0.10848 0.06048 0.02369

75

Average 0.86856 1.22294 2.33987 2.04091
Bias 0.11856 −0.27706 −0.16013 0.04091
MSE 0.04698 0.10396 0.05023 0.01599

100

Average 0.86195 1.22530 2.34140 2.03094
Bias 0.11195 −0.27469 −0.15859 0.03094
MSE 0.04223 0.10096 0.04198 0.01082
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Table 1. Cont.

Scenario n Measures
Estimators

â b̂ α̂ β̂

Scenario 2

50

Average 0.87959 0.99547 0.93431 1.54015
Bias 0.12959 −0.20453 −0.06569 0.04015
MSE 0.05690 0.05554 0.02394 0.03631

75

Average 0.86856 0.99776 0.94906 1.53002
Bias 0.11856 −0.20224 −0.05094 0.03002
MSE 0.04698 0.04799 0.01850 0.03098

100

Average 0.86195 1.00016 0.96222 1.52613
Bias 0.11195 −0.19984 −0.03778 0.02613
MSE 0.04223 0.04374 0.01424 0.02899

Scenario 3

50

Average 0.87959 0.99547 1.84264 2.57223
Bias 0.12959 −0.20453 −0.15736 0.07223
MSE 0.05690 0.05554 0.05855 0.05216

75

Average 0.86856 0.99776 1.84443 2.56393
Bias 0.11856 −0.20224 −0.15557 0.06393
MSE 0.04698 0.04799 0.05382 0.04080

100

Average 0.86195 1.00016 1.84516 2.55868
Bias 0.11195 −0.19984 −0.15484 0.05868
MSE 0.04223 0.04374 0.05201 0.03498

5. WBP Regression Model

A WBP regression model is constructed for censored samples, quite common in areas
such as econometrics, engineering, and clinical trials. Generally, for censored samples,
it is common to consider the systematic component for the shape parameter α. Thus,
we consider the systematic component αi = exp(v>i λ), where v>i = (vi1, · · · , vip) is the
vector of covariates and λ = (λ1, · · · , λp)> is the vector of unknown parameters. Let
v = (v1, · · · , vp)>. Note that future research may be developed using more system-
atic components.

The survival function of Xi|vi is

S(x|vi) = exp

{
−a
[

Iz(αi, β)

1− Iz(αi, β)

]b
}

. (15)

Equation (15) defines the WPB regression model.
A special feature of survival data is the presence of censoring, which is the partial

observation of the response. This refers to circumstances in which some subjects are free
from the event of interest, for example, by being withdrawn early from the study or by the
end of the experiment. Then, it is important to add this information to statistical modeling.

Let (x1, v1), · · · , (xn, vn) be n independent observations, where xi denotes the ob-
served lifetime or censoring time of the ith observation. Assume that the lifetimes and
censoring times are independent, and their sets are F and C, respectively, i.e., the censoring is
non-informative. The log-likelihood function for the vector of parameters τ = (a, b, β, λ>)>

from model (15) is

l(τ) = r log(a b) + ∑
i∈F

(αi − 1) log(xi)−∑
i∈F

(αi + β) log(1 + xi)−∑
i∈F

log[B(αi, β)]

+(b− 1) ∑
i∈F

log[Izi (αi, β)]− (b + 1) ∑
i∈F

log[1− Izi (αi, β)]

−a ∑
i∈F

[
Izi (αi, β)

1− Izi (αi, β)

]b

− a ∑
i∈C

[
Izi (αi, β)

1− Izi (αi, β)

]b

, (16)
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where r is the number of failures. The estimate τ̂ is found by maximizing Equation (16).

5.1. Diagnostic and Residual Analysis

The assessment of robustness aspects of the estimates in regression models has been
an important concern of various researchers in recent decades. The deletion measures
examine the impact on the estimates after dropping individual observations, and they are
the most employed technique to detect influential observations; see, for example, Ref. [19].

