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Abstract: The importance of Lagrangian distributions and their applicability in real-world events
have been highlighted in several studies. In light of this, we create a new zero-truncated Lagrangian
distribution. It is presented as a generalization of the zero-truncated binomial distribution (ZTBD)
and hence named the Lagrangian zero-truncated binomial distribution (LZTBD). The moments,
probability generating function, factorial moments, as well as skewness and kurtosis measures of the
LZTBD are discussed. We also show that the new model’s finite mixture is identifiable. The unknown
parameters of the LZTBD are estimated using the maximum likelihood method. A broad simulation
study is executed as an evaluation of the well-established performance of the maximum likelihood
estimates. The likelihood ratio test is used to assess the effectiveness of the third parameter in the new
model. Six COVID-19 datasets are used to demonstrate the LZTBD’s applicability, and we conclude
that the LZTBD is very competitive on the fitting objective.

Keywords: Lagrangian zero-truncated binomial distribution; index of dispersion; maximum likeli-
hood method; generalized likelihood ratio test; COVID-19; simulation
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1. Introduction

Certain discrete distributions whose support is a set of positive integers are known
as zero-truncated discrete distributions (ZTDDs). ZTDDs are used in ecology to represent
data relating to counts, such as the number of flower heads, fly eggs, European red mites,
or the number of times snowshoe hares were collected over seven days. These distributions
are also employed in sociology to simulate data such as the size of human groups in parks,
beaches, and public locations. As a result, ZTDDs have applications in practically every
discipline of study, including biology, medicine, psychology, demography, and political
science. In particular, the zero-truncated Poisson distribution (ZTPD) was used in [1] to
analyze the number of eggs and gall-cell counts in flower heads. The authors of [2] used the
ZTPD to model deer hunting in California. The author of [3] employed the zero-truncated
negative binomial distribution (ZTNBD) to model the number of children ever born to a
sample of moms over 40 years old; additionally, the authors of [4] used the ZTNBD in a
regression model to treat over-dispersed count data of ischemic stroke hospitalizations. The
author of [5] analyzed stroke count data based on the ZTPD, ZTNBD, and zero-truncated
generalized negative binomial distribution (ZTGNBD). The application of the ZTNBD in
the investigation of rare species abundance and hospital stays was discussed in [6]. The
authors of [7] considered the use of ZTBD as a randomization device.

Considering the health aspect, many different diseases, ranging from the ordinary cold
to much more dangerous ailments like Middle East Respiratory Syndrome (MERS) and
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Severe Acute Respiratory Syndrome (SARS), can be caused by the large family of viruses
known as coronaviruses. The first cases of novel coronavirus (COVID-19) were found
in Wuhan, China, in 2019 and the World Health Organization (WHO) has proclaimed it
to be a pandemic. A coordinated international effort has been launched to halt the virus
from spreading further, and the scientific community has contributed by starting various
investigations. When it comes to model phenomena, statisticians play a critical role, and
several attempts have already been made in the statistical literature. To estimate the daily
new COVID-19 instances in China, the author of [8] used a mathematical model called SIR
distribution. The authors of [9] developed a discrete version of the generalized Lindley
distribution to model the daily new cases and deaths in the COVID-19 count data. A
discrete type-2 half logistic exponential distribution was presented in [10] for estimating
the number of COVID-19 deaths in Pakistan and Saudi Arabia. To model COVID-19 data
in Singapore, the authors of [11] employed a discrete Marshall–Olkin inverted Topp–Leone
distribution. Following the discovery of such a widespread epidemic, at least one new
positive case is reported daily in practically all nations. To the best of our knowledge,
ZTDDs are the most appropriate statistical model for such a situation. As far as we know,
not even one statistician has attempted to model regularly occurring positive instances
using ZTDDs. Hence, in this article, our aim is to propose a novel ZTDD to model the daily
new positive cases. Furthermore, based on the same ZTDD, we also tried to model the
number of deaths attributable to COVID-19 in a day.

On the other hand, Lagrangian distributions are a subclass of Lagrangian expan-
sions, which were initially introduced in [12]. The authors of [13,14] introduced a discrete
Lagrangian family (DLF) of probability distributions, which encompasses a vast and impor-
tant class of probability distributions. It includes many families. Additionally, the authors
of [14] showed that, under certain conditions, all discrete Lagrangian distributions converge
to the normal and inverse Gaussian distributions. The author of [15], who discovered the
Lagrangian negative binomial distribution, demonstrated its utility in a queuing process.
The authors of [16] created the Lagrangian Katz family. The authors of [17] looked at how
Lagrangian probability distributions can be employed to solve inferential difficulties in
random mapping theory. The generalized Poisson gamma dependency model was devel-
oped in [18] using Lagrangian probability models. For collisional turbulent fluid-particle
flows, the authors of [19] used the Lagrangian probability density function (pdf) models.
The above-mentioned importance of the Lagrangian distributions immensely motivated us
to propose a new ZTDD based on the Lagrangian approach. Therefore, based on the La-
grangian technique, we propose a unique ZTDD known as the Lagrangian zero-truncated
binomial distribution (LZTBD) that can serve as a discrete model for a variety of count
datasets.

The remaining parts of the paper are organized as follows: Section 2 presents some
preliminaries of the Lagrangian probability distribution. In Section 3, we discuss the def-
inition and properties of the LZTBD. The finite mixture of the new Lagrangian model is
displayed in Section 4. In Section 5, we derive the maximum likelihood (ML) estimation
method to estimate the unknown parameters of the LZTBD. The significance of the ad-
ditional parameter is tested by using a generalized likelihood ratio test in Section 6. The
finite sample performance of the ML estimation method is analyzed in Section 7 with a
simulation study. Six real-world datasets are considered in Section 8 to demonstrate the
usefulness of the proposed model. The concluding remarks are given in Section 9.

2. Some Preliminaries

In order to introduce the DLF, we consider the following Lagrange expansion pre-
sented in [20,21]:

g2(z)

1− zg′1(z)
g1(z)

=
∞

∑
r=0

brur, (1)
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where u = z
g1(z)

, b0 = g2(0), br = 1
r! Dr{(g1(z))rg2(z)}|z=0, with Dr = dr

dzr and r =

0, 1, 2, 3, . . .
Consider the Lagrange expansion given in (1), where g1(z) and g2(z) are successively

differentiable analytic functions over [−1, 1] such that g1(1) = g2(1) = 1, g1(0) 6= 0, and
g2(0) ≥ 0. A new type of probability mass function (pmf) was defined in [13,22], and it is
indicated as follows:

P(X = r) =
br

∑∞
r=0 br

, r = 0, 1, 2, 3, . . . (2)

provided that ∑∞
r=0 br is finite.

Putting z = u = 1 into (1), we obtain

g2(1)
1− g′1(1)

=
1

1− g′1(1)
=

∞

∑
r=0

br,

which gives, from (2),

P(X = r) =
(1− g′1(1))Dr[{(g1(z))rg2(z)}]|z=0

r!
, r = 0, 1, 2, 3 . . . (3)

This pmf defined the DLF in the broad sense.
The corresponding probability generating function (pgf) is given by

Ψ(u) =
(1− g′1(z))g2(z)

1− zg′1(z)
g1(z)

, (4)

where z = u g1(z).
Given the applications of the DLF built with g1(z) and g2(z) in (3), it is worthwhile to

investigate additional horizon distributions using the new function g2(z). This is the basis
for the study’s updated distribution, which is shown below.

