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Abstract: In this study, the estimation methods of bias-corrected maximum likelihood (BCML),
bootstrap BCML (B-BCML) and Bayesian using Jeffrey’s prior distribution were proposed for the
inverse Gaussian distribution with small sample cases to obtain the ML and Bayes estimators of
the model parameters and the process performance index based on the lower specification process
performance index. Moreover, an approximate confidence interval and the highest posterior density
interval of the process performance index were established via the delta and Bayesian inference
methods, respectively. To overcome the computational difficulty of sampling from the posterior
distribution in Bayesian inference, the Markov chain Monte Carlo approach was used to implement
the proposed Bayesian inference procedures. Monte Carlo simulations were conducted to evaluate
the performance of the proposed BCML, B-BCML and Bayesian estimation methods. An example of
the active repair times for an airborne communication transceiver is used for illustration.

Keywords: Bayesian estimation; bootstrap method; maximum likelihood estimation; process capabil-
ity analysis; process performance index

MSC: 62F10; 62F40

1. Introduction

Process capability analysis has been widely used to identify how well the outputs from
an in-control process meet the requirements, specifications and expectations of customers.
In practice, process capability analysis methods aim to continuously monitor the process
quality via utilizing capability indices to assure if the quality of products is capable of
meeting the specifications and supply information based on the product design and process
quality improvement. The results of process capability analysis can be the basis of cost
reduction, which is attributable to the decrease in product failures; see Pan and Wu [1].
Kane [2] presented the relations of the process capability indices, Cp, Cpu, Cpl and Cpk,
which are, respectively, defined as

Cp =
U − L

6σ
,

Cpu =
U − µ

3σ
,

Cpl =
µ− L

3σ

and

Cpk = min
{

U − µ

3σ
,

µ− L
3σ

}
, (1)
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where µ is the population mean, σ is the population standard deviation, L is the lower
specification limit and U is the upper specification limit. Kane [2] also indicated that
these indices can be a complementary system of measures for evaluating the process
performance. Kocherlakota [3] and Kotz and Johnson [4] studied the statistical theories
for various process capability indices. Comprehensive discussions about using process
capability analysis methods for quality control can be found in the works of Rodriguez [5],
Palmer and Tsui [6] and Montgomery [7].

The process performance index is one of the widely used process capability indices for
evaluating the quality of lifetime data. Let X denote the product lifetime random variable
and L denote a specified threshold of a lower bound. The conforming rate can be defined
as δ = P(X > L). The process performance index can have a close connection with the
conforming rate of δ. The statistical properties regarding using the process capability indices
of Cp, Cpu, Cpl and Cpk under the normality assumption have been thoroughly studied
in the literature. Hong et al. [8] presented analytical procedures for the ML estimation
and hypothesis testing to evaluate the process performance index when the lifetimes of
products follow the Pareto distribution. Ahmadi et al. [9] used generalized order statistics
to conduct inferential procedures for the process performance index under an exponential
distribution. Lee et al. [10] proposed optimal inferential procedures to evaluate the process
performance index based on progressively type-II censored samples that were taken from
the Burr type XII distribution. Lee et al. [11] proposed an inferential procedure by using
uniformly minimum variance unbiased estimation and a hypothesis-testing method to
evaluate the process performance index based on type-II censored samples that were
taken from the two-parameter exponential distribution. Lee et al. [12] proposed Bayesian
inference procedures to assess the process performance index based on progressively type-
II censored samples under the Rayleigh distribution. Ahmadi et al. [13] proposed ML
estimation methods to estimate the process performance index based on progressively
first-failure censored samples when the lifetime data follow a Weibull distribution. Wu
and Chiu [14] obtained fourteen different estimates of the process performance index for
the two-parameter exponential distribution under a multiple type-II censoring scheme.
After a simulation study of a performance comparison, three estimates among them are
recommended by Wu and Chiu [14] to develop hypothesis-testing procedures for the
process performance index. Wu and Lin [15] proposed a statistical inference for the process
performance index based on type-II exponentially distributed samples. Montgomery [7]
recommended using the process performance index to evaluate the quality of products.
Zhu et al. [16] proposed an inferential procedure by using the ML estimation method to
evaluate the process performance index based on power-normal distribution samples. They
also discussed the drawbacks of using the exact Fisher information matrix with a delta
method under the power-normal distribution to obtain an approximate confidence interval
(ACI) of the model parameters. All aforementioned works on process performance index
are summarized in Table 1 for easy reference.

Table 1. Summary of estimation methods for process performance index.

Method Sampling Distribution

Hong et al. [8] MLE Type-II Pareto
Ahmadi et al. [9] Statistical inference Generalized order statistics exponential
Lee et al. [10] Optimal inferences Progressively type-II Burr type XII
Lee et al. [11] UMVUE Type-II Two-parameter

exponential
Lee et al. [12] Bayesian inference Progressively type-II Rayleigh
Ahmadi et al. [13] MLE Progressively first-failure Weibull
Wu and Chiu [14] Fourteen estimates A multiple type-II Two-parameter

exponential
Wu and Lin [15] Statistical inference Type-II Exponential
Zhu et al. [16] MLE Random sample Power-normal
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Among widely used lifetime distributions, the inverse Gaussian (IG) distribution, also
known as the Wald distribution, has been renowned as a versatile lifetime model with sound
physical interpretation. The ML and Bayesian estimation methods were commonly used
to estimate the IG distribution parameters. Banerjee and Bhattacharyya [17] investigated
the Bayesian inferential approach for estimating the IG distribution parameters for the
application of equipment failure data. Amry [18] studied the Bayesian inference of the
IG parameters using Jeffrey’s prior under a quadratic loss function. More information
about using the IG distribution for engineering applications can also be found in the
books by Chhikara and Folks [19] and Johnson et al. [20]. Sun and Ye [21] discussed
the frequentist validity of posterior quantiles for a two-parameter exponential family
that includes the IG distribution as a member. Rostamian and Nematollahi [22] studied
the stress–strength reliability using the ML estimation method via using an expectation-
maximization algorithm and the Bayesian estimation method based on progressively type-II
censored IG distribution samples. A survival analysis of the IG distribution based on using
Bayesian and Fiducial approaches has been studied by Jayalath and Chhikara [23]. Bera
and Jana [24] developed a bootstrap interval of stress–strength reliability assuming that the
stress and strength variables are IG distributed.

