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Abstract: Games of chance have historically played a critical role in the development and teaching
of probability theory and game theory, and, in the modern age, computer programming and rein-
forcement learning. In this paper, we derive the optimal strategy for playing the two-dice game
Pig, both the standard version and its variant with doubles, coined “Double-Trouble”, using cer-
tain fundamental concepts of reinforcement learning, especially the Markov decision process and
dynamic programming. We further compare the newly derived optimal strategy to other popular
play strategies in terms of the winning chances and the order of play. In particular, we compare to
the popular “hold at n” strategy, which is considered to be close to the optimal strategy, especially
for the best n, for each type of Pig Game. For the standard two-player, two-dice, sequential Pig
Game examined here, we found that “hold at 23” is the best choice, with the average winning chance
against the optimal strategy being 0.4747. For the “Double-Trouble” version, we found that the “hold
at 18” is the best choice, with the average winning chance against the optimal strategy being 0.4733.
Furthermore, time in terms of turns to play each type of game is also examined for practical purposes.
For optimal vs. optimal or optimal vs. the best “hold at n” strategy, we found that the average
number of turns is 19, 23, and 24 for one-die Pig, standard two-dice Pig, and the “Double-Trouble”
two-dice Pig games, respectively. We hope our work will inspire students of all ages to invest in the
field of reinforcement learning, which is crucial for the development of artificial intelligence and
robotics and, subsequently, for the future of humanity.

Keywords: dynamic programming; game theory; Markov decision process; optimization; two-dice
pig game; value iteration

1. Introduction

Games of chance have always played a crucial role in the development and teach-
ing of probability (Dagobert, 1946; Rubel, 2008) [1,2], game theory (Brokaw and Mertz,
2004) [3] and now, increasingly, computer programming (Dlab and Hoic-Bozic, 2021) [4],
machine learning (Hazra and Anjaria, 2022) [5], and especially reinforcement learning
(Konstantia et al., 2018; Zha et al., 2021) [6,7]. Games of chance can be viewed as simpli-
fied versions of real-world problems. Developing algorithms for their optimal solutions
can often inspire the subsequent solutions to real-world problems, as shown in AlphaGo
(Silver et al., 2016) [8] and AlphaFold (Jumper et al., 2021) [9]. Among the various games of
chance, one common type is dice games in which six-sided dice are involved prominently
in the play of the game. There are over 40 common types of dice games, including Yahtzee,
backgammon, and the dice game Pig, which we shall focus on in this work. Back in 1979,
a reinforcement learning algorithm-based AI backgammon player famously beat the world
champion at all games for the first time (Berliner, 1980) [10]. This was tremendous and has
since inspired and propelled the development of increasingly more-sophisticated reinforce-
ment learning algorithms and applications not only in games, but also various real-world
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applications [11–20]. In the following, we focus on developing optimal play strategies for
the two-dice game of Pig using ingredients of reinforcement learning.

The dice game Pig was first documented in the book Scarne on Dice by the American
magician John Scarne in 1945 [21]. There, Scarne introduced the one-die Pig game with
a simple rule of play: Two players race to reach a certain point total, say 100 points,
and the first one to reach the said total wins the game. At each turn, a player repeatedly
rolls a die until either a one is rolled (and the player scores nothing for that turn and it
becomes the opponent’s turn), or the player holds out of his/her own volition and scores
the sum of all the rolls in that turn. That is, at any time during a player’s turn, the player is
faced with two decisions: roll or hold. If the player rolls a 1, he/she must stop, and the turn
total will be 0. If the player rolls a number other than 1, namely, 2 to 6, this number will be
added to the turn total, and the player can again choose to roll or hold; if they choose to
hold, it becomes the opponent’s turn. Pig is a “jeopardy dice game”, as one can jeopardize
his/her previous gains by continuing to roll for greater gains (if the next roll is not 1)
or ruin (if 1 is rolled) [22]. The one-die Pig game is simple, but the optimal strategy to
play this simple game is not so simple and has only been solved in recent years using the
Markov decision process and dynamic programming [23,24]. These authors even wrote an
online interactive app so that people can play one-die Pig with the computer (accessed on 1
June 2022): http://cs.gettysburg.edu/projects/pig/piggame.html.