3. Construction of Lagrangian Zero-Truncated Binomial Distribution

The LZTBD is introduced in this section as a new member of the DLF.

Proposition 1. Assume that the random variable (rv) X follows the LZTBD, in which 0 < α <
β−1, 0 < β < 1 and γ > 0. Then, the pmf of X is given by

f (x) = P(X = x) =
(1− αβ)

[
(γ+αx

x )− (αx
x )
]

1− (1− β)γ
βx(1− β)γ+αx−x, x = 1, 2, 3 . . . , (5)

where (y
x) stands for the generalized binomial coefficient, that is (y

x) =
y(y−1)...(y−x+1)

x! .

Proof. Let g1(z) = (1− β + βz)α and g2(z) = (1−β+βz)γ−(1−β)γ

1−(1−β)γ which satisfy the state-
ments given in Section 2. Using the DLF given in (3), the pmf of the LZTBD can be derived
as follows:

f (x) = (1− g′1(1))
Dx[(g1(z))xg2(z)]

∣∣∣∣
z=0

x!

= (1− αβ)

Dx
[
(1− β + βz)αx (1−β+βz)γ−(1−β)γ

1−(1−β)γ

]∣∣∣∣
z=0

x!

=
(1− αβ)

[
(γ+αx

x )− (αx
x )
]

1− (1− β)γ
βx(1− β)γ+αx−x.
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Thus, the proof is completed.

The distribution described in (5) is denoted as LZTBD(α, β, γ), and one can note
X ∼ LZTBD(α, β, γ) to inform that an rv denoted by X follows the LZTBD with parameters
α, β, and γ. Some special cases from the LZTBD are described below:

• For α→ 0, the LZTBD(α, β, γ) reduces to the one-parameter ZTBD. In this sense, the
LZTBD is a generalization of the ZTBD;

• For γ = 1, LZTBD(α, β, γ) reduces to the Lagrangian weighted Consul distribution
given in [23].

Now, Figure 1 portrays the graphical representation of the LZTBD for different param-
eter values of α, β, and γ.

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

x

pm
f

α = 3

β = 0.1

γ = 7

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

pm
f

α = 3

β = 0.1

γ = 10

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x
pm

f

α = 3

β = 0.1

γ = 13

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

x

pm
f

α = 5

β = 0.1

γ = 7

0 5 10 15 20 25 30

0.
02

0.
04

0.
06

0.
08

0.
10

x

pm
f

α = 7

β = 0.1

γ = 7

0 5 10 15 20 25 30

0.
01

0
0.

01
5

0.
02

0
0.

02
5

x

pm
f

α = 9

β = 0.1

γ = 7

Figure 1. Cont.
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Figure 1. Various shapes of the probability mass function (pmf) of the LZTBD for different values of
the parameters.

The hazard rate function (hrf) of the LZTBD is obtained by substituting the pmf in the
following equation:

fx = P(X = x|X ≥ x) =
f (x)

∑∞
j=x f (j)

, x = 1, 2, 3, . . . (6)

Following (6), it goes without saying that determining the closed form expression of
the hrf is more difficult, although, in order to determine the shape of the hrf, we sketch its
graph. Figure 2 demonstrates the following facts about the shapes of the hrf of the LZTBD,
indicating that the LZTBD has all of the typical shapes, such as increasing, decreasing, and
bathtub shapes for varying parameter values.
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Figure 2. Various shapes of the hazard rate function (hrf) of the LZTBD for different parameter values.

Furthermore, the choice of various specific functions for g2(z) will provide various
members of DLF. In the following, we list some DLF distributions available in the literature.
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3.1. Poisson-Binomial Distribution

If we take g1(z) = (1− β + βz)α and g2(z) = eγ(z−1), based on (3), the pmf of the
considered distribution is obtained as

f1(x) =
Dx
[
(1− β + βz)αxeγ(z−1)

]∣∣∣
z=0

x!

=
(1− αβ)e−γγx(1− β)αx

x! 2F0

(
−x,−αx;

β

γ(1− β)

)
, x = 0, 1, 2, 3 . . . ,

where 2F0 is the hypergeometric function. Since their pmfs coincide, the corresponding
distribution is identified as the Poisson-binomial distribution (see [23]).

3.2. Weighted Consul Distribution

If we take g1(z) = (1− β+ βz)α and g2(z) = z, based on (3), the pmf of the considered
distribution can be derived as

f2(x) = (1− αβ)
Dx[(1− β + βz)αxz]

∣∣∣
z=0

x!

= (1− αβ)

(
αx

x− 1

)
βx−1(1− β)αx−x+1, x = 1, 2, 3 . . . ,

which is the pmf of the weighted Consul distribution (see [23]).

3.3. Weighted Delta Binomial Distribution

If we take g1(z) = (1− β + βz)α and g2(z) = zγ, based on (3), the pmf of the consid-
ered distribution is obtained as

f3(x) = (1− αβ)
Dx[(1− β + βz)αxzγ]

∣∣∣
z=0

x!

= (1− αβ)

(
αx

x− γ

)
βx−γ(1− β)αx−x+γ, x = γ, γ + 1, γ + 2 . . . ,

which corresponds to the pmf of the weighted delta binomial distribution (see [23]).

3.4. Linear Function Binomial Distribution

If we take g1(z) = (1− β + βz)α and g2(z) = (1− β + βz)γ, based on (3), the pmf of
the considered distribution can be derived as

f4(x) = (1− αβ)
Dx[(1− β + βz)αx(1− β + βz)γ]

∣∣∣
z=0

x!

= (1− αβ)

(
γ + αx

x

)
βx(1− β)γ+αx−x, x = 0, 1, 2 . . . ,

which is the pmf of the linear function binomial distribution (see [23]).

Proposition 2. Let X be an rv following the LZTBD. Then, the median of X is defined by the
smaller integer m greater or equal to 1 such that

m

∑
x=1

[(
γ + αx

x

)
−
(

αx
x

)]
βx(1− β)αx−x ≥ 1− (1− β)γ

2(1− β)γ(1− αβ)
. (7)

Proof. By the definition, m is the smallest integer in the support of the rv, i.e., {1, 2, . . .},
such that P(X ≤ m) ≥ 1

2 , which is equivalent to the desired result.
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Proposition 3. Let X be a rv following the LZTBD. Then, the mode of X, denoted by xm, exists in
{1, 2, . . .} and lies in the case:

η(xm + 1)
η(xm)

≤ 1
β(1− β)α−1 ≤

η(xm)

η(xm − 1)
, (8)

where η(xm) = (γ+α xm
xm

)− (α xm
xm

).

Proof. We must find the integer x = xm for which f (x) has the greatest value. That is,
we aim to solve f (x) ≥ f (x− 1) and f (x) ≥ f (x + 1). First, note that f (x) can also be
written as

f (x) =
(1− αβ)βx(1− β)γ+αx−xη(x)

1− (1− β)γ
,

where η(x) = (γ+αx
x )− (αx

x ).

Obviously, f (x) ≥ f (x− 1) implies that

η(x)
η(x− 1)

≥ 1
β(1− β)α−1 . (9)

Additionally, f (x) ≥ f (x + 1) implies that

η(x + 1)
η(x)

≤ 1
β(1− β)α−1 . (10)

By combining (9) and (10), we obtain (8).