Sundaraiyer [25] proposed inferential procedures to obtain the ML estimator and
bootstrap ACI of the process capability index proposed by Clements [26] when the quality
variable follows the IG distribution. We use the term of MLE to denote the ML estimator
and ML estimate here and after. Investigating how to reduce the estimation bias for the
process performance index based on IG distributed samples and obtain a reliable ACI for
the process performance index is helpful for the applications of quality control. Balay [27]
used BCMLEs of the generalized inverse Lindley distribution parameters to compute the
generalized process capability index Cpyk. The Cpyk was firstly proposed and studied by
Maiti et al. [28]. In addition, Balay [27] obtained a bootstrap ACI of Cpyk. Considering the
merit of IG distribution being a versatile lifetime model with sound physical interpretation,
the IG distribution can be an alternative to the generalized inverse Lindley distribution for
reliability analysis applications. The purposes of this article can be twofold. Firstly, we
would like to propose analytical procedures to obtain the BCMLEs, whose bias is O(n−2)
based on the bias correction method proposed by Cordeiro and Klein [29], B-BCMLEs and
Bayes estimators via using the Jeffery’s prior distribution for the IG distribution parameters
and the investigated process performance index. Secondly, we would like to establish the
procedures taken to obtain an ACI and the highest posterior density interval (HPDI) for the
one-sided version of Cpyk. The HPDI is the interval with the shortest length on the posterior
density at the given confidence level. We use the term BE to denote the Bayes estimator and
Bayes estimate here and after. Because the posterior distribution in the Bayesian estimation
procedure is complicated, the Markov chain Monte Carlo (MCMC) approach is used to
overcome the computational difficulty when generating random samples from the posterior
distribution. To our knowledge, these two aforementioned purposes have not yet been
studied in the literature.

The rest of this paper is organized as follows. We address the process capability
indices and define the process performance index based on the one-sided version of Cpyk in
Section 2. In Section 3, we derive the inferential procedures to obtain the CK-BCMLE and
B-BCMLE of the model parameters through using the bias correction method proposed by
Cordeiro and Klein [29] and the bootstrap method, respectively. A bootstrap algorithm is
suggested to obtain the B-BCMLEs of the model parameters and the bootstrap ACI of the
process performance index. Moreover, the Bayesian estimation procedure is developed via
using the Jeffery’s prior distribution, and an MCMC hybrid algorithm of Gibbs sampling
and the Metropolis–Hastings algorithm is provided to obtain the BEs of the IG distribution
parameters and process performance index. Monte Carlo simulations are conducted in
Section 4 to evaluate the performance of the proposed estimation methods. A real data set
with 46 active repair times (in hours) for an airborne communication transceiver is given in
Section 5 for illustration. Concluding remarks are given in Section 6.
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2. The Generalized Process Performance Index

Based on Cp and Cpk, two generalized process capability indices can be defined
as follows:

Cpm =
Cp√

1 + ξ2

and

Cpmk =
Cpk√
1 + ξ2

,

where ξ = (µ − T)/σ and T is the process target. When the quality measurements of
products follow a normal distribution, Cp, Cpk, Cpm and Cpmk have been the four most
widely used process capability indices in practical applications. However, non-normally
distributed quality measurements, which have a skewed distribution, can be found in many
works by Clements [26], Gunter [30], Constable and Hobbs [31], Mukherjee and Singh [32],
Tang et al. [33] and Chen et al. [34]. Among the aforementioned studies, Clements [26]
proposed two generalized versions of process capability indices that are defined by

Cp(q) =
U − L

X0.99865 − X0.00135

and

Cpk(q) = min
{

U − X0.5

X0.99865 − X0.5
,

X0.5 − L
X0.5 − X0.00135

}
,

where Xγ is the γth quantile of the quality characteristic measure, X. When X follows a
normal distribution, Cp(q) and Cpk(q) reduce to Cp and Cpk, respectively. Cp(q) and Cpk(q) are
the two most popular process capability indices used to determine the quality of products
if the distribution of the quality variable is not normal. Maiti et al. [28] proposed a new
generalized version of the process capability index,

Cpyk = min
{

F(U)− 0.5
0.5− α2

,
0.5− F(L)

0.5− α1

}
, (2)

where F(x) = P(X ≤ x) is the cumulative distribution function (CDF). α1 and α2 are the
specified lower and upper tailed probabilities of F, respectively. For lifetime products, we
are more concerned with if the lifetime is higher than the lower specification limit. Hence,
the one-sided version of Cpyk was used in this study for the process performance index.
We denote the one-sided version of Cpyk by CL in this study for simplification. The CL is
defined by

CL =
0.5− F(L)

0.5− α1
. (3)