A global influence measure considered by [20] is a generalization of the Cook distance
defined by a standardized norm θ̂(i) − θ̂, namely

GDi(θ) = (θ̂(i) − θ̂)>
[
L̈(θ)

]
(θ̂(i) − θ̂), (17)

where −L̈(θ) is the observed information matrix.
Another influence measure is the likelihood distance given by

LDi(θ) = 2
[
l(θ̂)− l(θ̂(i))

]
, (18)

where l(θ̂) is the maximized log-likelihood function for the full sample and l(θ̂(i)) is the
maximized log-likelihood function for the sample excluding the ith observation.

The quantile residuals (qrs) have the form

qri = Φ−1

1− exp

−â

[
Izi (α̂i, β̂)

1− Izi (α̂i, β)

]b̂

, (19)

where Φ−1(·) is the inverse of the standard normal cdf.
Various plots of these residuals can be adopted to assess the regression assumptions

and detect influential observations.

5.2. Simulation Study

A simulation study examines the accuracy of the MLEs in the WBP regression model
for n = 100, 250, and 500 and censoring percentages 0%, 10%, and 30%. Here, 1000 replicates
of each sample are generated using the inverse transformation method. The censoring times
c1, · · · , cn are obtained from a Uniform(0, γ), where γ controls the censoring percentage.
The systematic component for the parameter αi (for i = 1, . . . , n) is

log(αi) = λ0 + λ1v1i, (20)

where λ0 = 1, λ1 = 1.5, σ = 0.3, a = 1.1, and b = 0.6.
The simulation process follows as (for i = 1, . . . , n):
(i) Generate vi1 ∼ Uniform(0, 1), and calculate αi from (20);
(ii) The generated lifetimes x∗i are determined from the WBP(a, b, αi, β) model using

Equation (6);
(iii) Generate ci ∼ uniform(0, γ) and obtain xi = min(x∗i , ci);
(iv) Set the censoring indicator: if x∗i < ci, then δi = 1; otherwise, δi = 0.
The values in Table 2 reveal that the average estimates converge to the true parameters,

and the MSEs and biases decrease when n grows. Furthermore, the biases and MSEs of the
estimates become larger when the censoring percentage increases. Hence, we conclude that
the estimators are consistent.
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Table 2. Simulations from the WBP regression model.

n = 100 n = 250 n = 500

% τ Averages Biases MSEs Averages Biases MSEs Averages Biases MSEs

0%

λ0 1.3214 0.3214 0.6110 1.1415 0.1415 0.2501 1.0519 0.0519 0.1395
λ1 1.5157 0.0157 0.3445 1.4956 −0.0044 0.1245 1.5054 0.0054 0.0584
σ 0.4885 0.1885 0.1458 0.3724 0.0724 0.0383 0.3313 0.0313 0.0173
a 1.1365 0.0365 0.6262 1.0916 −0.0084 0.2320 1.0843 −0.0157 0.1364
b 0.5892 −0.0108 0.0593 0.6333 0.0333 0.0343 0.6564 0.0564 0.0251

10%

λ0 1.3284 0.3284 0.6531 1.1450 0.1450 0.2611 1.0533 0.0533 0.1464
λ1 1.5191 0.0191 0.3682 1.4960 −0.0040 0.1317 1.5055 0.0055 0.0604
σ 0.5021 0.2021 0.1647 0.3755 0.0755 0.0414 0.3340 0.0340 0.0190
a 1.1358 0.0358 0.6650 1.1093 0.0093 0.2959 1.0861 −0.0139 0.1462
b 0.5884 −0.0116 0.0636 0.6341 0.0341 0.0371 0.6567 0.0567 0.0266

30%

λ0 1.3866 0.3866 0.7464 1.1747 0.1747 0.2983 1.0727 0.0727 0.1707
λ1 1.5168 0.0168 0.3956 1.5005 0.0005 0.1372 1.5088 0.0088 0.0660
σ 0.5621 0.2621 0.2482 0.3955 0.0955 0.0546 0.3467 0.0467 0.0254
a 1.1062 0.0062 0.5549 1.1055 0.0055 0.3272 1.0832 −0.0168 0.1625
b 0.5737 −0.0263 0.0738 0.6238 0.0238 0.0400 0.6501 0.0501 0.0286

6. Applications

First, the fits of the WBP, BP, Beta Beta Prime (BBP), and Kumaraswamy Beta Prime
(KwBP) distributions are compared. The BBP and KwBP are special models of the McDon-
ald inverted beta (McIB) [13].