Proposition 4. The pgf of an rv X following the LZTBD is expressed as

Ψ(u) = E(uX) =
(1− αβ){(1− β + βz)γ − (1− β)γ}

(1− (1− β)γ)
(

1− z αβ
1−β+βz

) , (11)

where z = u (1− β + βz)α.

Proof. Using (4), the pgf of the LZTBD is of the following form:

Ψ(u) =
(1− g′1(1))g2(z)(

1− zg′1(z)
g1(z)

) =
(1− αβ){(1− β + βz)γ − (1− β)γ}

(1− (1− β)γ)
(

1− z αβ
1−β+βz

) .

Thus, the proof is complete.

Corollary 1. The moment generating function (mgf) of an rv X following the LZTBD is obtained
by putting z = es and u = ek in (11). That is,

M(k) = E(ekX) =
(1− αβ){(1− β + βes)γ − (1− β)γ}

(1− (1− β)γ)
(

1− αβes

1−β+βes

) , (12)

where s = k + α log(1− β + βes).

Corollary 2. The cumulant generating function (cgf) of an rv X following the LZTBD becomes

C(k) = log[M(k)] = log

 (1− αβ){(1− β + βek)γ − (1− β)γ}
(1− (1− β)γ)

(
1− αβes

1−β+βes

)
, (13)
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where s = k + α log(1− β + βes).

Proposition 5. Let X1, X2, . . . , Xn be n independently and identically distributed (iid) rvs follow-
ing the LZTBD(α, β, γ). Then, the distribution of the random sum variable V = ∑n

i=1 Xi has the
following pgf:

Ψ1(u) =
(1− αβ)n{(1− β + βz)γ − (1− β)γ}n

(1− (1− β)γ)n
(

1− z αβ
1−β+βz

)n ,

where z = u (1− β + βz)α.

Proof. Based on the pgf of the LZTBD given in (11), the pgf of the rv V becomes

Ψ1(u) = E(uV) = E(uX1+X2+...+Xn) =
n

∏
i=1

E(uXi ) =
n

∏
i=1

Ψ(u) = [Ψ(u)]n

=
(1− αβ)n{(1− β + βz)γ − (1− β)γ}n

(1− (1− β)γ)n
(

1− z αβ
1−β+βz

)n .

This completes the proof.

Proposition 6. For any integer r ≥ 1, the rth factorial moment of an rv X following the
LZTBD(α, β, γ) is given by

µ[r] = E[X(X− 1)(X− 2) . . . (X− r + 1)]

=

{
(1− (1− β)γ)−1Dr(1− β + βz)γ

)

+

αβ ∑r
i=1(r− i + 1)µ[r−i]Di

(
u(1− β + βz)α−1

)
1− αβ

}∣∣∣∣
u=z=1

,

(14)

where z = u(1− β + βz)α.

Proof. By definition, the rth factorial moment of the LZTBD(α, β, γ) is obtained by suc-
cessively differentiating Ψ(u) given in (11) r times with respect to (wrt) u and by putting
u = z = 1. First, note that

(1− ug′1(z))Ψ(u) = (1− g′1(1))g2(z).

Taking the first derivative wrt u on both sides, we obtain

Ψ(u)D1(1− ug′1(z)) + Ψ′(u)(1− ug′1(z)) = (1− g′1(1))D1(g2(z)).

Taking the second derivative of the above equation wrt u on both sides, we obtain

Ψ(u)D2(1−ug′1(z))+ 2D1(1−ug′1(z))Ψ
′(u)+ (1−ug′1(z))Ψ

′′(u) = (1− g′1(1))D2(g2(z)).

Proceeding in a similar manner, the rth derivative is of the following form:

DrΨ(u) =
(1− g′1(1))Dr(g2(z))−∑r

i=1(r− i + 1)Di(1− ug′1(z))Dr−iΨ(u)
1− ug′1(z)

. (15)

Substitute g1(z) = (1− β + βz)α, g2(z) =
(1−β+βz)γ−(1−β)γ

1−(1−β)γ and z = u = 1, in (15), we
obtain (14).
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Proposition 7. The mean (µ) and variance (σ2) for the LZTBD are of the following forms, respec-
tively,

µ =
γβ

(1− (1− β)γ)(1− αβ)
+

αβ(1− β)

(1− αβ)2 (16)

and

σ2 =
αβ + (α2 − 3α)β2 + (2α− α2)β3 + 2α3β4

(1− αβ)4

+
γ2β2 + γβ(1− β)− γ2αβ3

(1− (1− β)γ)(1− αβ)3 −
γ2β2

(1− (1− β)γ)2(1− αβ)2 .
(17)

Proof. Using (14), we obtain

µ = E(X) =
g′2(1)

(1− g′1(1))
+

g′′1 (1) + g′1(1)− (g′1(1))
2

(1− g′1(1))
2

=
γβ

(1− (1− β)γ)(1− αβ)
+

αβ(1− β)

(1− αβ)2 .

On the other hand, we have

σ2 = E(X(X− 1)) + E(X)− (E(X))2

=
g′′2 (1) + g′2(1)− (g′2(1))

2

(1− g′1(1))
2 +

(1 + g′2(1))g′′1 (1) + g′1(1)− (g′1(1))
2)

(1− g′1(1))
3

+
g′′′1 (1) + g′1(1)g′′1 (1) + 2g′′1 (1)

(1− g′1(1))
3 +

2(g′′1 (1))
2

(1− g′1(1))
4

=
αβ + (α2 − 3α)β2 + (2α− α2)β3 + 2α3β4

(1− αβ)4

+
γ2β2 + γβ(1− β)− γ2αβ3

(1− (1− β)γ)(1− αβ)3 −
γ2β2

(1− (1− β)γ)2(1− αβ)2 .

The desired expressions are obtained.

A normalized measure of dispersion can be obtained by utilizing the variance-to-mean
relationship. This measure is the well-known index of dispersion (IOD). The next result
expressed it for the LZTBD, among others.

Proposition 8. The IOD and coefficient of variation (CV) for the LZTBD are given as, respectively,

IOD =

αβ+(α2−3α)β2+(2α−α2)β3+2α3β4

(1−αβ)4 + γ2β2+γβ(1−β)−γ2αβ3

(1−(1−β)γ)(1−αβ)3 −
γ2β2

(1−(1−β)γ)2(1−αβ)2

γβ
(1−(1−β)γ)(1−αβ)

+ αβ(1−β)
(1−αβ)2

(18)

and

CV =

√
αβ+(α2−3α)β2+(2α−α2)β3+2α3β4

(1−αβ)4 + γ2β2+γβ(1−β)−γ2αβ3

(1−(1−β)γ)(1−αβ)3 −
γ2β2

(1−(1−β)γ)2(1−αβ)2

γβ
(1−(1−β)γ)(1−αβ)

+ αβ(1−β)
(1−αβ)2

. (19)
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Proof. We have

IOD =
σ2

µ

=

αβ+(α2−3α)β2+(2α−α2)β3+2α3β4

(1−αβ)4 + γ2β2+γβ(1−β)−γ2αβ3

(1−(1−β)γ)(1−αβ)3 −
γ2β2

(1−(1−β)γ)2(1−αβ)2

γβ
(1−(1−β)γ)(1−αβ)

+ αβ(1−β)
(1−αβ)2

.