The one-die Pig game has since evolved into several variations, with the most popular
one being the two-dice Pig game, where two dice are rolled instead of one. Commercial
variants of the two-dice Pig game include Pass the Pigs, Pig Dice, and Skunk. Being a more
complicated setting than the one-die Pig game, the optimal strategy of two-dice Pig had
not been derived prior to our work. The only attempt back in 1973 yielded sub-optimal
strategies [25]. In this work, we derive the optimal strategy for the original version of
the two-dice Pig game using the Markov decision process and dynamic programming.
The objective of two-dice Pig remains the same as the one-die game: the first player to
reach the said total points, say 100 points, wins. Each player’s turn consists of repeatedly
rolling two dice. After each roll, the player is faced with the same two choices: roll or hold.
The rules of play for the standard two-dice Pig are summarized in Figure 1:

If the player holds, the turn total, which is defined as the sum of the rolls during the
turn, is added to the player’s score, and it becomes the opponent’s turn.

If the player rolls, then one of the following applies: If neither die shows a one, his/her
sum is added to the turn total, and the player’s turn continues. If a single one is rolled,
the player’s turn ends with the loss of his/her turn total. If two ones are rolled, the player’s
turn ends with the loss of his/her turn total as well as his/her entire score.

Figure 1. Rules of play for standard two-dice Pig.

http://cs.gettysburg.edu/projects/pig/piggame.html
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2. Reinforcement Learning
2.1. General Background

Reinforcement learning is a computational approach to understanding and automating
goal-directed learning and sequential decision making. It starts with a complete, interactive,
goal-seeking agent. An interactive environment for reinforcement learning is formally
described as a Markov decision process (MDP). An agent may include one or more of the
following components: 1. Policy, which determines how the agent will behave; 2. Value
function, which measures how good a state or a state-action pair is; and 3. Model, which
predicts what the environment will do next, reflecting the agent’s representation of the
environment. Inclusion or exclusion of Component 3 divides the reinforcement learning
methods into two categories: model-based methods and model-free methods. For model-
based methods, the key feature is that the transition probability from the current state to next
state is known. Dynamic programming (DP) is then one of the general solutions for such
planning problems. On the other hand, if full knowledge of an MDP cannot be obtained,
e.g., the transition probability is unknown, then Monte Carlo (MC) learning and temporal
difference (TD) learning are two powerful approaches to both estimating and optimizing
the value function of an unknown MDP. Unlike DP, which performs computations with its
model, these two methods learn directly from episodes of experience.

2.2. Markov Decision Process Formulation and Value Iteration

The standard two-dice Pig game can be solved using reinforcement learning, as we
are interested in the long-term reward—winning the game. In particular, we can model the
game process as an agent–environment interaction. Furthermore, the game can be viewed
as an MDP as, given the current state, the action is independent of the past states. The state
s = (i, j, k) contains three elements: Player A’s entire score i, the opponent Player B’s score
j, and the turn total k. Given such state s, Player A has two options: roll or hold. The roll
action is coded as 1, while the hold action is coded as 0, i.e., A = {0, 1}. For any two states
s, s′ ∈ S (not necessarily different) and any action a ∈ A, there is a transition probability
p(s′|s, a) such that taking action a will change the state from s to s′. The immediate reward
on each transition from s to s′ under action a is defined as r(s, a, s′), with r(s, a, s′) = 1
if s′ is a winning state, and r(s, a, s′) = 0 if s′ is a not-winning state. The winning state has
the property i + k ≥ 100 because the player reaching the winning state can simply hold and
then wins the game. Because the only situation obtaining the positive reward is winning
the game, there is no discount factor (γ = 1) needed to ensure convergence.