For all fitted models, we calculate the MLEs and their standard errors (SEs). The well-
known statistics (AIC, CAIC, BIC) defined by the initial letters are also calculated to
compare the WBP distribution with its nested BP model. The Cramer–Von Mises (W∗),
Anderson–Darling (A∗) and Kolmogorov–Smirnov (K-S) (and its p-value) statistics compare
the WPB model with other distributions using the AdequacyModel [18], MASS and GenSA
libraries of the R software. The maximization is performed using the SANN method.

6.1. Application 1: COVID-19 Data in the US

The first data set refers to 95 daily new deaths due to COVID-19 in the US (from
2 April 2021 to 31 July 2021) extracted from the link: https://www.worldometers.info/
coronavirus/country/us/. This data set is used since the US is currently the country
with the highest number of deaths from COVID-19. In the period, we find an average of
499.56 new deaths daily, and a standard deviation of 222.69, which can be explained by
the evident variation in the number of daily deaths. In fact, the minimum number of daily
deaths is 158 deaths, and the maximum is 985. In addition, we obtain skewness = 0.44 and
kurtosis = 2.06.

Table 3 reports the MLEs and their SEs (in parentheses). The statistics (and the p-values
of K-S) are reported in Table 4. The WBP distribution is better than the KwBP, BBP, and
BP models.

Table 3. Findings for COVID-19 data in US.

Distribution â b̂ α̂ β̂

WBP 1.2429 4.5036 33.4668 0.2694
(0.3271) (0.3768) (1.5× 10−5) (0.0115)

KwBP 25.7127 78.0954 8.8654 0.47724
(0.0551) (0.0266) (0.0549) (0.0056)

BBP 46.0854 32.1934 14.8327 0.2898
(0.0087) (0.0098) (0.8696) (0.0035)

BP - - 10.0000 0.2753
- - (2.1758) (0.0313)

The generalized likelihood ratio (GLR) test [21] assesses if there is any significant dif-
ference in the fits of the distributions. The WBP model outperforms the KwBP (GLR = 4.18)
and BBP (GLR = 4.99) distributions for a significance level of 5%.

https://www.worldometers.info/coronavirus/country/us/
https://www.worldometers.info/coronavirus/country/us/
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Table 4. Adequacy measures for COVID-19 data in US.

Distribution W∗ A∗ K-S p-Value AIC CAIC BIC

WBP 0.1061 0.7499 0.2517 1.2 × 10−5 1350.97 1351.41 1361.19
KwBP 0.1104 0.8457 0.3425 4.2× 10−10 1394.51 1394.96 1404.73
BBP 0.1142 0.8814 0.3504 1.5× 10−10 1424.63 1425.07 1434.84
BP 0.1166 0.9023 0.4934 < 2.2× 10−16 1595.83 1595.96 1600.94

Figure 5a displays the histogram and the estimated WBP, KwBP, and BBP densi-
ties. Figure 5b reports the empirical and estimated cumulative distributions. The WBP
distribution yields the best fit for a significance level of 5%.
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Figure 5. (a) Best estimated densities for COVID-19 data in US; (b) empirical and estimated cumula-
tive distributions.

6.2. Application 2: COVID-19 Data in Florianópolis, Brazil

According to the Votorantim Institute’s COVID-19 Municipal Vulnerability Index
(MVI), Florianópolis is the least vulnerable capital to COVID-19 in Brazil [22]. In this context,
the second application refers to 116 times (in days) of COVID-19 patients from the date of
hospitalization until death in the city of Florianópolis registered from January to March,
2022 in the Ministry of Health platform at https://dados.gov.br/dataset/bd-srag-2021
(accessed on 26 May 2022). The average number of days from hospitalization to death
is approximately 9.71 for patients in the analyzed period. The standard deviation is 7.67,
which can be explained by the variation in these times. In fact, the minimum time from
hospitalization to death is just only one day and the maximum 29 days. Furthermore,
the skewness is 0.81 and the kurtosis 2.75.

