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Abstract

:

Motivated by the recent popularization of the beta prime distribution, a more flexible generalization is presented to fit symmetrical or asymmetrical and bimodal data, and a non-monotonic failure rate. Thus, the Weibull-beta prime distribution is defined, and some of its structural properties are obtained. The parameters are estimated by maximum likelihood, and a new regression model is proposed. Some simulations reveal that the estimators are consistent, and applications to censored COVID-19 data show the adequacy of the models.
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1. Introduction


The beta prime (BP) distribution has become popular for analyzing lifetime and monotonic failure rate phenomena. For modeling monotonic failure rates, the Weibull, log-logistic, and log-normal distributions can also be good choices, but they do not model bathtub-shaped, unimodal, and bimodal failure rates that are common in survival analysis. Because of this, several models have been proposed in recent years.



In this context, the Weibull-G (W-G) family [1] proved itself to be a good competitor to the Beta-G (B-G) [2] and Kumaraswamy-G (Kw-G) [3] classes. In this family,   a > 0   and   b > 0   are two additional parameters to those of the G distribution as well as for the B-G and Kw-G classes. It is emphasized that the cumulative distribution function (cdf) of the beta distribution involves the incomplete beta function, whereas the Kumaraswamy cdf has a closed-form. In addition, the W-G family can be better explored and disseminated as the B-G and Kw-G classes have been highly cited in Google Scholar.



Recently, Ref. [4] defined a new extension of the W-G family, also a competitor of the B-G and Kw-G classes. Ref. [5] proposed a bivariate W-G family. The estimation of the parameters of the Weibull Generalized Exponential distribution based on the adaptive progressive type II (APTII) censored sample was explored by [6].



Ref. [7] addressed the estimation of the BP distribution and discussed some properties. A generalized BP model defined by [8,9,10] introduced regression models based on the BP distribution. Other recent works studied this distribution [11,12]. Through the McDonald’s inverted beta (McIB) distribution [13], we can obtain other generalizations of the BP distribution, for example, the Kumaraswamy Beta Prime and Beta Beta Prime models.



In this context, our main objective is to introduce the Weibull-beta prime (WBP) distribution. We illustrate the applicability of the new distribution to three real COVID-19 data sets. Currently, the USA has the highest number of COVID-19 cases worldwide. Brazil is the second country with most deaths (688,316 total deaths) [14], and several factors demand analysis of this number, including the continental dimension of the country, the proportion of elderly people, greater social vulnerability, and also the high rate of chronic diseases. In this way, we first verify the flexibility of the new distribution through graphical analyses and statistical tests using data on the number of new daily deaths due to COVID-19 in the US. Second, we provide an application to the times to death by this coronavirus in a Brazilian capital. In addition, a third application for regression modeling is done, in which we investigate the influence of covariates on the time to death from COVID-19 in the city of Campinas, Brazil. For these studies, we aim to contribute to the literature of new distributions and survival analysis, as well as direct efforts to estimate the impact caused by the disease.



The BP random variable W has cumulative distribution function (cdf)


  G  ( x ; α , β )  =  I z   ( α , β )   ,  x ≥ 0  ,  



(1)




where   z = z ( x ) = x / ( 1 + x )  ,   α > 0   and   β > 0   are shape parameters,    I z   ( α , β )  = B   ( α , β )   − 1    ∫ 0 z   t  α − 1     ( 1 − t )   β − 1   d t   and   B  ( α , β )  =  ∫ 0 1   t  α − 1     ( 1 − t )   β − 1   d t   (for   z ∈ [ 0 , 1 ]  ) are the incomplete beta and beta functions, respectively.



The probability density function (pdf) of W has the form


  g  ( x ; α , β )  =    x  α − 1     ( 1 + x )   − α − β     B ( α , β )    ,  x ≥ 0  ,  



(2)




whose sth ordinary moment (for   s < β  ) becomes


     E  (  W s  )  =   B ( α + s , β − s )   B ( α , β )    ·     



(3)







Some other properties of W were tackled by [7]. The arguments in the functions are omitted from now on.



This article is organized as follows. Section 2 defines the Weibull-beta prime (WBP) model with four positive parameters. Section 3 provides some of its properties. Section 4 addresses the estimation and a simulation study. Section 5 develops a WBP regression model. Applications to three COVID-19 data sets in Section 6 confirm the potentiality of the new models. Some conclusions are found in Section 7.




2. WBP Distribution


By substituting (1) and (2) in the W-G family [1], the WBP pdf follows as (for   x ≥ 0  )


     f  ( x )  =    a  b   x  α − 1      ( 1 + x )   − α − β     I z    ( α , β )   b − 1     B  ( α , β )    1 −  I z   ( α , β )    b + 1       exp  − a      I z   ( α , β )    1 −  I z   ( α , β )     b   ,     



(4)




and the corresponding hazard rate function (hrf) becomes


     h  ( x )  =   a b   x  α − 1     ( 1 + x )   − α − β     I z    ( α , β )   b − 1     B  ( α , β )     1 −  I z   ( α , β )    b + 1      ·     



(5)







Henceforth, let   X ∼  W B P  ( a , b , α , β )   have pdf (4). Figure 1 and Figure 2 report plots of the pdf and hrf of X, respectively. Figure 1a shows that the WBP distribution can model data with bimodality. The hrf in Figure 2 can have four main shapes.