Analogously, the CV is given by

CV =

√
σ2

µ

=

√
αβ+(α2−3α)β2+(2α−α2)β3+2α3β4

(1−αβ)4 + γ2β2+γβ(1−β)−γ2αβ3

(1−(1−β)γ)(1−αβ)3 −
γ2β2

(1−(1−β)γ)2(1−αβ)2

γβ
(1−(1−β)γ)(1−αβ)

+ αβ(1−β)
(1−αβ)2

.

A probabilistic model’s asymmetry degree and flatness are commonly assessed by their
skewness and kurtosis coefficients, respectively. The third central moment, normalized by
the variance raised to the power of 3/2, can be used to calculate the first, whereas the fourth
central moment divided by the square of the variance can be used to calculate the second.
Mean, variance, CV, IOD, skewness, and kurtosis for selected values of parameters of the
LZTBD(α, β, γ) are summarized in Table 1. From this table, it is evident that the LZTBD possesses
both over-dispersion (IOD > 1) and under-dispersion (IOD < 1) for varying parameter values.
It is also noted that the LZTBD is mainly right-skewed, and has several kurtosis levels.

Table 1. Values of some moment measures of the LZTBD for various values of parameters α, β, and γ.

β γ α Mean Variance CV IOD Skewness Kurtosis

0.5 1 0.3 1.2802 0.1501 0.3026 0.1172 3.8847 14.6003
0.5 1.5555 0.4444 0.4285 0.2857 3.3511 10.1883
0.7 1.9526 1.2205 0.5657 0.6250 2.8561 6.9567
0.9 2.5619 3.4546 0.7254 1.3484 2.3669 4.3115
1.1 3.5802 10.7636 0.9163 3.0063 1.8712 2.1372

0.4 3 0.3 1.8323 0.7348 0.4678 0.4010 2.9568 7.4378
0.5 2.1007 1.1358 0.5073 0.5406 2.6612 5.7455
0.7 2.4499 1.8497 0.5551 0.7550 2.3650 4.2161
0.9 2.9189 3.2112 0.6139 1.1001 2.0624 2.8257
1.1 3.5750 6.0267 0.6866 1.6857 1.7492 1.5815

0.3 5 0.3 2.0574 1.0607 0.5005 0.5155 2.7004 5.9584
0.5 2.2665 1.4134 0.5242 0.6236 2.5057 4.9160
0.7 2.5178 1.9288 0.5515 0.7660 2.3089 3.9376
0.9 2.8245 2.7065 0.5824 0.9582 2.1084 3.0172
1.1 3.2056 3.9230 0.6178 1.2237 1.9027 2.1568

0.2 7 0.3 1.9389 1.0021 0.5163 0.5168 2.8934 7.2006
0.5 2.0671 1.2174 0.5337 0.5889 2.7471 6.3127
0.7 2.2113 1.4917 0.5523 0.6746 2.6045 5.5028
0.9 2.3745 1.8451 0.5720 0.7770 2.4639 4.7524
1.1 2.5601 2.3060 0.5931 0.9006 2.3242 4.0507

0.1 9 0.3 1.5433 0.5853 0.4957 0.3792 3.7718 13.9025
0.5 1.5963 0.6626 0.5099 0.4150 3.6638 13.0428
0.7 1.6526 0.7503 0.5241 0.4540 3.5590 12.2257
0.9 1.7123 0.8501 0.5384 0.4964 3.4572 11.4502
1.1 1.7757 0.9639 0.5528 0.5428 3.3580 10.7145
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4. Identifiability

Finite mixture models have received a lot of attention in recent years in real contexts.
In astronomy, biology, genetics, medicine, psychiatry, marketing, and other fields, mixture
models are widely utilized (see [24]). We derive finite mixtures of the LZTBD(α, β, γ) in this
section. This mixed model may be appropriate in the context of future initiatives.

Let Y be a discrete rv with the pmf h(y) = ∑
g
i=1 lihi(y), where i = 1, 2, ...g, li > 0

such that ∑
g
i=1 li = 1, hi(y) ≥ 0 and ∑y hi(y) = 1. Then, we state that Y has a mixture

distribution and h(y) is a finite mixture of distributions. The constants l1, l2, ..., lg are known
as mixing weights and h1(y), h2(y), . . . , hg(y), the components of the mixture. We denote
as Θ the collection of all distinct parameters in the components.

Let Σ = {U(y; θi) : θi ∈ Θ} be the class of pmf’s from which mixtures are to be
formed. Then, the class of finite mixtures of Σ with the appropriate class of pmf’s is
∆̂ = {∆(y) : ∆(y) = ∑

g
i=1 liU(y; θi), li > 0, U(y; θi) ∈ Σ, i = 1, 2, ...g}. So that ∆̂ is the

convex hull of Σ.

Definition 1. An intege-valued rv Y is said to have a g component mixture of the LZTBDs if it
has the pmf h(y) = P(Y = y) of the following form:

h(y) =
g

∑
i=1

lihi(y), (20)

where 0 ≤ li ≤ 1, for each i = 1, 2, 3 . . . , g, ∑
g
i=1 li = 1,

hi(y) =
(1− αiβi)[(

γi+αiy
y )− (αiy

y )] β
y
i (1− βi)

γi+αiy−y

(1− (1− βi)γi )
, y = 1, 2, . . . , (21)

with γi > 0, 0 ≤ αi < β−1
i and 0 < βi < 1 for each i = 1, 2, . . . , g.

A distribution with pmf given in (20) is called the Lagrangian zero-truncated binomial mixture
distribution with g components (LZTBMDg).

The following theorem from [25] is adopted to construct the identifiability conditions
of the finite mixture model.

Theorem 1. A necessary and sufficient condition for ∆̂ to be identifiable is that ∆ should be linearly
independent over the field of real numbers.

Proof. The proof is stated in [25], hence, it is not included here.

Next, applying Theorem 1, we outline the LZTBMDg’s identifiability requirements.

Theorem 2. The identifiability conditions for the LZTBMDg with the pmf h(y) as given in (20)
are αi 6= αj, βi 6= β j, and γi 6= γj for i, j ∈ {1, 2, . . . , g}, such that i 6= j.

Proof. For the first step, take g = 2 and consider the following equation:

b1F1(y) + b2F2(y) = 0, (22)

where b1 and b2 are any two arbitrary real numbers, F1(y) = ∑
y
j=1 h(j) and F2(y) =

∑
y
j=1 φ(j) for y = 1, 2, . . . , in which φ(j) is obtained from h(j) by replacing αj by τj , β j by

δj and γj by ωj.
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Assume that for each i = 1, 2 and αi 6= τi, βi 6= δi and γi 6= ωi. Thus, for l1 = l,
we have

F1(y) = l
y

∑
j=1

(1− α1β1)
[
(γ1+α1 j

j )− (α1 j
j )
]

β
j
1(1− β1)

γ1+α1 j−j

1− (1− β1)γ1

+ (1− l)
y

∑
j=1

(1− α2β2)
[
(γ2+α2 j

j )− (α2 j
j )
]

β
j
2(1− β2)

γ2+α2 j−j

1− (1− β2)γ2

(23)

and

F2(y) = l
y

∑
j=1

(1− τ1δ1)
[
(ω1+τ1 j

j )− (τ1 j
j )
]
δ

j
1(1− δ1)

ω1+τ1 j−j

1− (1− δ1)ω1

+ (1− l)
y

∑
j=1

(1− τ2δ2)
[
(ω2+τ2 j

j )− (τ2 j
j )
]
δ

j
2(1− δ2)

ω2+τ2 j−j

1− (1− δ2)ω2
.