3. The Inverse Gaussian Distribution and Estimation Methods

In this section, the IG distribution is addressed in Section 3.1. Moreover, we propose
the analytical procedure in Section 3.2 to obtain the BCMLEs of the model parameters based
on the bias correction method proposed by Cordeiro and Klein [29]. This bias correction
method is named the CK-BCML method here and after. The bootstrap procedure used to
obtain B-BCMLEs of the IG distribution parameters is proposed in Section 3.3. Moreover,
the delta method based on the Fisher information matrix is used to obtain an ACI of CL
in Section 3.4. In Section 3.5, we use Jeffrey’s prior distribution and the proposed MCMC
algorithm to develop the Bayesian estimation procedures for obtaining the BEs of the IG
distribution parameters and CL. Moreover, the HDPI of CL is also obtained through the
corresponding MCMC chain of CL.
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3.1. Maximum Likelihood Estimation

The probability density function (PDF) and CDF of the IG distribution are defined by

f (x|Θ) =

√
λ

2π
x−3/2 exp

{
−λ(x− µ)2

2µ2x

}
, x > 0, µ, λ > 0 (4)

and

F(x|Θ) = Φ

(√
λ

x

(
x
µ
− 1
))

+ exp
(

2λ

µ

)
Φ

(
−
√

λ

x

(
x
µ
+ 1
))

, x > 0, µ, λ > 0, (5)

respectively, where Φ(·) is the CDF of the standard normal distribution, Θ = (θ1, θ2) =
(µ, λ), µ is the mean of the IG distribution and λ is a reciprocal measure of dispersion.
Symbolically, denote the IG distribution by X ∼ IG(Θ). The moment generating function,
variance, skewness and kurtosis can be obtained, respectively, by

M(t) = exp

{
λ

µ

(
1−

√
1− 2µ2t

λ

)}
, (6)

Var(X) =
µ3

λ
, (7)

skewness(X) = 3
√

µ

λ
, (8)

kurtosis(X) = 3 +
15µ

λ
. (9)

Moreover, we can obtain the mean and variance for the reciprocal of X by

E
(

1
X

)
=

1
µ
+

1
λ

(10)

and

Var
(

1
X

)
=

1
µλ

+
2

λ2 . (11)

The IG distribution is a positively skewed distribution due to the skewness being always
positive. Johnson et al. [20] indicated that the IG distribution is a member of the exponential
family and is unimodal. The mode of the IG distribution is located at

µ

(√
1 +

9µ2

4λ2 −
3µ

2λ

)
. (12)

Based on the CDF of the IG distribution, the CL can be defined by

CL =
0.5− F(L|Θ)

0.5− α1

=
1

0.5− α1

{
0.5−Φ

(√
λ

L

(
L
µ
− 1
))
− e2λ/µΦ

(
−
√

λ

L

(
L
µ
+ 1
))}

, (13)

where α1 = 0.0027 can be a reference number for practical applications.



Stats 2022, 5 1084

Let X = (X1, X2, · · · , Xn) denote a random sample taken from the IG distribution.
The log-likelihood function based on the realization x = (x1, x2, · · · , xn) of X can be
expressed by

` ≡ log(L(Θ|x))

=
n
2

log(λ)− n
2

log(2π)− 3
2

n

∑
i=1

log(xi) + λ

(
n
µ
− nx̄

2µ2 −
1
2

n

∑
i=1

1
xi

)
. (14)

The first derivatives of ` with respect to µ and λ can be obtained, respectively, by

`1 =
∂`

∂µ
=

nλ

µ3 (x̄− µ), (15)

`2 =
∂`

∂λ
=

n
2λ

+
n
2

(
2
µ
− x̄

µ2 −
1
n

n

∑
i=1

1
xi

)
. (16)

Let `1 = 0 and `2 = 0; we can express the MLEs of µ and λ by

µ̃M = x̄ (17)

and

λ̃M =

(
1
n

n

∑
i=1

(
1
xi
− 1

x̄

))−1

. (18)

The asymptotic distribution of Θ̃M = (µ̃M, λ̃M) can be expressed by

Θ̃M
d−→ N(Θ, A) as n → ∞, (19)

where A ≡ A(Θ) = I−1(Θ) is the inverse of the Fisher information matrix given in
Appendix B. From Appendix B,

I−1(Θ) =

[
η11 η12

η21 η22

]
=

[
µ3

nλ 0
0 2λ2

n

]

3.2. The Bias-Corrected Maximum Likelihood Estimation Method

Let

η
(k)
ij =

∂ηij

∂θk
, (20)

ηijk = E

(
∂3`

∂θi∂θj∂θk

)
(21)

and
b(k)ij ≡ b(k)ij (Θ) = η

(k)
ij −

1
2

ηijk, for i, j, k = 1, 2. (22)

Construct matrix B ≡ B(Θ) =
[

B(1)|B(2)
]

with

B(1) =

[
b(1)11 b(1)12

b(1)21 b(1)22

]
(23)

and

B(2) =

[
b(2)11 b(2)12

b(2)21 b(2)22

]
. (24)
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From Table A3 in Appendix C, the matrix B can be expressed by

B =

[
0 n

2µ3 − n
2µ3 0

n
2µ3 0 0 n

2λ3

]
. (25)

Define VA = vec(A) as a vectorization operator that produces a single column vector
by stacking all right columns of A below the adjacent left one. Hence,

VA = [η11, η21, η12, η22]T =

[
µ3

nλ
, 0, 0,

2λ2

n

]T

. (26)

Under regular conditions of partial derivatives of the log-likelihood function, ηij, ηijk and

η
(k)
ij , Cordeiro and Klein [29] showed that the bias of Θ̃ is O(n−2) and can be expressed as

bias(Θ̃) = ABVA + O(n−2). (27)

Denote the obtained BCMLE of Θ by Θ̃C = (µ̃C, λ̃C)
T ; then, Θ̃C can be approximated by