The main motivation to introduce the WBP distribution is due to the wide use of the BP distribution and the fact that the current generalization provides better fits to complex real data.




3. Properties


3.1. Quantile Function


By inverting the W-G family cdf, the quantile function (qf) of X reduces to


     x = Q  ( u )  =  F  − 1    ( u )  =  G  − 1       log  −  a  − 1    ( 1 − u )     1  /  b    1 +   log  −  a  − 1    ( 1 − u )     1  /  b       ,     



(6)







   G  − 1    ( u )    follows by inverting (1)


      G  − 1    ( u )  = =    I u  − 1    ( α , β )    1 −  I u  − 1    ( α , β )     ,     








where    I u  − 1    ( α , β )    is the inverse incomplete beta function, which can be calculated from InverseBetaRegularized[u,a,b] (in MATHEMATICA) as


         I u  − 1    ( α , β )  ≈ u +   β − 1   α + 1    u 2  +    ( β − 1 )   (  α 2  + 3 β α − α + 5 β − 4 )    2   ( α + 1 )  2   ( α + 2 )     u 3  + ⋯     











Plots of the Bowley skewness (B) [15] and Moors kurtosis (M) [16] of X based on octiles are given below.



For any fixed value of b, Figure 3a shows that the skewness decays when parameter a increases, showing more pronounced curvature for   b = 3.5  . For   a = 0.09   and   a = 0.1  , Figure 3b shows that the skewness starts constantly when b grows and then decays. For   a = 0.2   and   a = 0.4  , it decreases almost instantly.



The behavior of the kurtosis is analogous as shown in Figure 4a,b. In Figure 4a, for any fixed value of b, the kurtosis decreases and then asymptotically approaches a constant when a increases. For   b = 0.5  , this behavior is slower. In Figure 4b, the kurtosis decreases and becomes asymptotically constant when b grows. For   a = 0.2   and   a = 0.4  , this behavior happens quickly.




3.2. Linear Representation


Proposition 1.

The WBP pdf (4) has the linear representation


      f  ( x )  =  ∑  i , m = 0  ∞   B  i , m    g  ( x ;  α  i , m  ⋆  , β )   ,      



(7)




where   B  i , m   ’s are real numbers and    α  i , m  ⋆   ( α )  =  ( i + 1 )  α + m  .





Proof of Proposition 1.

The density of X (except for typos) was determined by [1]


     f  ( x )  =  ∑  j , k = 0  ∞   ω  j , k     h  ( k + 1 ) b + j    ( x )   ,     



(8)




where    h p   ( x )  = p  g  ( x )   G   ( x )   p − 1     (for   p > 0  ) and


      ω  j , k   =  ω  j , k    ( a , b )  =     ( − 1 )   j + k    b   a  k + 1     [ ( k + 1 ) b + j ]  k !       − [ ( k + 1 ) b + 1 ]  j    .     











In particular, for the BP baseline, we can expand


      I z    ( α , β )   ( k + 1 ) b + j − 1   =  ∑  i = 0  ∞   s  i , j , k     I z    ( α , β )  i   ,     



(9)




where    s  i , j , k   =  s  i , j , k    ( b )  =  ∑  l = i  ∞    ( − 1 )   i + l       ( k + 1 ) b + j − 1  l      l i    , and then from (8)


     f  ( x )  =  ∑  i = 0  ∞   A i    x  α − 1      ( 1 + x )   − α − β     I z    ( α , β )  i   ,     



(10)




where    A i  =  A i   ( a , b )  = B   ( α , β )   − 1     ∑  j , k = 0  ∞   [  ( k + 1 )  b + j ]    ω  j , k     s  i , j , k    .



The power series holds


      I z   ( α , β )  =   z α   B ( α , β )     ∑  m = 0  ∞   q m    z m   ,   | z |  < 1  ,     








where    q m  =  q m   ( α , β )  =    ( 1 − β )  m   /   m ! ( α + m )    and     ( p )  m  = p  ( p − 1 )  …  ( p − m + 1 )    is the falling factorial. For a natural number   i ≥ 1  , the Identity 0.314 in [17] gives


     ∑  m = 0  ∞   q m    z m   i  =  ∑  m = 0  ∞   e  m   ( i )     z m   ,  








where    e  0   ( i )   =  q 0 i   , and 


   e  m   ( i )   =  1  m   q 0     ∑  l = 1  m   [   ( i + 1 )  l − m  ]    q l    e  m − l   ( i )   , i ≥ 1 ,  











Hence,


      I z    ( α , β )  i  =   z  i α    B   ( α , β )  i     ∑  m = 0  ∞   e m  ( i )     z m   ,   | z |  < 1  .     