After a finite MDP is formulated, there are several reinforcement learning methods
to solve the problem, such as DP and deep reinforcement learning (DRL). The main idea
of DRL is to utilize deep neural networks such as the deep Q-network to approximate
the value function. On the other hand, the key idea of DP in reinforcement learning is to
use value functions to organize and structure the search for good policies (or an optimal
strategy). Once we have found the optimal value functions v∗(s), which satisfy the Bellman
optimality equations: v∗(s) = maxa ∑s′ p(s′|s, a)(r(s, a, s′) + v∗(s′)), the optimal policy can
be easily obtained by π∗(s) = argmaxa ∑s′ p(s′|s, a)(r(s, a, s′) + v∗(s′)). One difference
between DRL and DP is that for DRL, the value function is approximate, thus rendering the
optimal strategy to be less accurate than that of DP; meanwhile, by taking the DP approach
to this problem, we obtain the exact optimal strategy. Under the DP setting, combining
policy evaluation and policy improvement together, we have policy iteration [26]. Once a
policy π has been evaluated by the value function vπ , we can improve the current policy
to generate a better policy π′ using vπ . Next, we compute vπ′ and improve it again to
yield an even better policy π′′; we repeat this process until the policy cannot be improved
anymore. We then have the following sequence of monotonically improving policies and
value functions:

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ · · · I−→ π∗

E−→ v∗
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where E−→ denotes a policy evaluation and I−→ denotes a policy improvement. Because a
finite MDP has only a finite number of policies, convergence to an optimal policy and
optimal value function is guaranteed in a finite number of iterations for the standard
two-dice Pig game.

For policy iteration, each evaluation vπ needs multiple sweeps through the state set
to converge in terms of limits. If we wait for the exact convergence of every evaluation,
the computational cost for policy iteration is too high. In fact, policy iteration still converges
to the final optimal policy even if the policy evaluation is stopped after only one update of
every state. This algorithm is called value iteration.

3. Optimal Strategy for the Standard Two-Dice Pig Game

Throughout this paper, the default goal is 100 unless otherwise specified. For a
given policy π, define the winning probability for a given state s = (i, j, k) to be Pπ(i, j, k).
For another policy π′, we say policy π′ is no better than policy π if, for all states s = (i, j, k):

Pπ(i, j, k) ≥ Pπ′(i, j, k) (1)

The value vπ(s) for state s given policy π is defined as the winning probability:

vπ(s) = Pπ(i, j, k) = max{Pπ(i, j, k, roll), Pπ(i, j, k, hold)} (2)

where Pπ(i, j, k, roll) and Pπ(i, j, k, hold) are the winning probabilities for rolling and hold-
ing, respectively, for policy π. For the standard two-dice Pig game, these probabilities
together with the policy are:

Pπ(i, j, k, roll) =
1
36

(
6

∑
m=2

6

∑
n=2

Pπ(i, j, k + m + n) + 10(1− Pπ(j, i, 0)) + (1− Pπ(j, 0, 0)))

Pπ(i, j, k, hold) = 1− Pπ(j, i + k, 0)

π(i, j, k) = argmax
a∈{roll,hold}

{Pπ(i, j, k, a)}

(3)

If both players are rational, i.e., Player A and the opponent Player B both play optimally,
then the solution of π in the above system is the Nash equilibrium, or the optimal policy
π∗. The optimal policy π∗ can be obtained through value iteration (Algorithm 1).

Algorithm 1 Value Iteration Algorithm

Initialize P(i, j, k) arbitrarily for all states (i, j, k) and a small threshold ε > 0 determining
accuracy of estimation
while ∆ ≥ ε do

∆← 0
for each state (i, j, k) do:

p← P(i, j, k) . old probability

P(i, j, k, roll)← 1
36 (

6
∑

m=2

6
∑

n=2
P(i, j, k + m + n) + 10(1− P(j, i, 0)) + (1− P(j, 0, 0)))

P(i, j, k, hold) = 1− P(j, i + k, 0)
P(i, j, k)← max{P(i, j, k, roll), P(i, j, k, hold)} . new probability
∆← max{∆, |p− P(i, j, k)|}

end for
end while
Output a deterministic policy π such that π(i, j, k) = argmax

a∈{roll,hold}
P(i, j, k, a)