Θ̃C = Θ̃M − ÃB̃Ṽ A, (28)

where Ã = A(Θ̃M), B̃ = B(Θ̃M) and Ṽ A = vec(Ã). We can show that

ABVA =

[
µ3

nλ 0
0 2λ2

n

][
0 n

2µ3 − n
2µ3 0

n
2µ3 0 0 n

2λ3

]
µ3

nλ
0
0

2λ2

n


=

[
0
3λ
n

]
, (29)

and the CK-BCMLE Θ̃CK can be obtained by

Θ̃CK =

[
µ̃CK
λ̃CK

]
=

[
µ̃M

λ̃M − 3λ̃M
n

]
=

[
µ̃M

λ̃M
(
1− 3

n
)]. (30)

3.3. Bootstrap Bias-Correction Method

The bootstrap methods have been widely used to obtain an ACI for the model parame-
ter. Readers can refer to the book of Efron and Tibshirani [35] to receive more comprehensive
information about using bootstrap methods for statistical inference. The bootstrap bias-
correction maximum likelihood (B-BCML) method can be implemented through using the
following steps:

Initial Step: Obtain the MLE Θ̃M of Θ based on the working sample x = (x1, x2, · · · , xn).

Step 1: Generate a bootstrap sample x∗ = (x∗1 , x∗2 , · · · , x∗n) from the IG(Θ̃M) and obtain
the MLE Θ̃∗M of Θ based on the bootstrap sample x∗.

Step 2: Repeat Step 1 B times and label the obtained MLEs by {Θ̃∗M,j, j = 1, 2, · · · , B}.
The bias of Θ̂ can be obtained by

Θ̃Bias =
1
B

B

∑
i=1

Θ̃∗M,j − Θ̃M. (31)
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Step 3: The B-BCML estimate, B-BCMLE, can be obtained by

Θ̃B = (µ̃B, λ̃B) = Θ̃M − Θ̃Bias = 2Θ̃M −
1
B

B

∑
i=1

Θ̃∗M,j. (32)

The above bootstrap method is also called the parametric bootstrap method.

3.4. The Approximate Confidence Interval of CL

Replacing the unknown Θ in CL by Θ̃M, Θ̃CK and Θ̃B obtained above, the correspond-
ing MLEs of CL can be presented by

C̃L,M =
1

0.5− α1

0.5−Φ

√ λ̃M
L

(
L

µ̃M
− 1
)− e

2λ̃M
µ̃M Φ

−
√

λ̃M
L

(
L

µ̃M
+ 1
), (33)

C̃L,CK =
1

0.5− α1

0.5−Φ

√ λ̃CK
L

(
L

µ̃CK
− 1
)− e

2λ̃CK
µ̃CK Φ

−
√

λ̃CK
L

(
L

µ̃CK
+ 1
) (34)

and

C̃L,B =
1

0.5− α1

0.5−Φ

√ λ̃B
L

(
L

µ̃B
− 1
)− e

2λ̃B µ̃B
Φ

−
√

λ̃B
L

(
L

µ̃B
+ 1
), (35)

respectively.
Utilizing the delta method, the asymptotic distribution of the MLE, C̃L, can be shown

as the normal distribution; that is,

C̃L
d−→ N(CL, (∇CL)

T I−1(Θ)(∇CL)) as n→ ∞, (36)

where ∇CL is the gradient of CL and defined by

(∇CL)
T =

(
∂CL
∂µ

,
∂CL
∂λ

)
=

1
0.5− α1

δT , (37)

with δT = (δ1, δ2),

δ1 =

√
λL
µ2 φ

(√
λ

L

(
L
µ
− 1
))

+
2λe2λ/µ

µ2 Φ

(
−
√

λ

L

(
L
µ
+ 1
))

− e2λ/µ
√

λL
µ2 φ

(
−
√

λ

L

(
L
µ
+ 1
))

(38)

and

δ2 = − 1
2
√

Lλ

(
L
µ
− 1
)

φ

(√
λ

L

(
L
µ
− 1
))
− 2e2λ/µ

µ
Φ

(
−
√

λ

L

(
L
µ
+ 1
))

+
e2λ/µ

2
√

Lλ
φ

(
−
√

λ

L

(
L
µ
+ 1
))(

L
µ
+ 1
)

. (39)

Let δ̃j,h = δj(Θ̃h), j = 1, 2, h = M, CK, B, δ̃
T
M = (δ̃1,M, δ̃2,M), δ̃

T
CK = (δ̃1,CK, δ̃2,CK) and

δ̃
T
B = (δ̃1,B, δ̃2,B). The plug-in asymptotic variance estimates of C̃L,h can be

σ̃2
h =

1
(0.5− α1)2 δ̃

T
h I−1(Θ̃h)δ̂h, h = M, CK, B. (40)
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Therefore, the approximate (1− γ)× 100% CIs of CL can be

(C̃L,M − z1−γ/2 × σ̃2
M, C̃L,M + z1−γ/2 × σ̃2

M), (41)

(C̃L,CK − z1−γ/2 × σ̃2
CK, C̃L,CK + z1−γ/2 × σ̃2

CK), (42)

and
(C̃L,B − z1−γ/2 × σ̃2

B, C̃L,B + z1−γ/2 × σ̃2
B) (43)

based on the typical ML estimation method, the bias correction method proposed by
Cordeiro and Klein [29] and the bootstrap bias-correction method, respectively, where
z1−γ/2 satisfies Φ(z1−γ/2) = 1− γ/2.