Letting   z = z ( x ) =  x  /   ( 1 + x )   ,


      I z    ( α , β )  i  =  1  B   ( α , β )  i      ∑  m = 0  ∞   e m  ( i )      x  m + i α     ( 1 + x )   m + i α     ,  x > 0  .     



(11)







Furthermore, for   i = 0  , let    e 0  ( 0 )   = 1  , and    e m  ( 0 )   = 0   for   m ≥ 1  . Inserting (11) in Equation (10), and under the previous conditions, gives


     f ( x )     =  ∑  i , m = 0  ∞   B  i , m    g  ( x ;  α  i , m  ⋆  , β )   ,     



(12)




where    α  i , m  ⋆   ( α )  =  ( i + 1 )  α + m  , and 


   B  i , m   =  B  i , m    ( a , b , α , β )  =    A i   ( a , b )    e m  ( i )    B  (  α  i , m  ⋆  , β )    B   ( α , β )  i     ,  








which completes the proof.    ☐





Equation (12) confirms that the WBP density is a linear combination of BP densities, which is useful for finding properties of X. In fact, this representation is important since complete and incomplete moments, generating function, mean deviations, and reliability are well-known results for the BP distribution.




3.3. Moments


We obtain    μ s ′  = E  (  X s  )   . For   s < β  , we can write from (12) and (3)


   μ s ′  =  ∑  i , m = 0  ∞   B  i , m      B (  α  i , m  ⋆  + s , β − s )   B (  α  i , m  ⋆  , β )    ·  



(13)







The sth incomplete moment of X (for   s < b  ) follows from (12) as


      J s   ( w )      =  ∫  0  w    x s   f  ( x )   d x =  ∫  0  w   x s   ∑  1 , m = 0  ∞   B  i , m    g  ( x ;  α  i , m  ⋆  , β )   d x          =  ∑  i , m = 0  ∞    B  i , m      B (  α  m , l  ⋆  + s , β − s )   B (  α  m , l  ⋆  , β )     I   w  /   ( 1 + w )     (  α  i , m  ⋆  + s , β − s )   .     











The mean deviations and inequality measures are calculated from the first incomplete moment.





4. Estimation and Simulations


Let    x 1  , … ,  x n    be a sample from (4). The log-likelihood function for   τ =   ( a , b , α , β )  ⊤    is


      l n   ( τ )  =       n  log    a  b   B ( α , β )    +  ( α − 1 )   ∑  i = 1  n  log  x i  −  ( α + β )   ∑  i = 1  n  log  ( 1 +  x i  )           +  ( b − 1 )   ∑  i = 1  n  log  I  z i    ( α , β )  −  ( b + 1 )   ∑  i = 1  n  log  [ 1 −  I  z i    ( α , β )  ]           − a  ∑  i = 1  n       I  z i    ( α , β )    1 −  I  z i    ( α , β )     b   .     



(14)







The maximum likelihood estimates (MLEs) can be found via the Adequacymodel library [18] in R software by choosing a maximization method among those available.



Simulation Study


The simulation comprises the generation of samples from the WBP model from Equation (6) and maximizes (14) through the use of the BFGS algorithm in R for   n ∈ { 50 , 75 , 100 }   from 10,000 replications under three scenarios:   a = 0.75  ,   b = 1.5  ,   α = 2.5   and   β = 2   (Scenario 1);   a = 0.75  ,   b = 1.2  ,   α = 1   and   β = 1.5   (Scenario 2); and   a = 0.75  ,   b = 1.2  ,   α = 2   and   β = 2.5   (Scenario 3).



The findings in Table 1 reveal (for all scenarios) that the biases and mean squared errors (MSEs) of the estimates decrease when n grows. Note that   b ^   and   α ^   are underestimating b and  α  for all cases. All estimators improve when n increases.





5. WBP Regression Model


A WBP regression model is constructed for censored samples, quite common in areas such as econometrics, engineering, and clinical trials. Generally, for censored samples, it is common to consider the systematic component for the shape parameter  α . Thus, we consider the systematic component    α i  = exp  (  v  i  ⊤  λ )   , where    v  i  ⊤  =  (  v  i 1   , ⋯ ,  v  i p   )    is the vector of covariates and   λ =   (  λ 1  , ⋯ ,  λ p  )  ⊤    is the vector of unknown parameters. Let   v =   (  v 1  , ⋯ ,  v p  )  ⊤   . Note that future research may be developed using more systematic components.



The survival function of    X i   |   v i    is


     S  ( x |  v i  )  = exp  − a      I z   (  α i  , β )    1 −  I z   (  α i  , β )     b   .     



(15)







Equation (15) defines the WPB regression model.