Figure 2 shows the roll/hold boundary for each possible state s. As Opponent B’s
score approaches the goal of 100, Player A plays more aggressively on each turn, especially
when Player A’s score is relatively low. On the contrary, when Opponent B’s score is close
to 0, Player A plays conservatively. Figure 3 shows the decision boundary given Player A’s
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score when Opponent B’s score is fixed. For a better comparison, we combine these results
in Figure 4 with the additional case of an opponent score of 90. This produces the same
observation we mentioned above. At the extreme case of an opponent score of 90, Player
A’s optimal strategy is to simply reach the goal of 100 in one turn, as Opponent B has a very
high probability of winning the game in his/her turn.

Figure 2. The roll/hold boundary for each state (Player A Score, Opponent Player B Score, and Turn
Total) for Player A who goes first. The line shown is the boundary between states in which Player A
should roll (below the line) and states in which Player A should hold (above the line).

Figure 3. The roll/hold boundary for Player A who goes first when the opponent Player B’s score
is fixed.
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Figure 4. Left: Comparison between different boundary curves for Player A who goes first when the
opponent Player B’s score changes. Right: contour for the turn total given Player A’s score and the
opponent Player B’s score.

Intuitively, we believe that the player who goes first has some advantage. Figure 5
shows the winning probabilities of the first player, Player A, when the goal is increasing.
Indeed, the first player has a certain advantage in terms of a higher winning probability,
and such advantage vanishes gradually as we increase the goal. When the goal is 100,
the winning probability for Player A is 52.18%, while the winning probability drops to
50.76% when the goal is 200. Detailed winning probabilities for the first player when both
players play optimally are summarized in Table A1.

Figure 5. The winning probability of the first player when both players play optimally.

If the opponent Player B tries to fool us by playing less than optimally, shall Player A
still use the optimal strategy? Will the optimal strategy further increase Player A’s winning
chance?

Let PA
πA

(i, j, k) and PB
πB
(i, j, k) denote the winning probabilities of Player A with policy

πA and the opponent Player B with policy πB, respectively. Further assume the optimal
policy is π∗. Then, we have Pπ∗(i, j, k) ≥ Pπ(i, j, k) for any other policy π. In particular,
PB

π∗(i, j, k) ≥ PB
πB
(i, j, k) for all state s = (i, j, k). Define f [πA, πB](i, j, k) to be the winning

probability for Player A under policy πA with the opponent Player B under policy πB for
state (i, j, k); then



Stats 2022, 5 811

f [π∗, π∗](i, j, k) =max{PA
π∗(i, j, k, hold), PA

π∗(i, j, k, roll)}

=max{1− PB
π∗(j, i + k, 0),

1
36

(
6

∑
m=2

6

∑
n=2

PA
π∗(i, j, k + m + n)

+ 10(1− PB
π∗(j, i, 0)) + (1− PB

π∗(j, 0, 0)))}

≤max{1− PB
πB
(j, i + k, 0),

1
36

(
6

∑
m=2

6

∑
n=2

PA
π∗(i, j, k + m + n)

+ 10(1− PB
πB
(j, i, 0)) + (1− PB

πB
(j, 0, 0)))}

= f [π∗, πB](i, j, k)

Therefore, no matter how the opponent Player B plays, which is unknown to Player A,
Player A should always play with the optimal strategy. The worse the opponent Player
B plays, the higher the winning chance for Player A. However, if the opponent Player
B’s strategy πB is known, there may exist a better strategy πA for Player A such that the
winning probability for Player A is maximized against πB.

A simple policy is the “hold at 20” policy, where a player holds as soon as the turn
total reaches at least 20 if the score needed to reach the goal is more than 20 (otherwise hold
the score needed to reach the goal). This generalizes to the strategy of “hold at n”, where
n can be any integer number between 0 and the goal, say 100. Barring large and small
values of n not meaningful for the “hold at n” strategy, we examine the range of n from
10 to 35. Figure 6 demonstrates that for the standard two-dice Pig game, the best scenario
is to “hold at 23”, as the winning probability of the optimal strategy is lowest among all
those values of n. However the optimal strategy wins over all “hold at n” strategies. Even
when the player who uses the optimal strategy goes second, his/her winning probabil-
ity is still higher than 50% for all n. Detailed winning probabilities against “hold at n”
are summarized in Table A2.