3.5. Bayesian Estimation Method

The Fisher information matrix that was given in Section 3.1 has

√
|I(Θ)| = n

√
1

2λµ3 . (44)

Hence, the Jeffrey’s prior distribution of Θ can be obtained by

π(Θ) ∝

√
1

λµ3 . (45)

The Jeffery’s prior distribution is a parameter-free non-informative prior distribution.
Hence, we can use the Jeffery’s prior distribution to obtain the BEs of µ, λ and CL with less
subjective assumptions. From

L(Θ|x)× π(Θ) ∝ λ
n−1

2 µ−
3
2

n

∏
i=1

x−
3
2

i exp
{
−λ

µ

(
xi
2µ
− 1 +

µ

2xi

)}
, (46)

the posterior distribution of Θ, given x, can be expressed by

π(Θ|x) ∝ λ
n−1

2 µ−
3
2

n

∏
i=1

exp
{
−λ

µ

(
xi
2µ
− 1 +

µ

2xi

)}
. (47)

Hence, the conditional distribution of µ, given λ and x, can be obtained by

π(µ|λ, x) ∝ µ−
3
2 exp

{
−nλ

µ

(
x̄

2µ
− 1
)}

(48)

and the conditional distribution of λ, given µ and x, can be derived as

π(λ|µ, x) ∝ λ
n−1

2 exp
{
−nλ

µ

(
x̄

2µ
− 1 +

µx̃
2

)}
, (49)

where x̃ = 1
n ∑n

i=1
1
xi

. It can be noted that the conditional distributions of π(µ|λ, x) and
π(λ|µ, x) do not have complete analytic forms. In this study, the MCMC hybrid algorithm
of Gibbs sampling and the Metropolis–Hastings algorithm can be used to obtain the BEs of
µ and λ.
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3.6. The MCMC Hybrid Algorithm

Step 1-Update µ: For h ≥ 1, generate u ∼ U(0, 1) and µ(∗) ∼ q1(µ
(∗)|µ(h)), where U(0, 1)

is the uniform distribution over the interval (0,1) and q1(·) is the proposal distribution
of µ. Update µ(h+1) by µ(∗) if

u ≤ min

{
1,

π(µ(∗)|λ(h), x)
π(µ(h)|λ(h), x)

× q1(µ
(h)|µ(∗))

q1(µ(∗)|µ(h))

}
; (50)

otherwise, µ(h+1) = µ(h).

Step 2-Update λ: For h ≥ 1, generate u ∼ U(0, 1) and λ(∗) ∼ q2(λ
(∗)|λ(h)), where q2(·) is

the proposal distribution of λ. Update λ(h+1) by λ(∗) if

u ≤ min

{
1,

π(λ(∗)|µ(h+1), x)
π(λ(h)|µ(h+1), x)

× q2(λ
(h)|λ(∗))

q2(λ(∗)|λ(h))

}
; (51)

otherwise, λ(h+1) = λ(h).

Step 3-Update CL: For h ≥ 1, C(h)
L = CL(µ

(h+1), λ(h+1)).

Step 4-Obtain BEs: Repeat Step 1 to Step 3 N times, where N is a large integer. Perform
s burn-in operation by removing the leading N1(≤ N) Markov chains for each
parameter. Considering the square loss function for implementing the Bayesian
estimation, the BE of each parameter can be the sample mean of the remaining
(N − N1) Markov chains. Denote the BEs of µ, λ and CL by µ̂BE, λ̂BE and ĈL,BE,
respectively.

4. Monte Carlo Simulations

In this section, Monte Carlo simulations were conducted to evaluate the performance
of the estimation methods of the typical ML, CK-BCML, B-BCML and Bayesian. Ran-
dom samples with a size of n = 30 and 50 were generated from IG(µ = 8, λ = 5)
and IG(µ = 10, λ = 8), respectively, to obtain the MLEs, CK-BCMLEs, B-BCMLEs
and BEs of µ and λ. The MLE, CK-BCMLE, B-BCMLE and BE of the process perfor-
mance index were also obtained based on the plug-in method for L = 0.5, 0.6, 0.8, and
1. When µ = 8 and λ = 5, the true value of the process performance index can be
obtained by CL = 1.0043, 0.9957, 0.9644 and 0.9173 for L = 0.5, 0.6, 0.8, and 1, respec-
tively, and the corresponding parts per million are 2876, 7130, 22,625 and 45,939. When
µ = 10 and λ = 8, the true value of the process performance index can be obtained by
CL = 1.0098, 1.0089, 1.0033 and 0.9898 for L = 0.5, 0.6, 0.8 and 1, respectively, and the
corresponding parts per million are 138, 568, 3389 and 10,068.

Bootstrap repetition, B = 500, was used to implement the parametric bootstrap bias-
correction method. For Bayesian estimation, firstly, we generated N = 51,000 Markov
iterations to implement the MCMC method, and the leading N1 = 1000 Markov iterations
were removed for the burn-in operation. Secondly, a spacing operation by selecting one
of every ten iterations was used to reduce the autocorrelation in each Markov chain.
Finally, 5000 Markov chains were used to obtain the BEs of the parameters µ, λ and PPI,
respectively.

The measures of relative bias (rbias) and relative root mean squared error (rRMSE)
were evaluated using 10,000 iteration runs. Assume that the target parameter is θ and the
obtained estimates are θ̃j, j = 1, 2, · · · , 10,000; the rbias and rsMSE are defined by

rbias =
1
θ
×

∑10,000
j=1 (θ̃j − θ)

10, 000
(52)
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and

rRMSE =
1
θ
×

√
∑10,000

j=1 (θ̃j − θ)2

100
. (53)

The rbias and rRMSE are scale-free measures. All simulation results for estimating model
parameters are reported in Tables 2 and 3.