A special feature of survival data is the presence of censoring, which is the partial observation of the response. This refers to circumstances in which some subjects are free from the event of interest, for example, by being withdrawn early from the study or by the end of the experiment. Then, it is important to add this information to statistical modeling.



Let    (  x 1  ,  v 1  )  , ⋯ ,  (  x n  ,  v n  )    be n independent observations, where   x i   denotes the observed lifetime or censoring time of the ith observation. Assume that the lifetimes and censoring times are independent, and their sets are F and C, respectively, i.e., the censoring is non-informative. The log-likelihood function for the vector of parameters   τ =   ( a , b , β ,   λ  ⊤  )  ⊤    from model (15) is


     l ( τ )    =    r log  ( a  b )  +  ∑  i ∈ F    (  α i  − 1 )  log  (  x i  )  −  ∑  i ∈ F    (  α i  + β )  log  ( 1 +  x i  )  −  ∑  i ∈ F   log  [ B  (  α i  , β )  ]          +  ( b − 1 )   ∑  i ∈ F   log  [  I  z i    (  α i  , β )  ]  −  ( b + 1 )   ∑  i ∈ F   log  [ 1 −  I  z i    (  α i  , β )  ]          − a  ∑  i ∈ F        I  z i    (  α i  , β )    1 −  I  z i    (  α i  , β )     b  − a  ∑  i ∈ C        I  z i    (  α i  , β )    1 −  I  z i    (  α i  , β )     b  ,     



(16)




where r is the number of failures. The estimate   τ ^   is found by maximizing Equation (16).



5.1. Diagnostic and Residual Analysis


The assessment of robustness aspects of the estimates in regression models has been an important concern of various researchers in recent decades. The deletion measures examine the impact on the estimates after dropping individual observations, and they are the most employed technique to detect influential observations; see, for example, Ref. [19].



A global influence measure considered by [20] is a generalization of the Cook distance defined by a standardized norm     θ ^   ( i )   −  θ ^   , namely


     G  D i   ( θ )  =   (   θ ^   ( i )   −  θ ^  )  ⊤     L ¨   ( θ )    (   θ ^   ( i )   −  θ ^  )  ,     



(17)




where   −  L ¨   ( θ )    is the observed information matrix.



Another influence measure is the likelihood distance given by


     L  D i   ( θ )  = 2  l  (  θ ^  )  − l  (   θ ^   ( i )   )   ,     



(18)




where   l (  θ ^  )   is the maximized log-likelihood function for the full sample and   l (   θ ^   ( i )   )   is the maximized log-likelihood function for the sample excluding the ith observation.



The quantile residuals (qrs) have the form


     q  r i  =  Φ  − 1    1 − exp  −  a ^       I  z i    (   α ^  i  ,  β ^  )    1 −  I  z i    (   α ^  i  , β )      b ^     ,     



(19)




where    Φ  − 1    ( · )    is the inverse of the standard normal cdf.



Various plots of these residuals can be adopted to assess the regression assumptions and detect influential observations.




5.2. Simulation Study


A simulation study examines the accuracy of the MLEs in the WBP regression model for   n = 100  , 250, and 500 and censoring percentages 0%, 10%, and 30%. Here, 1000 replicates of each sample are generated using the inverse transformation method. The censoring times    c 1  , ⋯ ,  c n    are obtained from a   Uniform ( 0 , γ )  , where  γ  controls the censoring percentage. The systematic component for the parameter   α i   (for   i = 1 , … , n  ) is


  log  (  α i  )  =  λ 0  +  λ 1   v  1 i   ,  



(20)




where    λ 0  = 1  ,    λ 1  = 1.5  ,   σ = 0.3  ,   a = 1.1  , and   b = 0.6  .



The simulation process follows as (for   i = 1 , … , n  ):



(i) Generate    v  i 1   ∼ Uniform  ( 0 , 1 )   , and calculate   α i   from (20);



(ii) The generated lifetimes   x  i  *   are determined from the WBP(  a , b ,  α i  , β  ) model using Equation (6);



(iii) Generate    c i  ∼ uniform  ( 0 , γ )    and obtain    x i  = min  (  x  i  *  ,  c i  )   ;



(iv) Set the censoring indicator: if    x  i  *  <  c i   , then    δ i  = 1  ; otherwise,    δ i  = 0  .



The values in Table 2 reveal that the average estimates converge to the true parameters, and the MSEs and biases decrease when n grows. Furthermore, the biases and MSEs of the estimates become larger when the censoring percentage increases. Hence, we conclude that the estimators are consistent.





6. Applications


First, the fits of the WBP, BP, Beta Beta Prime (BBP), and Kumaraswamy Beta Prime (KwBP) distributions are compared. The BBP and KwBP are special models of the McDonald inverted beta (McIB) [13].