Figure 6. Winning probabilities of the optimal strategy developed in this work against the traditional
“hold at n” strategy for the standard two-dice Pig game.

4. “Double Trouble”, a Variation of the Standard Two-Dice Pig

This variation is the same as the standard two-dice Pig except for the addition of Rule
#4 below (summarized in Figure 7 with red boxes indicating the difference between the
standard two-dice Pig and the “Double Trouble” variation):

1. Two standard dice are rolled. If neither shows a one, the sum is added to the
player’s turn total.
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2. If a single one is rolled, the player scores nothing and the turn ends.
3. If two ones are rolled, the player’s entire score is lost, and the turn ends.
4. If a double other than two ones is rolled, the point total is added to the turn total as

with any roll, but the player is obligated to roll again.

Figure 7. Rules of play for the “Double Trouble” variation of the two-dice Pig game.

With Rule #4 added to the standard two-dice Pig game, the framework for finding
the optimal strategy needs to be changed accordingly. Indeed, such change is not trivial,
as explained below, and, hence, we nickname this variation “Double Trouble”.

To apply value iteration, there are two issues we need to address first:
1. Insufficient information. Suppose the current state is (30, 10, 20), indicating Player

A’s entire score is 30, the opponent Player B’s entire score is 10, and the turn total for Player
A is 20. Further, assume Player A decides to roll again (there is nothing special if Player A
chooses to hold). The new rolls {3, 5} and {4, 4} are totally different, although the turn totals
are the same: 20 + 3 + 5 = 20 + 4 + 4 = 28. According to the optimal strategy obtained
by the standard two-dice Pig game, Player A is supposed to hold in both cases. However,
with the addition of Rule #4, Player A is forced to roll again in the latter situation, while for
the first case, Player A can hold to increase his/her entire score. Therefore, for the “Double
Trouble” variation, by looking at the turn total even without rolling a single one, one does
not have enough information to decide whether to roll or to hold.

2. Infinite states. For the standard two-dice Pig game, we have the constraints that
i + k ≤ 100 and j ≤ 100 that correspond to the winning condition and losing condition,
respectively. As a result, the states are finite. By adding Rule #4, this variation has the
potential to cause an infinite states problem. Assume the current state is (90, 20, 10)
and Player A rolls {5, 5} in this turn. Originally, Player A could simply hold and win the
game. In “Double Trouble”, unfortunately, Player A is not allowed to hold when a double
(other than two ones) occurs. Player A has to roll again. Imagine Player A keeps on rolling
doubles (other than two ones) without the opportunity to hold. In theory, Player A could
reach a state even like (90, 20, 1000) with extremely low probability. Therefore, the turn
total k here may blow up to infinity, and i + k ≥ 100 is no longer the winning condition.

To distinguish whether a double (other than two ones) has been rolled, as the decision
depends on this information, we need to introduce another element to track the information.
Instead of the original three-element tuple state (i, j, k), here, we propose a four-element
tuple (i, j, k, l) to represent the state, where the first three elements i, j, k stay the same, and
the fourth element l is a binary variable recording whether a non-ones double has been
rolled in the most recent roll, where l = 0 means no other double has occurred, and l = 1
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indicates a non-ones double has been rolled. The new probabilities at each given state
(i, j, k, l) can be calculated by:

P(i, j, k, 0) = max{P(i, j, k, 0, hold), P(i, j, k, 0, roll)}
P(i, j, k, 1) = P(i, j, k, 1, roll)

(4)

where

P(i, j, k, 0, hold) =1− P(j, i, 0, 0)

P(i, j, k, 0, roll) =P(i, j, k, 1, roll)

=
1

36
(

6

∑
m=2

6

∑
n=2,n 6=m

P(i, j, k + m + n, 0) +
6

∑
m=2

P(i, j, k + 2m, 1)

+ 10(1− P(j, i, 0, 0)) + (1− P(j, 0, 0, 0)))