(24)

Now, from (22)–(24), we obtain the following equations:

b1

y

∑
j=1

(1− α1β1)
[
(γ1+α1 j

j )− (α1 j
j )
]

β
j
1(1− β1)

γ1+α1 j−j

1− (1− β1)γ1

+ b2

y

∑
j=1

(1− τ1δ1)
[
(ω1+τ1 j

j )− (τ1 j
j )
]
δ

j
1(1− δ1)

ω1+τ1 j−j

1− (1− δ1)ω1
= 0

(25)

and

b1

y

∑
j=1

(1− α2β2)
[
(γ2+α2 j

j )− (α2 j
j )
]

β
j
2(1− β2)

γ2+α2 j−j

1− (1− β2)γ2

+ b2

y

∑
j=1

(1− τ2δ2)
[
(ω2+τ2 j

j )− (τ2 j
j )
]
δ

j
2(1− δ2)

ω2+τ2 j−j

1− (1− δ2)ω2
= 0.

(26)

Solving (25) and (26), we obtain

b1

y

∑
j=1

(1− α1β1)(1− τ2δ2)(β1δ2)
j(1− β1)

γ1+α1 j−j(1− δ2)
ω2+τ2 j−j

 [(γ1+α1 j
j )− (α1 j

j )][(
ω2+τ2 j

j )− (τ2 j
j )]

(1− (1− β1)γ1)(1− (1− δ2)ω2


= b1

y

∑
j=1

(1− α2β2)(1− τ1δ1)(β2δ1)
j(1− β2)

γ2+α2 j−j(1− δ1)
ω1+τ1 j−j

 [(γ2+α2 j
j )− (α2 j

j )][(
ω1+τ1 j

j )− (τ1 j
j )]

(1− (1− β2)γ2)(1− (1− δ1)ω1

.

(27)

Hence, by (27), we have b1 = 0 and thus, b2 = 0. Therefore, it may be inferred from
Theorem 2 that F1(y) and F2(y) are linearly independent. Now that the argument may be
applied to any positive integer g, the proof follows.
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Proposition 9. The pgf of the LZTBMDg given in (20) is indicated as

Ψ(u) =
g

∑
i=1

(1− αiβi){(1− βi + βizi)
γi − (1− βi)

γi}
(1− (1− βi)γi )(1− zi αi βi

1−βi+βi zi
)

, (28)

where zi = u (1− βi + βi zi)
αi .

Proof. The proof follows simply from Definition 1, given the pgf of the LZTBD mentioned
in (11).

5. Estimation of Parameters

In this section, we estimate the unknown parameters of the LZTBD by the ML estima-
tion method.

It is worth mentioning that the model corresponding to the LZTBD(α, β, γ) is a tri-
parametric model with parameters α, β, and γ. Let us have a random sample of size n from
LZTBD and let the observed frequency be nx, x = 1, 2, . . . , k, so that ∑k

x=1 nx = n, where
k is the largest of the observed value having non-zero frequencies. Then, the likelihood
function is given by

L =
k

∏
x=1

{
(1− αβ)βx(1− β)γ+αx−x[(γ+αx

x )− (αx
x )
]

(1− (1− β)γ)

}nx

.

Therefore, the log-likelihood function is given by

Ln = logL = n log(1− αβ) + n x log β + (nγ + nx(α− 1)) log(1− β)

− n log(1− (1− β)γ) +
k

∑
x=1

nx

{
log

[
x−1

∏
i=0

(γ + αx− i)−
x−1

∏
i=0

(αx− i)

]}

−
k

∑
x=1

nx log(x!),

where x = 1
n ∑k

x=1 xnx. The ML estimates (MLEs) are defined by maximizing Ln wrt the
parameters. Let us denote by α̂, β̂, and γ̂ the MLEs of α, β, and γ, respectively. On the
computational side, the score vector is

S =
(

∂Ln
∂α

∂Ln
∂β

∂Ln
∂γ

)T
,

where the partial derivatives of Ln wrt the parameters are

∂Ln

∂α
= nx log(1− β)− n β

1− αβ
+

k

∑
x=1

nx

∂
∂α

[
∏x−1

i=0 (γ + αx− i)−∏x−1
i=0 (αx− i)

]
∏x−1

i=0 (γ + αx− i)−∏x−1
i=0 (αx− i)

,

∂Ln

∂β
=

nx
β
− n α

(1− αβ)
− nγ + n(α− 1)x

1− β
− nγ(1− β)γ−1

1− (1− β)γ

and

∂Ln

∂γ
= n log(1− β) +

n γ (1− β)γ−1

1− (1− β)γ
+

k

∑
x=1

nx

∂
∂γ

[
∏x−1

i=0 (γ + αx− i)
]

∏x−1
i=0 (γ + αx− i)−∏x−1

i=0 (αx− i)
.

The MLEs can then be found by setting the score vector to zero, i.e., S = 0, and solving
them concurrently. These equations cannot be solved analytically, and the R statistical
software can be used to solve them numerically by means of iterative techniques such as
the Newton–Raphson algorithm.
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6. Likelihood Ratio Test

In this section, we test the significance of an additional parameter included in the
LZTBD using the generalized likelihood ratio test (GLRT) (see [26]).

More precisely, to test the significance of the parameter α of the LZTBD(α, β, γ), here,
we consider the GLRT procedure. The null hypothesis H0 : “X follows the ZTBD” against
the alternative hypothesis H1 : “X follows the LZTBD”. Here, the test statistic is given by

− 2 log λ∗ = 2
(
Ln(Θ̂)−Ln(Θ̂∗)

)
, (29)

where Θ̂ is the vector of MLEs of Θ = (α, β, γ) with no constraints, and Θ̂∗ is the MLEs of
Θ under H0.

7. Simulation

We perform a simulation study by generating observations employing the R software
to examine the asymptotic behavior of the MLEs of the parameters of the LZTBD. Here, we
apply the inverse transformation method to simulate a LZTBD random sample (see [27]).
The algorithm is as follows:

Step 1: Generate a random number from the uniform U(0, 1) distribution.

Step 2: i = 1, P = (1− αβ) β γ (1− β)γ+α−1, F = P.

Step 3: If U < F, set X = i and stop.

Step 4: P = P× β(1−β)α−1(γ+αi)(γ+α(i+1)
i+1 )

(γ+α(i+1))(γ+αi
i )

, F = F + P, i = i + 1.

Step 5: Go to Step 3.

Conceptually, P is the probability that X = i, and F is the probability that X is less than or
equal to i.

Additionally, indices such as MLEs, absolute biases, and mean squared errors (MSEs)
are calculated using the following equations:

• Average value of MLEs: MLE(â) = 1
N ∑N

i=1 âi.
• Absolute average bias: Bias(â) = 1

N ∑N
i=1 |âi − a|.

• MSE: MSE(â) = 1
N ∑N

i=1(âi − a)2.

Here, a = α or β or γ, and the index i represents the ith generated sample. The
simulation takes into account sample sizes of n = 15, 50, 175, 500, and 1000 for two different
sets of parameter values of the LZTBD. We repeat the process N = 1000 times and report
the estimates and MSEs in Table 2. From this table, one can infer that the estimates are quite
stable and, more precisely, close to the true parameter values for these sample sizes. A
decreasing trend is being observed in the absolute average bias and MSEs as we increase the
sample size. Hence, the performance of the ML estimation is quite consistent and reliable.