For all fitted models, we calculate the MLEs and their standard errors (SEs). The well-known statistics (AIC, CAIC, BIC) defined by the initial letters are also calculated to compare the WBP distribution with its nested BP model. The Cramer–Von Mises (  W *  ), Anderson–Darling (  A *  ) and Kolmogorov–Smirnov (K-S) (and its p-value) statistics compare the WPB model with other distributions using the AdequacyModel [18], MASS and GenSA libraries of the R software. The maximization is performed using the SANN method.



6.1. Application 1: COVID-19 Data in the US


The first data set refers to 95 daily new deaths due to COVID-19 in the US (from 2 April 2021 to 31 July 2021) extracted from the link: https://www.worldometers.info/coronavirus/country/us/. This data set is used since the US is currently the country with the highest number of deaths from COVID-19. In the period, we find an average of 499.56 new deaths daily, and a standard deviation of 222.69, which can be explained by the evident variation in the number of daily deaths. In fact, the minimum number of daily deaths is 158 deaths, and the maximum is 985. In addition, we obtain skewness = 0.44 and kurtosis = 2.06.



Table 3 reports the MLEs and their SEs (in parentheses). The statistics (and the p-values of K-S) are reported in Table 4. The WBP distribution is better than the KwBP, BBP, and BP models.



The generalized likelihood ratio (GLR) test [21] assesses if there is any significant difference in the fits of the distributions. The WBP model outperforms the KwBP (GLR = 4.18) and BBP (GLR = 4.99) distributions for a significance level of 5%.



Figure 5a displays the histogram and the estimated WBP, KwBP, and BBP densities. Figure 5b reports the empirical and estimated cumulative distributions. The WBP distribution yields the best fit for a significance level of 5%.




6.2. Application 2: COVID-19 Data in Florianópolis, Brazil


According to the Votorantim Institute’s COVID-19 Municipal Vulnerability Index (MVI), Florianópolis is the least vulnerable capital to COVID-19 in Brazil [22]. In this context, the second application refers to 116 times (in days) of COVID-19 patients from the date of hospitalization until death in the city of Florianópolis registered from January to March, 2022 in the Ministry of Health platform at https://dados.gov.br/dataset/bd-srag-2021 (accessed on 26 May 2022). The average number of days from hospitalization to death is approximately 9.71 for patients in the analyzed period. The standard deviation is 7.67, which can be explained by the variation in these times. In fact, the minimum time from hospitalization to death is just only one day and the maximum 29 days. Furthermore, the skewness is 0.81 and the kurtosis 2.75.



The MLEs, SEs, and the previous statistics (with the p-values of K-S) for the fitted distributions to these data are reported in Table 5 and Table 6. The numbers in the second table support that the WBP distribution is the best model.



The Vuong test [21] indicates that the new distribution is more adequate than the KwBP (GLR = 8.08) and BBP (GLR = 5.77) distributions for a 5% level of significance. A comparison of the WBP distribution with its BP sub-model gives LR = 31.21 (p-value = 1.668  ×  10  − 7    ). Thus, the WBP distribution is the best one to describe the current data.



The histogram of the data and some estimated densities are reported in Figure 6a. Figure 6b displays the empirical and estimated cumulative distributions. They show that the WBP is the best model for these data.




6.3. Application 3: COVID-19 Data in Campinas, Brazil


Some regression models are fitted to 655 survival times of coronavirus patients hospitalized (on April 2021) in the city of Campinas (state of São Paulo) obtained from https://opendatasus.saude.gov.br/en/dataset/srag-2021-e-2022 (accessed on 1 September 2022). This city has the third largest municipal population in this State, around 1,213,792 people in 2020 according to the Brazilian Institute of Geography and Statistics (IBGE) [23], thus justifying its choice for the application. The censoring percentage (67.8%) refers to deaths from other causes or end of observation time. The survival time is the period of time (in days) from the first symptom to the death from COVID-19.



The covariates are (for   i = 1 , … , 655  ):




	
  x i  : observed time (in days);



	
  c e n  s i   : censoring indicator (0 = censoring, 1 = observed lifetime);



	
  v  i 1   : age (in years);



	
  v  i 2   : Chronic cardiovascular pathology (1=yes, 0=no or not informed).








Other studies have analyzed the influence of covariates on the time to death from COVID-19. Ref. [24] analyzed coronavirus data in Curitiba, (Brazil) and verified the influence of the sex and age on the times (in days) elapsed from the date of hospitalization to the death. Ref. [25] investigated risk factors associated with these deaths in the Mexican population using survival analysis and concluded that the risk of death was higher for men, older individuals, chronic kidney disease patients, and people admitted to public health services.



First, the analysis is done by modeling only the response variable by fitting the WBP, KwBP, BBP, and BP distributions. The results of these preliminary analyses are reported in Figure 7, where the WBP distribution is better than the others.