(5)

When a player decides to roll, there are four different situations: (i) a single one; (ii) two
ones; (iii) a non-ones double; or (iv) none of the above. We shall prove that (iv) is a necessary
and sufficient condition for winning the game with the next single roll given state (i, j, k, 1)
with i + k ≥ 100. Suppose Player A’s next roll has two different faces and neither of them is
one, which is exactly situation (iv). Since i + k ≥ 100, Player A can simply hold and win.
To win the game in one roll, the player must be able to hold, rendering doubles impossible.
After the player holds, the winning condition i + k ≥ 100 must be satisfied to win the game.
Thus, the new rolled faces cannot include a one, otherwise k = 0 so that i + k < 100 (here
we do not consider i = 100 because it is meaningless). Therefore, (iv) is also a necessary
condition. Through the above simple proof, as long as i + k ≥ 100, the probability of
winning with the next roll for a state (i, j, k, 1) does not depend on the exact value of k, since
the probability of situation (iv) is always 20

36 independent of k.
To avoid the infinite state space, which only occurs when l = 1, we claim that un-

der the condition i + k ≥ 100, the turn total k no longer matters for winning the game.
For situations (i) and (ii), the new turn total k′ will become 0 regardless of the current turn
total k. For situation (iv), the player can hold and win the game no matter what the current
turn total k is, because i + k′ > i + k ≥ 100. For situation (iii), the turn total k will increase
and the player is obligated to roll again. If situation (iii) keeps happening, the turn total
k becomes irrelevant because the player can do nothing except roll. The probability that
situation (iii) lasts forever is limn→∞( 5

36 )
n = 0. Once one of the situations (i), (ii), or (iv)

happen (with probability of one), the turn total k does not matter according to the previous
result. Therefore, the turn total k is important only when i + k < 100. After that, we can
ignore the exact value of k.

As the value of k is no longer important for determining the winning probability
when i + k ≥ 100, we have P(i, j, k, l) = P(i, j, k′, l) for any k, k′ satisfying i + k ≥ 100 and
i + k′ ≥ 100. In particular, P(i, j, k, l) = P(i, j, 100− i, l) for any i + k ≥ 100. Therefore,
for i + k ≥ 100,

P(i, j, k, 1) =
1

36
(

6

∑
m=2

6

∑
n=2,n 6=m

P(i, j, k + m + n, 0) +
6

∑
m=2

P(i, j, k + 2m, 1)

+ 10(1− P(j, i, 0, 0)) + (1− P(j, 0, 0, 0)))

=
1
36

(20 + 5P(i, j, k, 1) + 10(1− P(j, i, 0, 0)) + (1− P(j, 0, 0, 0)))

(6)
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By doing so, we reduce the number of states to be finite so that there is no need to
consider the case i + k > 100 during the value iteration, but we set it as one of the boundary
conditions. The boundary conditions under the “Double Trouble” setting are:

P(i, j, k, 0) = 0, for i + k ≥ 100

P(i, j, k, 0) = 1, for j ≥ 100

P(i, j, k, 1) =
1

31
(20 + 10(1− P(j, i, 0, 0)) + (1− P(j, 0, 0, 0))), for i + k ≥ 100

(7)

The optimal strategy can thence be found using value iteration with the new updates
(3) and (4), as well as the new boundary conditions (6). Figure 8 shows the winning
probabilities of the optimal strategy against the “hold at n” strategy considering both
optimal strategies for the player going first vs. second. Like with standard two-dice Pig,
even if the player goes second, the optimal strategy outperforms the “hold at n” strategy for
any choice of n. Table A3 shows the detailed winning probabilities of the optimal strategy
against the “hold at n” strategy. The best n for this “Double Trouble” variation is 18. In fact,
from the plot we can conclude that the winning probabilities from hold at 18 to hold at 23
are very close. It is reasonable that the best n decreases from 23 in the standard two-dice
Pig game to 18 in this variant, as any non-ones double will force the player to roll again.
In real game play, hold at 18 does not indicate that in each turn a player holds at exactly
18, as this is impossible. Considering the non-ones double case, the turn total can be much
larger than 18, even if the player adopts the “hold at 18” strategy.