Table 2. The maximum likelihood estimates (MLEs) simulation results for the parameters α, β, and γ.

Parameter Set Sample Size Paramters Estimates Absolute Bias MSE

α = 0.5, β = 0.16, γ = 2.51 n = 15 α 4.3060 3.8060 20.4138
β 0.0838 0.0761 0.0138
γ 1.0452 1.4647 2.7145

n = 50 α 1.2245 0.7245 0.9985
β 0.1302 0.0297 0.0046
γ 1.3618 1.1481 2.0105

n = 175 α 0.6913 0.1913 0.2249
β 0.1582 0.0017 0.0019
γ 1.9122 0.5977 1.6952
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Table 2. Cont.

Parameter Set Sample Size Paramters Estimates Absolute Bias MSE

n = 500 α 0.4476 0.0523 0.0665
β 0.1586 0.0013 0.0012
γ 2.8752 0.3652 0.4870

n = 1000 α 0.4918 0.0081 0.0243
β 0.1609 0.0009 0.0007
γ 2.5054 0.0049 0.3329

α = 1.1, β = 0.05, γ = 0.58 n = 15 α 5.4405 4.3405 22.0280
β 0.0429 0.0080 0.0016
γ 0.7075 1.1275 2.5269

n = 50 α 1.2827 0.0627 0.0805
β 0.0614 0.0079 0.0004
γ 0.9028 0.3228 2.1591

n = 175 α 1.3129 0.0529 0.0802
β 0.0421 0.0078 0.0003
γ 0.2129 0.2639 1.8871

n = 500 α 1.0494 0.0505 0.0754
β 0.0566 0.0066 0.0003
γ 0.6411 0.0611 0.2654

n = 1000 α 1.0234 0.0302 0.0752
β 0.0660 0.0030 0.0003
γ 0.6112 0.0312 0.1333

8. Applications and Empirical Study

The aim of this section is to show the empirical importance of the LZTBD. We employ
six genuine datasets to apply the superiority of the LZTBD fit to the more notable fields of
COVID-19 with different nations, including Italy, Senegal, Pakistan, Saudi Arabia, Belgium,
and Ethiopia. The graphical method used to determine the hrf of the data set is based on the
Total Time on Test (TTT). Convex, concave, convex-then-concave, and concave-then-convex
empirical TTT plots correspond to decreasing, increasing, bathtub shape, and upside-down
bathtub shape for the corresponding hrf, respectively (see [28]). We employ the statistical
software R to evaluate these datasets numerically. To show the possible benefit of the
LZTBD, the distributions below are depicted:

• ZTBD with parameters β and γ, which has the following pmf:

f5(x) =
(

γ

x

)
βx (1− β)γ−x

1− (1− β)x , x = 1, 2, 3 . . .

• Zero-truncated generalized binomial distribution (ZTGBD) with parameters α, β, and
γ with the following pmf:

f6(x) =
γ

γ + αx

(
γ + αx

x

)
βx(1− β)γ+αx−x

1− (1− β)γ
, x = 1, 2, 3 . . .

• Zero-truncated discrete two parameter Poisson–Lindley distribution (ZTDTPPLD)
with parameters γ and β (see [29]), which have the following pmf:

f7(x) =
γ2

γ2 + 2γβ + γ + β

βx + γ + β + 1
(γ + 1)x , x = 1, 2, 3 . . .
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• Zero-truncated Poisson–Lindley distribution (ZTPLD) with parameters α (see [30]),
which has the following pmf:

f8(x) =
α2(x + α + 2)

(α2 + 3α + 1)(α + 1)x , x = 1, 2, 3, . . .

• Intervened generalized Poisson distribution (IGPD) with parameters α, β, and γ
(see [31]), which has the following pmf:

f9(x) =
α
{
(1 + γ)((1 + γ)α + βx)x−1 − γ(γα + βx)x−1

}
eαγ+βx(eα − 1)x!

, x = 1, 2, 3 . . .

8.1. COVID-19 Data Set from Italy

Italy’s 61-day COVID-19 data collection, conducted from 13 June to 12 August 2021,
is accessible in [11]. Daily newly reported cases are included in this data collection. The
descriptive measures of the real data set, which include sample size (n), minimum (min),
first quartile (Q1), median (Md), third quartile (Q3), maximum (max), and inter-quartile
range (IQR) are given in Table 3.

Table 3. Descriptive statistics for the COVID-19 data set of Italy.

Statistic n min Q1 Md Q3 max IQR

Values 61 3 13 21 28 63 15

In addition, Figure 3 shows an empirical TTT plot of the data, from which we deduce
an increasing hrf.
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Figure 3. Total Time on Test (TTT) plot for the COVID-19 data set of Italy.

We compare the competitive distributions to the LZTBD using the statistical techniques
provided, namely, the negative log-likelihood (− log L), Akaike information criterion (AIC),
Bayesian information criterion (BIC), andχ2 statistic. Table 4 displays the corresponding
MLEs, model adequacy measures, and χ2 values. The LZTBD has lower model adequacy
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measures and χ2 values than the other distributions studied, as shown in Table 4. As a
result, the suggested model is the most appropriate for modeling the given COVID-19 data.
It is interesting to note that the empirical mean, variance, and IOD of this COVID-19 data
set are 22.6229, 160.3388, and 7.0874, respectively, and the theoretical values for the mean,
variance, and IOD measures of the LZTBD are 21.6234, 160.3248, and 7.4144, respectively.
Thus, the empirical and theoretical means are almost the same, and the empirical and
theoretical variances and IOD values are close to each other.

Table 4. Maximum likelihood estimates (MLEs), model adequacy measures and χ2 values for the
COVID-19 data set of Italy.

Model ZTBD ZTDTPPLD ZTPLD ZTGBD IGPD LZTBD

MLE γ = 63 γ = 0.0858 α = 0.0859 α = 1.0276 α = 6.8936 α = 1.0150
β = 0.3587 α = 0.9999 β = 0.8142 β = 0.6298 β = 0.8302

γ = 4.5332 γ = 0.2134 γ = 3.1778

− log L 485.9380 239.8677 239.8677 234.5301 234.6429 234.5071

χ2 12394.92 262.6835 262.6844 203.2570 205.0283 203.2323

d f 7 6 7 5 5 4

AIC 973.8760 483.7375 481.7355 475.0602 475.2857 475.0141

BIC 975.9869 487.9572 483.8463 481.3928 481.6184 481.3468

In the case of GLRT, the calculated value based on the test statistic (29) is 2(−234.5071+
485.9380) = 251.4309 (p-value = 0.0001). As a result, at any level greater than 0.0001, the
null hypothesis is rejected in favor of the alternative hypothesis. Hence, we conclude that
the additional parameter α in the LZTBD is significant in light of the test procedure outlined
in Section 6.

8.2. COVID-19 Data Set from Senegal

The LZTBD is fitted to another set of data for the COVID-19 in Senegal for 56 days of
infection, which was recorded from 29 March 2021 to 23 May 2021. These data, which show
the daily incidence of COVID-19 cases, were gathered by the World Health Organization
(WHO) and are accessible at http://covid19.who.int/data, (accessed on 24 August 2022).
Table 5 includes some information as well as descriptive statistics for these data.