From Tables 2 and 3, we can find that the estimation quality of the MLE of µ̃ is good.
The derivation processes in Section 3.2 show that the CK-BCMLE of µ is the same as the
typical MLE; that is, µ̃M = µ̃CK. Hence, the values of rbias and rRMSE of µ̃M are also close
to that of the B-BCMLE µ̃B. However, we can find that the BCMLEs λ̃CK and λ̃B outperform
the MLE λ̃M, with a smaller rbias and rRMSE when the sample size is small. Because the
proposed Bayes estimation method is developed with the parameter-free non-informative
prior distribution of Jeffery, the performance of BE can be compared with its competitor
of MLE. In Tables 2 and 3, we also find that the rbias of µ̃BE is small but larger than the
the bias of µ̃M. The rRMSE of λ̃BE is larger but close to the rRMSE of λ̃M. Based on the
findings in this study, using gradient methods for optimization makes the ML estimation
method less reliable for estimating the process performance index. The obtained ACI
of the process performance index via using the MLEs with the delta method and exact
Fisher information matrix is conservative. We will study the CPs of the ACI and HPDI of
the process performance index to show the good performance of the proposed Bayesian
estimation method.

Table 2. The rBias and rRMSEs (in parentheses) of different estimators when µ = 8 and λ = 5.

L n µ̃M λ̃M λ̃CK µ̃B λ̃B µ̃BE λ̃BE

0.5 30 −0.0020 0.1098 −0.0012 −0.0021 −0.0135 0.1044 0.1084
(0.2293) (0.3318) (0.2818) (0.2296) (0.2789) (0.3700) (0.3312)

50 −0.0016 0.0632 −0.0006 −0.0016 −0.0046 0.0489 0.0625
(0.1772) (0.2341) (0.21190) (0.1772) (0.2114) (0.2047) (0.2339)

0.6 30 0.0001 0.1182 0.0064 0.0001 −0.0063 0.1080 0.1168
(0.2317) (0.3423) (0.2891) (0.2317) (0.2860) (0.3814) (0.3415)

50 0.0016 0.0635 −0.0003 0.0017 −0.0044 0.0524 0.0629
(0.1794) (0.2309) (0.2086) (0.1797) (0.2081) (0.2074) (0.2307)

0.8 30 −0.0030 0.1112 0.0001 −0.0033 −0.0124 0.1008 0.1099
(0.2313) (0.3347) (0.2841) (0.2315) (0.2814) (0.3503) (0.3341)

50 −0.0008 0.0590 −0.0045 −0.0008 −0.0086 0.0499 0.0584
(0.1775) (0.2283) (0.2074) (0.1775) (0.2066) (0.2059) (0.2283)

1 30 0.0023 0.1065 −0.0042 0.0022 −0.0164 0.1117 0.1052
(0.2311) (0.3302) (0.2812) (0.2313) (0.2784) (0.3869) (0.3297)

50 0.0002 0.0612 −0.0025 0.0001 −0.0065 0.0508 0.0606
(0.1792) (0.2317) (0.2102) (0.1792) (0.2095) (0.2059) (0.2315)
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Table 3. The rBias and rRMSEs (in parentheses) of different estimators when µ = 10 and λ = 8.

L n µ̃M λ̃M λ̃CK µ̃B λ̃B µ̃BE λ̃BE

0.5 30 0.0005 0.1083 −0.0025 0.0004 −0.0147 0.0741 0.1069
(0.2042) (0.3320) (0.2825) (0.2045) (0.2798) (0.2744) (0.3309)

50 −0.0027 0.0710 0.0067 −0.0030 0.0025 0.0348 0.0704
(0.1562) (0.2373) (0.2128) (0.1562) (0.2121) (0.1726) (0.2371)

0.6 30 0.0006 0.1088 −0.0021 0.0006 −0.0143 0.0738 0.1076
(0.2017) (0.3292) (0.2796) (0.2020) (0.2775) (0.2717) (0.3286)

50 0.0004 0.0641 0.0003 0.0003 −0.0038 0.0386 0.0635
(0.1575) (0.2349) (0.2124) (0.1578) (0.2119) (0.1749) (0.2345)

0.8 30 0.0053 0.1094 −0.0015 0.0053 −0.0137 0.0805 0.1081
(0.2049) (0.3372) (0.2871) (0.2052) (0.2843) (0.2768) (0.3367)

50 0.0022 0.0619 −0.0018 0.0023 −0.0058 0.0412 0.0612
(0.1584) (0.2341) (0.2124) (0.1584) (0.2117) (0.1924) (0.2339)

1 30 0.0009 0.1124 0.0011 0.0007 −0.0112 0.0743 0.1111
(0.2040) (0.3349) (0.2839) (0.2040) (0.805) (0.2717) (0.3342)

50 −0.0009 0.0640 0.0001 −0.0009 −0.0040 0.0370 0.0633
(0.1584) (0.2287) (0.2064) (0.1584) (0.2064) (0.1752) (0.2285)

To verify the performance of the delta and Bayesian estimation methods for the interval
inference of PPI under small sample size cases, we established the 95% ACI and HPDI
for the PPI at the lower specification limit L = 0.5, 0.6, 0.8 and 1. Moreover, the mean
lower bounds and mean upper bounds of the 95% ACI and HPDI of the PPI and their CPs
were evaluated based on 10,000 iterations. We use the terms of mLB and mUB to denote
the mean lower bounds and mean upper bounds, respectively. All simulation results are
summarized in Tables 4 and 5.

In view of Tables 4 and 5, we find that the condition of a small sample has an impact
on the quality of the interval inference for the PPI. When n ≤ 50, the CP of the 95% ACI of
CL is below its nominal value. In particular, for the case of small L and n = 30, the CP of
the 95% ACI of CL seriously underestimates the nominal value 0.95 for the delta method
with the ML, CK-BCML and B-BCML methods. The delta method with the ML method
performs worst among all competitors. When the sample size increases, the estimation
performance of the delta method with the ML, CK-BCML and B-BCML methods can be
significantly improved. The proposed Bayesian estimation method outperforms all of the
competitors based on the delta method in terms of the CP when obtaining a HDPI for
the process performance index; even the sample size and L are small. In summary, we
recommend using the proposed Bayesian estimation method to obtain the HPDI of the
process performance index for IG distribution.
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Table 4. The mLBs, mUBs and CPs for the 95% ACI and HDPI when µ = 8 and λ = 5.