Figure 8. Winning probabilities of the optimal strategy developed in this work against the traditional
“hold at n” strategy for “Double Trouble”, a variation of the standard two-dice Pig game.

Will forcing a player to roll again when a non-ones double occurs speed up game-play
in terms of fewer total turns? Here total turns is defined as the sum of the number of
turns that each player has played. We simulate 10,000,000 games, assuming one player
using the optimal strategy and the other player using the “hold at 25” strategy, and the
average number of turns played in one-die Pig is 19.19 if the optimal strategy player goes
first; the average number of turns played in one-die Pig is 19.15 if the optimal strategy
player goes second. Meanwhile, the average number of turns played increases slightly
to 19.25 if both players adopt the optimal strategy. For the standard two-dice Pig game,
the average number of turns played is 23.38 for the optimal strategy against the “hold at
23” strategy. If the “hold at 23” strategy goes first, the average number of turns played is
23.35. If both players play optimally, the average number of turns increases slightly to 23.68.
For the two-dice variation Pig, “Double Trouble”, the average number of turns played
for the optimal strategy player going first and second are 24.23 and 24.21, respectively,



Stats 2022, 5 815

versus “hold at 18”. If both players play optimally, the average number of turns increases
slightly to 24.49. Whether the optimal strategy goes first or goes second does not impact
the total turns significantly, but the optimal strategy going second always has a smaller
number of turns compared to that of the optimal strategy going first. As for the standard
deviation, both versions of the two-dice Pig game (approximately 11.0) have much larger
standard deviations than the one-die Pig game (approximately 6.5), which is consistent
with our intuition, as more dice cause higher randomness. In particular, the “Double
Trouble” two-dice Pig variation (around 11.3) has a larger standard deviation than the
standard two-dice Pig game (around 10.8). The exact means and standard deviations for
each strategy combination are summarized in Table 1.

One interesting fact is that both players playing optimally does not reduce the number
of turns in all three case, especially in both versions of the two-dice Pig game. This
phenomenon is due to the rolling one penalty, since any ones will at least lose the turn total,
especially the “snake eyes” rule: double ones drop the entire set score to zero. For one-die
Pig, the entire score can never decrease, which is not true for the two-dice Pig game. We
refer to playing optimally in this paper as maximizing the probability of winning rather
than minimizing the number of turns played. Maximizing the winning probability may
also increase the chances of rolling ones, including the “snake eyes”, which increases the
number of turns played. Another fact is that the two-dice Pig variation, “Double Trouble”,
will have more turns on average compared to the standard two-dice Pig. Instead of reaching
the goal more quickly, forcing a player to roll again in non-ones doubles increases the risk
of rolling ones, rendering the turn total to be zero (or even resetting the set total if double
ones are rolled), and thus the turn is wasted.

Table 1. The average number of turns played in different strategy combinations, simulated by
10,000,000 games. Numbers in the parenthesis are the standard deviations. The choice of n is
determined by the best n in each scenario. For one-die Pig, n = 25; for standard two-dice pig, n = 23;
for “Double Trouble”, the two-dice Pig variation, n = 18.

Strategy One-Dice Pig Standard Two-Dice Pig Two-Dice Pig Variation

optimal vs. hold at n 19.19 (6.50) 23.38 (10.81) 24.23 (11.22)

hold at n vs. optimal 19.15 (6.63) 23.35 (11.17) 24.21 (11.28)

optimal vs. optimal 19.25 (6.29) 23.68 (10.78) 24.48 (11.36)