The MLEs, SEs, and the previous statistics (with the p-values of K-S) for the fitted
distributions to these data are reported in Tables 5 and 6. The numbers in the second table
support that the WBP distribution is the best model.

Table 5. Findings for COVID-19 data in Florianópolis.

Distribution â b̂ α̂ β̂

WBP 0.3543 0.1876 38.2987 10.0908
(0.0550) (0.0161) (0.3971) (0.4519)

KwBP 2.2611 0.0648 10.3668 13.5489
(0.0004) (0.0060) (0.0002) (0.0001)

BBP 0.0619 38.7466 88.5759 0.5290
(0.0058) (0.0009) (0.0006) (0.0110)

BP - - 2.1732 0.7719
- - (0.2970) (0.0881)

https://dados.gov.br/dataset/bd-srag-2021
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Table 6. Adequacy measures for COVID-19 data in Florianópolis.

Distribution W∗ A∗ K-S p-Value AIC CAIC BIC

WBP 0.4177 2.9113 0.2102 7.1 × 10−5 800.02 800.38 811.03
KwBP 0.5118 3.4879 0.3246 4.9× 10−11 833.40 833.76 844.42
BBP 0.5653 3.8228 0.2874 9.5× 10−9 824.16 824.53 835.18
BP 0.5025 3.4383 0.2409 2.9× 10−6 827.23 827.34 832.74

The Vuong test [21] indicates that the new distribution is more adequate than the KwBP
(GLR = 8.08) and BBP (GLR = 5.77) distributions for a 5% level of significance. A comparison
of the WBP distribution with its BP sub-model gives LR = 31.21 (p-value = 1.668×10−7).
Thus, the WBP distribution is the best one to describe the current data.

The histogram of the data and some estimated densities are reported in Figure 6a.
Figure 6b displays the empirical and estimated cumulative distributions. They show that
the WBP is the best model for these data.
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Figure 6. (a) Best estimated densities for COVID-19 data in Florianópolis; (b) empirical and corre-
sponding estimated cumulative distributions.

6.3. Application 3: COVID-19 Data in Campinas, Brazil

Some regression models are fitted to 655 survival times of coronavirus patients hos-
pitalized (on April 2021) in the city of Campinas (state of São Paulo) obtained from
https://opendatasus.saude.gov.br/en/dataset/srag-2021-e-2022 (accessed on 1 Septem-
ber 2022). This city has the third largest municipal population in this State, around
1,213,792 people in 2020 according to the Brazilian Institute of Geography and Statistics
(IBGE) [23], thus justifying its choice for the application. The censoring percentage (67.8%)
refers to deaths from other causes or end of observation time. The survival time is the
period of time (in days) from the first symptom to the death from COVID-19.

The covariates are (for i = 1, . . . , 655):

• xi: observed time (in days);
• censi: censoring indicator (0 = censoring, 1 = observed lifetime);
• vi1 : age (in years);
• vi2: Chronic cardiovascular pathology (1=yes, 0=no or not informed).

Other studies have analyzed the influence of covariates on the time to death from
COVID-19. Ref. [24] analyzed coronavirus data in Curitiba, (Brazil) and verified the
influence of the sex and age on the times (in days) elapsed from the date of hospitalization
to the death. Ref. [25] investigated risk factors associated with these deaths in the Mexican
population using survival analysis and concluded that the risk of death was higher for
men, older individuals, chronic kidney disease patients, and people admitted to public
health services.

First, the analysis is done by modeling only the response variable by fitting the WBP,
KwBP, BBP, and BP distributions. The results of these preliminary analyses are reported in
Figure 7, where the WBP distribution is better than the others.

https://opendatasus.saude.gov.br/en/dataset/srag-2021-e-2022
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Figure 7. Empirical and estimated survival functions for COVID-19 data in Campinas.

Next, we consider the following systematic components:

M0 : log(αi) = λ0,

M1 : log(αi) = λ0 + λ1v1i,

M2 : log(αi) = λ0 + λ2v2i,

M3 : log(αi) = λ0 + λ1v1i + λ2v2i.