Next, we consider the following systematic components:


   M 0  : log  (  α i  )  =  λ 0  ,  










   M 1  : log  (  α i  )  =  λ 0  +  λ 1   v  1 i   ,  










   M 2  : log  (  α i  )  =  λ 0  +  λ 2   v  2 i   ,  










   M 3  : log  (  α i  )  =  λ 0  +  λ 1   v  1 i   +  λ 2   v  2 i   .  











Table 7 gives the selection criteria values, and the WBP regression model has the lowest values for all systematic components. Note that this model with the structure   M 3   is superior to the other models.



The WBP, BBP, KwBP, and BP regression models with the structure   M 3   are evaluated using the quantile–quantile (QQ) and Worm plots of the qs in Figure 8 and Figure 9, respectively. The WBP regression model-  M 3   is better than the others in agreement with the results in Table 7.



The findings in the final WBP regression model-   M 3   are given in Table 8, where two covariables are significant.



Figure 10 displays the index plots of the case deletion measures   G  D i   ( θ )    and   L  D i   ( θ )   . From Figure 10a, the 323th, 409th, and 584th cases are possible influential observations referring to the following patients:




	
323th: A 42-year-old patient with failure time equal to one day who does not have cardiovascular disease;



	
409th: A 64-year-old patient with a failure time of one day who has cardiovascular disease;



	
584th: A 57-year-old patient with a failure time of one day who has cardiovascular disease.








Added Figure 10.



We examine the quality of fit of the WBP regression model—  M 3  . The qrs are randomly around zero as shown in Figure 11a. The QQ plot of these residuals with a simulated envelope [26] is displayed in Figure 11b. We can accept that there is evidence of a good fit of the WBP regression model.



Some interpretations of the final WBP regression model:




	
The survival time tends to decrease when the patient gets older;



	
There is a difference for the survival times between patients with chronic cardiovascular disease and those that do not present this condition.










7. Conclusions


We proposed a four-parameter Weibull beta prime (WBP) distribution. The estimation was conducted by the maximum likelihood method, and a simulation study showed the consistency of the estimators. We constructed a WBP regression model for censored data and proved the importance of the new models using three COVID-19 data sets. They were compared with some known competing models, and they were more suitable to fit all data sets. The regression model with censored data from COVID-19 patients showed that advanced age and cardiovascular disease are significant factors for the survival time. We concluded that the proposed models can be interesting alternatives for symmetric and asymmetric data, with bimodal shapes, censored or uncensored. Finally, future extensions of the article include, for example, other systematic components, thus defining heteroscedastic regression models based on the WBP distribution. In addition, generalizations of the new regression model for multivariate configurations and linear mixed effects models can be investigated.
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Figure 1. Density functions: (a) WBP(  a , b , α , β  ) and (b) WBP(  a , b , 5 , 2.5  ). 
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Figure 2. Hazard rates: (a) WBP(  a , b , 5.5 , 3  ) and (b) WBP(  a , b , 2 , 4  ). 
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Figure 3. Plots of B for the WBP(  a , b , 2.5 , 3  ) distribution: (a) for b fixed and (b) for a fixed. 
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Figure 4. Plots of M for the WBP(  a , b , 2.5 , 3  ) distribution: (a) for b fixed and (b) for a fixed. 
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Figure 5. (a) Best estimated densities for COVID-19 data in US; (b) empirical and estimated cumulative distributions. 
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Figure 6. (a) Best estimated densities for COVID-19 data in Florianópolis; (b) empirical and corresponding estimated cumulative distributions. 
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Figure 7. Empirical and estimated survival functions for COVID-19 data in Campinas. 
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Figure 8. QQ plots of the qrs for COVID-19 data in Campinas from the regression models: (a) WBP; (b) BBP; (c) KwBP; (d) BP. 
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Figure 9. Worm plots of the qrs for COVID-19 data in Campinas from the regression models: (a) WBP; (b) BBP; (c) KwBP; (d) BP. 
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Figure 10. Index plots for: (a)   G  D i   ( θ )    and (b)   L  D i   ( θ )   . 
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Figure 11. Plots of the qrs for COVID-19 data in Campinas. (a) Index plot; (b) QQ plot with envelope. 
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Table 1. Simulation findings for the MLEs of the WBP distribution.
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Scenario