Table 5. Descriptive statistics for the COVID-19 data set of Senegal.

Statistic n min Q1 Md Q3 max IQR

Values 56 15 30.75 45.50 62.50 107 31.75

In addition, Figure 4 shows an empirical TTT plot of the data from which an increasing
hrf is revealed.

We compare the competitive distributions to the suggested distribution using the
statistical techniques provided, specifically, the − log L, AIC, BIC, and χ2 values. Table 6
displays the corresponding MLEs, model adequacy measures, and χ2 values of the LZTBD.
The LZTBD’s model adequacy measures and χ2 values are less than those of the other
examined models. As a result, the suggested model is the most appropriate for modeling
the COVID-19 data from Senegal. It is worth noting that the empirical mean, variance,
and IOD of these COVID-19 datasets are 46.54, 394.326, and 8.47, respectively, and the
theoretical values for the mean, variance, and IOD measures of the LZTBD are 46.4, 394.324,
and 8.49, respectively. Thus, the empirical and theoretical means are almost the same, and
the empirical and theoretical variances and IOD values are very close to each other.

In the case of GLRT, the calculated value based on the test statistic (29) is 2(−244.0212+
584.8307) = 340.8095 (p-value = 0.0004). As a result, at any level greater than 0.0004, the
null hypothesis is rejected in favor of the alternative hypothesis. Hence, we conclude that

http://covid19.who.int/data
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the additional parameter α in the LZTBD is significant in light of the test procedure outlined
in Section 6.
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Figure 4. Total Time on Test (TTT) plot for the COVID-19 data set of Senegal.

Table 6. Maximum likelihood estimates (MLEs), model adequacy measures, and χ2 value for the
Senegal data set.

Model ZTBD ZTDTPPLD ZTPLD ZTGBD IGPD LZTBD

MLE γ = 107 γ = 0.9999 α = 0.0420 α = 1.0000 α = 0.6689 α = 1.000
β = 0.4349 α = 0.0422 β = 0.8838 β = 1.7954 β = 0.8838

γ = 6.1135 γ = 5.5010 γ = 5.1175

− log L 584.8307 256.4383 256.6182 244.0218 244.2461 244.0212

χ2 702.1028 × 104 547.6933 549.2564 396.7983 404.4258 396.7792

d f 7 6 7 5 5 5

AIC 1171.661 516.8765 515.2363 494.0436 494.4922 494.0424

BIC 1173.687 520.9272 517.2617 500.1196 500.5682 500.1184

8.3. COVID-19 Data Set from Pakistan

The LZTBD is fitted to another set of data for the COVID-19 in Pakistan for 95 days
of infection, which was recorded from 23 May 2021 to 25 August 2021. These data, which
are available at http://covid19.who.int/data, (accessed on 24 August 2022), were acquired
by the WHO and show the daily incidence of COVID-19 cases. Table 7 contains some
information and descriptive statistics for these data.

Table 7. Descriptive statistics for the COVID-19 data set of Pakistan.

Statistic n min Q1 Md Q3 max IQR

Values 95 11 33 47 73 102 40

In addition, Figure 5 shows an empirical TTT plot of the data, showing an increas-
ing hrf.

http://covid19.who.int/data
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Figure 5. Total Time on Test (TTT) plot for the COVID-19 data set of Pakistan.

Using the statistical methods offered, specifically the − log L, AIC, BIC, and χ2 values,
we compare the competing distributions to the suggested distribution. Table 8 displays
the corresponding MLEs, model adequacy measures, and χ2 values of the LZTBD. The
LZTBD’s model adequacy measures and χ2 values are less than those of the other examined
models. The suggested model is, therefore, the most suitable one to model the COVID-19
data from Pakistan. In addition, let us mention that the empirical mean, variance, and
IOD of this COVID-19 dataset are 52.6842, 538.5801, and 10.2228, respectively, and the
theoretical values for the mean, variance, and IOD measures of the LZTBD are 52.6704,
538.5509, and 10.2249, respectively. We thus observe that the empirical and theoretical
means are almost equal, and the empirical and theoretical variances and IOD values are
very close to each other.

In the case of GLRT, the calculated value based on the test statistic (29) is 2(−431.4451+
1313.275) = 881.8299 (p-value = 0.0001). As a result, at any level greater than 0.0001, the
null hypothesis is rejected in favor of the alternative hypothesis. Hence, we conclude that
the additional parameter α in the LZTBD is significant in light of the test procedure outlined
in Section 6.

Table 8. Maximum likelihood estimates (MLEs), model adequacy measures, and χ2 value for the
Pakistan data set.

Model ZTBD ZTDTPPLD ZTPLD ZTGBD IGPD LZTBD

MLE γ = 102 γ = 0.9999 α = 0.0372 α = 1.0000 α = 0.7132 α = 1.0000
β = 0.5165 α = 0.0373 β = 0.9107 β = 0.8605 β = 0.9109

γ = 5.1609 γ = 8.1173 γ = 4.1502

− log L 1313.275 441.8371 448.0789 431.447 432.5312 431.4451

χ2 3454.6107 × 104 849.5348 851.525 647.5694 661.2751 647.3886

d f 8 7 8 6 6 6

AIC 2628.551 899.6741 898.1577 868.8939 871.0625 868.8902

BIC 2631.104 904.7819 900.7116 876.5556 878.7241 876.5518



Stats 2022, 5 1023

8.4. COVID-19 Data Set from Saudi Arabia

The LZTBD is fitted to another set of data of COVID-19 mortality numbers in Saudi
Arabia for 83 days of infection, which was recorded from 30 May to 20 August 2020. The
WHO gathered these data, which represent the number of deaths per day, and they are
available at http://covid19.who.int/data, (accessed on 24 August 2022). Table 9 contains
some information and descriptive statistics for these data.

Table 9. Descriptive statistics for the COVID-19 data set of Saudi Arabia.

Statistic n min Q1 Md Q3 max IQR

Values 83 17 32 37 41 58 9

In addition, Figure 6 shows an empirical TTT plot of the data and it shows an
increasing hrf.
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Figure 6. Total Time on Test (TTT) plot for the COVID-19 data set of Saudi Arabia.

We compare the competitive distributions to the suggested distribution using the
statistical techniques provided, specifically, the − log L, AIC, BIC, and χ2 values. Table 10
displays the corresponding MLEs, model adequacy measures, and χ2 values of the LZTBD.
The LZTBD’s model adequacy measures and χ2 values are less than those of the other
examined models. For modeling the COVID-19 data from Saudi Arabia, the suggested
model is therefore the most suitable. Furthermore, the empirical mean, variance, and the
IOD values of this COVID-19 dataset are 36.9277, 70.5313, and 1.9099, respectively, and
the theoretical values for the mean, variance, and IOD measures of the LZTBD are 36.8724,
71.0567, and 1.9270, respectively. Hence, the empirical and theoretical means are almost
the same, and the empirical and theoretical variances and IOD values are very close to
each other.

In the case of GLRT, the calculated value based on the test statistic (29) is 2(−294.288 +
415.1392) = 120.8512 (p-value = 0.0002). As a result, at any level greater than 0.0002, the
null hypothesis is rejected in favor of the alternative hypothesis. Hence, we conclude that
the additional parameter α in the LZTBD is significant in light of the test procedure outlined
in Section 6.

http://covid19.who.int/data
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Table 10. Maximum likelihood estimates (MLEs), model adequacy measures, and χ2 value for the
Saudi Arabia data set.