ML CK-BCML B-BCML Bayesian

L n mLB, mUB CP mLB, mUB CP mLB, mUB CP mLB, mUB CP

0.5 30 0.984, 1.020 0.794 0.972, 1.024 0.882 0.971, 1.024 0.890 0.970, 1.009 0.933
50 0.989, 1.016 0.836 0.984, 1.018 0.899 0.983, 1.018 0.902 0.982, 1.009 0.938

0.6 30 0.957, 1.029 0.816 0.938, 1.034 0.896 0.936, 1.034 0.903 0.942, 1.009 0.926
50 0.966, 1.021 0.868 0.957, 1.023 0.918 0.956, 1.023 0.920 0.959, 1.008 0.935

0.8 30 0.873, 1.051 0.877 0.837, 1.057 0.936 0.832, 1.058 0.940 0.868, 1.004 0.931
50 0.892, 1.033 0.920 0.873, 1.034 0.949 0.872, 1.034 0.951 0.895, 1.000 0.934

1 30 0.756, 1.077 0.914 0.705, 1.083 0.956 0.699, 1.083 0.959 0.783, 0.991 0.926
50 0.790, 1.043 0.945 0.764, 1.043 0.969 0.762, 1.043 0.971 0.817, 0.981 0.930

Table 5. The mLBs, mUBs and CPs for the 95% ACI and HDPI when µ = 10 and λ = 8.

ML CK-BCML B-BCML Bayesian

L n mLB, mUB CP mLB, mUB CP mLB, mUB CP mLB, mUB CP

0.5 30 1.007, 1.011 0.732 1.005, 1.012 0.836 1.004, 1.012 0.846 1.003, 1.010 0.932
50 1.008, 1.011 0.767 1.007, 1.011 0.846 1.007, 1.011 0.849 1.006, 1.011 0.931

0.6 30 1.002, 1.014 0.759 0.997, 1.016 0.856 0.996, 1.016 0.864 0.994, 1.010 0.933
50 1.004, 1.012 0.803 1.002, 1.013 0.872 1.002, 1.013 0.876 1.000, 1.010 0.934

0.8 30 0.978, 1.024 0.810 0.964, 1.029 0.895 0.962, 1.030 0.900 0.966, 1.009 0.934
50 0.984, 1.019 0.856 0.978, 1.021 0.913 0.977, 1.021 0.916 0.979, 1.009 0.938

1 30 0.933, 1.041 0.851 0.907, 1.049 0.917 0.903, 1.050 0.924 0.925, 1.008 0.930
50 0.946, 1.030 0.899 0.934, 1.032 0.934 0.933, 1.033 0.943 0.946, 1.007 0.938

5. An Example

A maintenance data set concerning the active repair times for an airborne communica-
tion transceiver is used to illustrate the applications of the proposed estimation methods.
This data set contains 46 repair times in hours as follows: 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6,
0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0,
3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5. This data set of active
repair times was initially investigated by Chhikara and Folks [36]. They obtained the MLEs
µ̃M = 3.607 and λ̃M = 1.659 and used the Kolmogorov–Smirnor test to show that the IG
distribution can characterize this data set well. The data set was also analyzed based on
Bayesian estimation methods by many studies after Chhikara and Folks [36]; for example,
Sinha [37], Betrò and Rotondi [38] and Jayalath and Chhikara [23].

Using the proposed methods in Section 3 for the data set of active repair times with
L = 0.2, we can obtain the MLEs, CK-BCMLEs, B-BCMLEs and BEs of µ, λ and CL.
The proposed Bayesian estimation method was implemented with N = 50,000 and the
first N1 = 1000 generated estimates were removed for teh burn-in operation. The spacing
operation, which selects one of every ten generated estimates, was used for cutting the
Markov chain to reduce the first-order autocorrelation in every Markov chain. To check the
quality of the MCMC method, the Markov chain plots based on 5000 generated estimates
of µ̃BE and λ̃BE are given in Figures A1 and A2, respectively. The first-order autocorrelation
coefficients based on the 5000 generated estimates of µ̃BE and λ̃BE are 0.046 and 0.06,
respectively. We note that two first-order autocorrelation coefficients are close to 0. These
findings indicate that the generated Markov chains are almost independent chains. All of
the obtained estimates are reported in Table 6.
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Table 6. The MLEs, CK-BCMLEs, B-BCMLEs and BEs of µ, λ and PPI for L = 0.2.

Methods
Estimates

µ λ CL

ML 3.607 1.659 0.998

CK-BCML 3.607 1.551 0.994

B-BCML 3.646 1.567 1.000

Bayesian 3.872 1.657 0.993

From Table 6, we can find that the B-BCMLE and BE of µ are slightly larger than the
MLE and CK-BCMLE of µ. The MLE and BE of λ are larger than two BCMLEs of λ. The BE
of CL is the smallest one among the four obtained estimates. The parts per million based on
the MLE, CK-BCMLE, B-BCMLE and BE of CL are 6232, 8160, 7813 and 6071, respectively.

Table 7 reports the 95% ACI and HPDI of CL via using the delta method and Bayesian
estimation method, respectively. Two proposed BCML methods generate close ACIs. We
also find that the lower limit of the ACI based on the ML method is slightly larger than the
lower limits of the ACIs based on the two proposed BCML methods and the lower limits of
HPDI based on the proposed Bayesian method.