	
n

	
Measures

	
Estimators




	
   a ^   

	
   b ^   

	
   α ^   

	
   β ^   






	
Scenario 1

	
50

	
Average

	
0.87959

	
1.22248

	
2.33968

	
2.05307




	
Bias

	
0.12959

	
−0.27752

	
−0.16032

	
0.05307




	
MSE

	
0.05690

	
0.10848

	
0.06048

	
0.02369




	
75

	
Average

	
0.86856

	
1.22294

	
2.33987

	
2.04091




	
Bias

	
0.11856

	
−0.27706

	
−0.16013

	
0.04091




	
MSE

	
0.04698

	
0.10396

	
0.05023

	
0.01599




	
100

	
Average

	
0.86195

	
1.22530

	
2.34140

	
2.03094




	
Bias

	
0.11195

	
−0.27469

	
−0.15859

	
0.03094




	
MSE

	
0.04223

	
0.10096

	
0.04198

	
0.01082




	
Scenario 2

	
50

	
Average

	
0.87959

	
0.99547

	
0.93431

	
1.54015




	
Bias

	
0.12959

	
−0.20453

	
−0.06569

	
0.04015




	
MSE

	
0.05690

	
0.05554

	
0.02394

	
0.03631




	
75

	
Average

	
0.86856

	
0.99776

	
0.94906

	
1.53002




	
Bias

	
0.11856

	
−0.20224

	
−0.05094

	
0.03002




	
MSE

	
0.04698

	
0.04799

	
0.01850

	
0.03098




	
100

	
Average

	
0.86195

	
1.00016

	
0.96222

	
1.52613




	
Bias

	
0.11195

	
−0.19984

	
−0.03778

	
0.02613




	
MSE

	
0.04223

	
0.04374

	
0.01424

	
0.02899




	
Scenario 3

	
50

	
Average

	
0.87959

	
0.99547

	
1.84264

	
2.57223




	
Bias

	
0.12959

	
−0.20453

	
−0.15736

	
0.07223




	
MSE

	
0.05690

	
0.05554

	
0.05855

	
0.05216




	
75

	
Average

	
0.86856

	
0.99776

	
1.84443

	
2.56393




	
Bias

	
0.11856

	
−0.20224

	
−0.15557

	
0.06393




	
MSE

	
0.04698

	
0.04799

	
0.05382

	
0.04080




	
100

	
Average

	
0.86195

	
1.00016

	
1.84516

	
2.55868




	
Bias

	
0.11195

	
−0.19984

	
−0.15484

	
0.05868




	
MSE

	
0.04223

	
0.04374

	
0.05201

	
0.03498
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Table 2. Simulations from the WBP regression model.
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    n = 100    

	

	

	
    n = 250    

	

	

	
    n = 500    

	




	
%

	
   τ   

	
Averages

	
Biases

	
MSEs

	
Averages

	
Biases

	
MSEs

	
Averages

	
Biases

	
MSEs






	
   0 %   

	
   λ 0   

	
1.3214

	
0.3214

	
0.6110

	
1.1415

	
0.1415

	
0.2501

	
1.0519

	
0.0519

	
0.1395




	
   λ 1   

	
1.5157

	
0.0157

	
0.3445

	
1.4956

	
−0.0044

	
0.1245

	
1.5054

	
0.0054

	
0.0584




	
  σ  

	
0.4885

	
0.1885

	
0.1458

	
0.3724

	
0.0724

	
0.0383

	
0.3313

	
0.0313

	
0.0173




	
a

	
1.1365

	
0.0365

	
0.6262

	
1.0916

	
−0.0084

	
0.2320

	
1.0843

	
−0.0157

	
0.1364




	
b

	
0.5892

	
−0.0108

	
0.0593

	
0.6333

	
0.0333

	
0.0343

	
0.6564

	
0.0564

	
0.0251




	
   10 %   

	
   λ 0   

	
1.3284

	
0.3284

	
0.6531

	
1.1450

	
0.1450

	
0.2611

	
1.0533

	
0.0533

	
0.1464




	
   λ 1   

	
1.5191

	
0.0191

	
0.3682

	
1.4960

	
−0.0040

	
0.1317

	
1.5055

	
0.0055

	
0.0604




	
  σ  

	
0.5021

	
0.2021

	
0.1647

	
0.3755

	
0.0755

	
0.0414

	
0.3340

	
0.0340

	
0.0190




	
a

	
1.1358

	
0.0358

	
0.6650

	
1.1093

	
0.0093

	
0.2959

	
1.0861

	
−0.0139

	
0.1462




	
b

	
0.5884

	
−0.0116

	
0.0636

	
0.6341

	
0.0341

	
0.0371

	
0.6567

	
0.0567

	
0.0266




	
   30 %   

	
   λ 0   

	
1.3866

	
0.3866

	
0.7464

	
1.1747

	
0.1747

	
0.2983

	
1.0727

	
0.0727

	
0.1707




	
   λ 1   

	
1.5168

	
0.0168

	
0.3956

	
1.5005

	
0.0005

	
0.1372

	
1.5088

	
0.0088

	
0.0660




	
  σ  

	
0.5621

	
0.2621

	
0.2482

	
0.3955

	
0.0955

	
0.0546

	
0.3467

	
0.0467

	
0.0254




	
a

	
1.1062

	
0.0062

	
0.5549

	
1.1055

	
0.0055

	
0.3272

	
1.0832

	
−0.0168

	
0.1625




	
b

	
0.5737

	
−0.0263

	
0.0738

	
0.6238

	
0.0238

	
0.0400

	
0.6501

	
0.0501

	
0.0286
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Table 3. Findings for COVID-19 data in US.
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	Distribution
	    a ^    
	    b ^    
	    α ^    
	    β ^    