Table 7 gives the selection criteria values, and the WBP regression model has the
lowest values for all systematic components. Note that this model with the structureM3 is
superior to the other models.

Table 7. Adequacy measures from regression models for COVID-19 data in Campinas.

Model AIC BIC CAIC Model AIC BIC CAIC

M1

WBP 2093.696 2111.635 2115.635

M3

WBP 2071.653 2094.076 2099.076
BBP 2160.907 2178.845 2182.845 BBP 2140.201 2162.624 2167.624

KwBP 2111.858 2129.796 2133.796 KwBP 2090.371 2112.794 2117.794
BP 2148.946 2157.915 2159.915 BP 2127.432 2140.885 2143.885

M1

WBP 2046.338 2068.762 2073.762

M3

WBP 2041.642 2068.550 2074.550
BBP 2128.641 2151.064 2156.064 BBP 2122.585 2149.493 2155.493

KwBP 2071.496 2093.919 2098.919 KwBP 2065.202 2092.110 2098.110
BP 2115.254 2128.708 2131.708 BP 2109.588 2127.527 2131.527

The WBP, BBP, KwBP, and BP regression models with the structureM3 are evaluated
using the quantile–quantile (QQ) and Worm plots of the qs in Figures 8 and 9, respectively.
The WBP regression model-M3 is better than the others in agreement with the results in
Table 7.
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Figure 8. QQ plots of the qrs for COVID-19 data in Campinas from the regression models: (a) WBP;
(b) BBP; (c) KwBP; (d) BP.
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Figure 9. Worm plots of the qrs for COVID-19 data in Campinas from the regression models: (a) WBP;
(b) BBP; (c) KwBP; (d) BP.

The findings in the final WBP regression model-M3 are given in Table 8, where two
covariables are significant.

Table 8. Estimation results from the WBP regression model for COVID-19 data in Campinas.

MLEs SEs p-Values

λ0 0.2154 0.0497 <0.001
λ1 −0.0099 0.0010 <0.001
λ2 −0.1257 0.0338 <0.001

log(β) −1.5956 0.0066 <0.001
log(a) −2.1310 0.0485 <0.001
log(b) 1.6418 0.0272 <0.001

Figure 10 displays the index plots of the case deletion measures GDi(θ) and LDi(θ).
From Figure 10a, the 323th, 409th, and 584th cases are possible influential observations
referring to the following patients:

• 323th: A 42-year-old patient with failure time equal to one day who does not have
cardiovascular disease;

• 409th: A 64-year-old patient with a failure time of one day who has cardiovascular disease;
• 584th: A 57-year-old patient with a failure time of one day who has cardiovascular disease.

Added Figure 10.
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Figure 10. Index plots for: (a) GDi(θ) and (b) LDi(θ).

We examine the quality of fit of the WBP regression model—M3. The qrs are randomly
around zero as shown in Figure 11a. The QQ plot of these residuals with a simulated
envelope [26] is displayed in Figure 11b. We can accept that there is evidence of a good fit
of the WBP regression model.
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Figure 11. Plots of the qrs for COVID-19 data in Campinas. (a) Index plot; (b) QQ plot with envelope.

Some interpretations of the final WBP regression model:

• The survival time tends to decrease when the patient gets older;
• There is a difference for the survival times between patients with chronic cardiovascu-

lar disease and those that do not present this condition.

7. Conclusions

We proposed a four-parameter Weibull beta prime (WBP) distribution. The estimation
was conducted by the maximum likelihood method, and a simulation study showed the
consistency of the estimators. We constructed a WBP regression model for censored data
and proved the importance of the new models using three COVID-19 data sets. They were
compared with some known competing models, and they were more suitable to fit all
data sets. The regression model with censored data from COVID-19 patients showed that
advanced age and cardiovascular disease are significant factors for the survival time. We
concluded that the proposed models can be interesting alternatives for symmetric and
asymmetric data, with bimodal shapes, censored or uncensored. Finally, future extensions
of the article include, for example, other systematic components, thus defining heteroscedas-
tic regression models based on the WBP distribution. In addition, generalizations of the
new regression model for multivariate configurations and linear mixed effects models can
be investigated.
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