Table 7. The 95% ACI and HPDI of PPI for L = 0.2.

Methods Lower Limit Upper Limit Length

ML 0.976 1.020 0.044

CK-BCML 0.966 1.021 0.055

B-BCML 0.968 1.021 0.053

Bayesian 0.962 1.009 0.047

6. Concluding Remarks

Considering the restriction of the sample resource when evaluating the quality of
lifetime products, we used the bias correction estimation method proposed by Cordeiro
and Klein [29] and the bootstrap bias correction method to improve the estimation quality
of the typical ML estimation method for estimating the process performance index under
the IG distribution. We derived the exact forms of CK-BCMLEs and provided an algorithm
used to obtain the B-BCMLEs for the IG model parameters and process performance
index. The delta method was used to obtain an ACI for the process performance index.
Moreover, a Bayesian estimation procedure was proposed to obtain the BEs of the IG model
parameters and the process performance index. The HPDI of the process performance
index was obtained via using the proposed MCMC hybrid algorithm of the Gibbs sampling
and Metropolis–Hastings algorithm.

An intensive simulation study was conducted to compare the performance of the
proposed CK-BCML, B-BCML and Bayesian estimation methods with the typical ML esti-
mation method. Simulation results show that the ACIs based on the delta method with the
MLEs, CK-BCMLEs and B-BCMLEs performed less satisfactory, with a seriously underesti-
mated CP when the sample size and lower specification limit were small. The proposed
Bayesian estimation method can be an alternative method, other than the delta method,
used to obtain a reliable HPDI for the process performance index when the sample size
is small. Because the Jeffrey’s prior distribution is a parameter-free prior, the proposed
Bayesian estimation method is less subjective and easy to be implemented. A data set
composed of 46 active repair times for an airborne communication transceiver was used to
illustrate the applications of the proposed methods.

For saving the testing time and cost, censoring schemes are often adopted in engi-
neering applications to collect censored lifetime data. Extending two proposed BCML
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estimation methods and the Bayesian estimation procedures for the IG distribution with
different censoring schemes is interesting and can be studied in the future.
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Appendix A. Markov Chain Plots

Figure A1. The Markov chain with 5000 iterations of µ̃BE after burn-in.
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Figure A2. The Markov chain with 5000 iterations of λ̃BE after burn-in.

Appendix B. Fisher Information Matrix

The second derivatives of ` with respect to µ and λ can be obtained, respectively, by

`11 =
∂2`

∂µ2 =
nλ

µ3

(
2− 3x̄

µ

)
, (A1)

`22 =
∂2`

∂λ2 = − n
2λ2 , (A2)

`12 = `21 =
∂2`

∂µ∂λ
=

n
µ3 (x̄− µ). (A3)

Let ηij = E(`ij), i, j = 1, 2. It is trivial to show that η12 = η21 = 0. Moreover, we can
obtain the following results:

η11 = −nλ

µ3 (A4)

and
η22 = − n

2λ2 . (A5)

The Fisher information matrix can be presented by

I(Θ) =
[
−ηij

]
=

[
−η11 −η12
−η21 −η22

]
= n

[
λ
µ3 0

0 1
2λ2

]
. (A6)

Appendix C. For MLE Bias Correction

Using the equations of `ij and ηij, i, j = 1, 2, the analytic forms of ηijk and η
(k)
ij , i, j, k =

1, 2 are obtained and reported in Tables A1 and A2. The entries of the sub-matrices B(1)

and B(2) are evaluated and reported in Table A3.
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Table A1. The entries of ηijk, i, j, k = 1, 2.

η111 = E
(

∂`11
∂µ

)
= 6nλ

µ4 ; η112 = E
(

∂`11
∂λ

)
= − n

µ3 ;

η121 = E
(

∂`12
∂µ

)
= − n

µ3 ; η122 = E
(

∂`12
∂λ

)
= 0;

η211 = E
(

∂`21
∂µ

)
= − n

µ3 ; η212 = E
(

∂`21
∂λ

)
= 0;

η221 = E
(

∂`22
∂µ

)
= 0; η222 = E

(
∂`22
∂λ

)
= n

λ3

Table A2. The entries of η
(k)
ij , i, j, k = 1, 2.

η
(1)
11 =

∂η11
∂µ = 3nλ

µ4 ; η
(1)
12 =

∂η12
∂µ = 0;

η
(1)
21 =

∂η11
∂µ = 0; η

(1)
22 =

∂η12
∂µ = 0;

η
(2)
11 =

∂η11
∂λ = − n

µ3 ; η
(2)
12 =

∂η12
∂λ = 0;

η
(2)
21 =

∂η21
∂λ = 0; η

(2)
22 =

∂η22
∂λ = n

λ3 .

Table A3. The entries of B.

b(1)11 = η
(1)
11 −

1
2 η111 = 3nλ

µ4 − 6nλ
2µ4 = 0;

b(1)12 = η
(1)
12 −

1
2 η121 = 0 + nλ

2µ3 = nλ
2µ3 ;

b(1)21 = η
(1)
21 −

1
2 η211 = 0 + nλ

2µ3 = nλ
2µ3 ;

b(1)22 = η
(1)
22 −

1
2 η221 = 0.

b(2)11 = η
(2)
11 −

1
2 η112 = − n

µ3 +
n

2µ3 = − n
2µ3 ;

b(2)12 = η
(2)
12 −

1
2 η122 = 0;

b(2)21 = η
(2)
21 −

1
2 η212 = 0;

b(2)22 = η
(2)
22 −

1
2 η222 = n

λ3 − n
2λ3 = n

2λ3 .
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