	WBP
	1.2429
	4.5036
	33.4668
	0.2694



	
	(0.3271)
	(0.3768)
	(  1.5 ×  10  − 5    )
	(0.0115)



	KwBP
	25.7127
	78.0954
	8.8654
	0.47724



	
	(0.0551)
	(0.0266)
	(0.0549)
	(0.0056)



	BBP
	46.0854
	32.1934
	14.8327
	0.2898



	
	(0.0087)
	(0.0098)
	(0.8696)
	(0.0035)



	BP
	-
	-
	10.0000
	0.2753



	
	-
	-
	(2.1758)
	(0.0313)
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Table 4. Adequacy measures for COVID-19 data in US.
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	Distribution
	    W *    
	    A *    
	K-S
	p-Value
	AIC
	CAIC
	BIC





	WBP
	0.1061
	0.7499
	0.2517
	   1 . 2 ×  10  − 5     
	1350.97
	1351.41
	1361.19



	KwBP
	0.1104
	0.8457
	0.3425
	   4.2 ×  10  − 10     
	1394.51
	1394.96
	1404.73



	BBP
	0.1142
	0.8814
	0.3504
	   1.5 ×  10  − 10     
	1424.63
	1425.07
	1434.84



	BP
	0.1166
	0.9023
	0.4934
	<  2.2 ×  10  − 16    
	1595.83
	1595.96
	1600.94
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Table 5. Findings for COVID-19 data in Florianópolis.
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	Distribution
	    a ^    
	    b ^    
	    α ^    
	    β ^    





	WBP
	0.3543
	0.1876
	38.2987
	10.0908



	
	(0.0550)
	(0.0161)
	(0.3971)
	(0.4519)



	KwBP
	2.2611
	0.0648
	10.3668
	13.5489



	
	(0.0004)
	(0.0060)
	(0.0002)
	(0.0001)



	BBP
	0.0619
	38.7466
	88.5759
	0.5290



	
	(0.0058)
	(0.0009)
	(0.0006)
	(0.0110)



	BP
	-
	-
	2.1732
	0.7719



	
	-
	-
	(0.2970)
	(0.0881)
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Table 6. Adequacy measures for COVID-19 data in Florianópolis.
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	Distribution
	    W *    
	    A *    
	K-S
	p-Value
	AIC
	CAIC
	BIC





	WBP
	0.4177
	2.9113
	0.2102
	   7 . 1 ×  10  − 5     
	800.02
	800.38
	811.03



	KwBP
	0.5118
	3.4879
	0.3246
	   4.9 ×  10  − 11     
	833.40
	833.76
	844.42



	BBP
	0.5653
	3.8228
	0.2874
	   9.5 ×  10  − 9     
	824.16
	824.53
	835.18



	BP
	0.5025
	3.4383
	0.2409
	   2.9 ×  10  − 6     
	827.23
	827.34
	832.74
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Table 7. Adequacy measures from regression models for COVID-19 data in Campinas.
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Model

	
AIC

	
BIC

	
CAIC

	
Model

	
AIC

	
BIC

	
CAIC






	
   M 1   

	
WBP

	
2093.696

	
2111.635

	
2115.635

	
   M 3   

	
WBP

	
2071.653

	
2094.076

	
2099.076




	
BBP

	
2160.907

	
2178.845

	
2182.845

	
BBP

	
2140.201

	
2162.624

	
2167.624




	
KwBP

	
2111.858

	
2129.796

	
2133.796

	
KwBP

	
2090.371

	
2112.794

	
2117.794




	
BP

	
2148.946

	
2157.915

	
2159.915

	
BP

	
2127.432

	
2140.885

	
2143.885




	
   M 1   

	
WBP

	
2046.338

	
2068.762

	
2073.762

	
   M 3   

	
WBP

	
2041.642

	
2068.550

	
2074.550




	
BBP

	
2128.641

	
2151.064

	
2156.064

	
BBP

	
2122.585

	
2149.493

	
2155.493




	
KwBP

	
2071.496

	
2093.919

	
2098.919

	
KwBP

	
2065.202

	
2092.110

	
2098.110




	
BP

	
2115.254

	
2128.708

	
2131.708

	
BP

	
2109.588

	
2127.527

	
2131.527
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Table 8. Estimation results from the WBP regression model for COVID-19 data in Campinas.
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	MLEs
	SEs
	p-Values





	   λ 0   
	0.2154
	0.0497
	<0.001



	   λ 1   
	−0.0099
	0.0010
	<0.001



	   λ 2   
	−0.1257
	0.0338
	<0.001



	   log ( β )   
	−1.5956
	0.0066
	<0.001



	   log ( a )   
	−2.1310
	0.0485
	<0.001



	   log ( b )   
	1.6418
	0.0272
	<0.001
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