Model ZTBD ZTDTPPLD ZTPLD ZTGBD IGPD LZTBD

MLE γ = 58 γ = 0.9999 α = 0.0530 α = 1.00008 α = 10.1672 α = 1.000026
β = 0.6365 α = 0.0530 β = 0.4774 β = 0.2780 β = 0.4797

γ = 40.4100 γ = 1.6222 γ = 39.0503

− log L 415.1392 356.3418 356.3418 294.289 294.3522 294.288

χ2 2928.725 486.2035 486.2029 150.3025 150.2124 143.2237

d f 7 6 7 5 5 4

AIC 832.2784 716.6837 714.6836 594.5770 594.7044 594.5763

BIC 834.6973 721.5213 717.1025 601.834 601.9609 601.8328

8.5. COVID-19 Data Set from Belgium

A different set of data on the COVID-19 infection in Belgium for 425 days (more than
a year), which was recorded from 22 July 2021 to 19 September 2022, is fitted using the
LZTBD. The WHO gathered these data, which represent the number of deaths per day,
and are accessible at http://covid19.who.int/data, (accessed on 24 August 2022). Table 11
contains some information and descriptive statistics for these data.

Table 11. Descriptive statistics for the COVID-19 data set of Belgium.

Statistic n min Q1 Md Q3 max IQR

Values 425 1 7 13 24 66 17

In addition, Figure 7 shows an empirical TTT plot from which we can distinguish an
increasing hrf.
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Figure 7. Total Time on Test (TTT) plot for the COVID-19 data set of Belgium.

http://covid19.who.int/data
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We compare the competitive distributions to the suggested distribution using the
statistical techniques provided, specifically, the -log L, AIC, BIC, and χ2 values. Table 12
displays the corresponding MLEs, model adequacy measures, and χ2 values of the LZTBD.
The LZTBD’s model adequacy measures and χ2 values are less than those of the other
examined models. As a result, the suggested model is the most appropriate for modeling
the COVID-19 data from Belgium. It is worth noting that the empirical mean, variance,
and IOD of this COVID-19 dataset are 17.122, 178.419, and 10.420, respectively, and the
theoretical values for the mean, variance, and IOD measures of the LZTBD are 17.213,
178.412, and 10.365, respectively. Thus, the empirical and theoretical means are almost
the same, and the empirical and theoretical variances and IOD values are very close to
each other.

Table 12. Maximum likehood estimates (MLEs), model adequacy measures and χ2 value for the
Belgium data set.

Model ZTBD ZTDTPPLD ZTPLD ZTGBD IGPD LZTBD

MLE γ = 66 γ = 0.9568 α = 0.1109 α = 1.2600 α = 0.7212 α = 1.1254
β = 0.2594 α = 0.1128 β = 0.6599 β = 0.5740 β = 0.7483

γ = 4.3279 γ = 2.9265 γ = 1.6206

− log L 3825.833 1604.421 1612.689 1602.449 1602.091 1601.074

χ2 3338.99 1049.849 1049.988 1068.491 1079.062 1049.466

d f 12 11 12 10 10 10

AIC 7653.665 3212.841 3227.379 3210.898 3210.181 3208.149

BIC 7657.717 3220.946 3231.431 3223.054 3222.338 3220.466

In the case of GLRT, the calculated value based on the test statistic (29) is 2(−1601.074+
3825.833) = 2224.759 (p-value = 0.0012). As a result, at any level greater than 0.0012, the
null hypothesis is rejected in favor of the alternative hypothesis. Hence, we conclude that
the additional parameter α in the LZTBD is significant in light of the test procedure outlined
in Section 6.

8.6. COVID-19 Data Set from Ethiopia

The LZTBD is fitted to another set of data on the COVID-19 infection in Ethiopia for
301 days, which was recorded from 25 August 2020 to 21 June 2021. The WHO collected
these data, which represent the number of deaths per day, and are accessible at http:
//covid19.who.int/data, (accessed on 24 August 2022). Table 13 contains some information
and descriptive statistics for these data.

Table 13. Descriptive statistics for the COVID-19 data set of Ethiopia.

Statistic n min Q1 Md Q3 max IQR

Values 301 1 6 10 15 47 9

As an additional result, Figure 8 shows an empirical TTT plot of the data, where an
increasing hrf can be seen.

http://covid19.who.int/data
http://covid19.who.int/data
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Figure 8. Total Time on Test (TTT) plot for the COVID-19 data set of Ethiopia.

We use the statistical techniques provided to compare the competitive distributions
to the suggested distribution, specifically, the − log L, AIC, BIC, and χ2 values. Table 14
displays the corresponding MLEs, model adequacy measures, and χ2 values of the LZTBD.
The LZTBD’s model adequacy measures and χ2 values are less than those of the other
examined models. The suggested model is therefore the most suitable one to model the
Ethiopian COVID-19 data. In addition, it is found that the empirical mean, variance, and
IOD of this COVID-19 dataset are 11.973, 67.00, and 5.5959, respectively, and the theoretical
values for the mean, variance, and IOD measures of the LZTBD are 11.891, 67.02, and
5.6361, respectively. Thus, the empirical and theoretical means are almost equal, and the
empirical and theoretical variances and IOD values are very close to each other.

In the case of GLRT, the calculated value based on the test statistic (29) is 2(1003.902 +
1680.734) = 676.832 (p-value = 0.0002). As a result, at any level greater than 0.0002, the null
hypothesis is rejected in favor of the alternative hypothesis. Hence, we conclude that the
additional parameter α in the LZTBD is significant in light of the test procedure outlined in
Section 6.

Table 14. Maximum likelihood estimates (MLEs), model adequacy measures, and χ2 value for the
Ethiopia data set.

Model ZTBD ZTDTPPLD ZTPLD ZTGBD IGPD LZTBD

MLE γ = 15 γ = 0.9999 α = 0.1554 α = 2.0201 α = 0.5923 α = 1.1256
β = 0.2547 α = 0.1610 β = 0.3261 β = 0.4168 β = 0.6681

γ = 12.4252 γ = 3.3590 γ = 2.8021

− log L 1680.734 1011.388 1022.044 1004.179 1003.939 1003.902

χ2 16363.17 326.5928 346.5871 298.3448 298.8601 294.8328

d f 10 9 10 8 8 8

AIC 3363.467 2026.776 2046.087 2014.358 2013.878 2013.803

BIC 3367.175 2034.190 2049.794 2025.480 2025.00 2024.925
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9. Conclusions

In this article, we used the Lagrange expansion to elaborate a new three-parameter
distribution called the Lagrangian zero-truncated binomial distribution (LZTBD). It is
worth noting that the proposed distribution is a generalized form of the well-known zero-
truncated binomial distribution and the Lagrangian weighted Consul distribution. In
particular, we paid close attention to the LZTBD. We investigated the shape properties
of the probability mass and hazard functions. The expressions for the factorial moments,
generating functions, mean, and median were derived. The identifiability of the LZTBD
model was also proved. The LZTBD’s model parameters are estimated using the maximum
likelihood estimation method. A study employing the simulation technique was also
performed to show how well the maximum likelihood estimates are performing. Six actual
datasets were used to validate the applicability and demonstrate that the LZTBD offers a
superior fit to the competing models.
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