5. Discussion

In this work, we successfully derived the optimal play strategy for the two-dice Pig
game, both the standard and “Double Trouble” variations, using the Markov decision
process (MDP) and dynamic programming (DP), which are classical components of rein-
forcement learning (RL). Like our previous work published in Stats [27], we could have
chosen to use Q-learning instead of DP to derive the optimal play strategy for the two-dice
Pig game. Both DP and Q-learning are RL algorithms, each developed to maximize a
reward in a given environment, usually by the MDP (except for rare situations with hidden
states, for instance [28]). Both Q-learning and Value Iteration (a DP technique) use similar
update rules based on the Bellman optimality equations. The difference lies in that DP
requires the entire equation system, including all the transition probabilities—while the
benefit is that the optimal solutions derived are usually the exact optimal solutions and not
the approximate ones provided by Q-learning. This benefit can be substantial in a problem
with a limited number of states such as the two-dice Pig game. Fortunately, we were able
to derive all the transition probabilities and thereby provide the explicit model to deploy
the DP algorithm and obtain the exact optimal play strategy for the two-dice Pig game.
The usefulness of the MDP and DP solutions to the Pig dice games goes beyond merely
providing the optimal play strategies for these games. Rather, this line of work can help
inspire people, especially young people, to learn and to excel in STEM subjects critical to
AI and robotics, including probability and statistics, game theory, computer programming,
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and machine learning. We shall continue our work along this line by developing online
two-dice Pig games and finding the optimal play strategies for multiple-player Pig games.
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Appendix A

Table A1. Detailed winning probabilities of the first player when both players play optimally, for the
standard two-dice Pig game.

Goal Winning Probability

80 0.5245
90 0.5218

100 0.5196
110 0.5176
120 0.5159
130 0.5144
140 0.5130
150 0.5119
160 0.5108
180 0.5091
200 0.5076

Table A2. Detailed winning probabilities of the optimal strategy against the “hold at n” strategy,
for the standard two-dice Pig game. Here the “hold at 23” is the best choice with the average winning
chance against the optimal strategy being 0.4747 (= 1 − 0.5253).

Hold at n Optimal Goes First Optimal Goes Second Average Probability

10 0.6117 0.5726 0.5922
11 0.5955 0.5558 0.5756
12 0.5847 0.5444 0.5645
13 0.5765 0.5358 0.5561
14 0.5710 0.5304 0.5507
15 0.5663 0.5255 0.5459
16 0.5618 0.5212 0.5415
17 0.5553 0.5151 0.5352
18 0.5517 0.5116 0.5317
19 0.5526 0.5130 0.5328
20 0.5533 0.5136 0.5334
21 0.5505 0.5116 0.5310
22 0.5468 0.5077 0.5272
23 0.5444 0.5061 0.5253
24 0.5463 0.5079 0.5271
25 0.5509 0.5136 0.5323
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Table A2. Cont.

Hold at n Optimal Goes First Optimal Goes Second Average Probability

26 0.5578 0.5209 0.5394
27 0.5651 0.5287 0.5469
28 0.5701 0.5344 0.5522
29 0.5721 0.5375 0.5548
30 0.5717 0.5375 0.5546
31 0.5706 0.5363 0.5535
32 0.5707 0.5367 0.5537
33 0.5727 0.5387 0.5557
34 0.5762 0.5429 0.5595
35 0.5813 0.5477 0.5645

Table A3. Detailed winning probabilities of the optimal strategy against the “hold at n” strategy,
for “Double Trouble”, a variation of the standard two-dice Pig game. Here the “hold at 18” is the best
choice with the average winning chance against the optimal strategy being 0.4733 (= 1 − 0.5267).

Hold at n Optimal Goes First Optimal Goes Second Average Probability

10 0.5849 0.5470 0.5659
11 0.5748 0.5360 0.5554
12 0.5645 0.5259 0.5452
13 0.5621 0.5230 0.5425
14 0.5583 0.5197 0.5390
15 0.5548 0.5159 0.5353
16 0.5510 0.5126 0.5318
17 0.5474 0.5093 0.5284
18 0.5456 0.5079 0.5267
19 0.5459 0.5084 0.5272
20 0.5464 0.5091 0.5277
21 0.5455 0.5089 0.5272
22 0.5453 0.5088 0.5270
23 0.5459 0.5097 0.5278
24 0.5488 0.5132 0.5310
25 0.5531 0.5177 0.5354
26 0.5583 0.5237 0.5410
27 0.5636 0.5295 0.5465
28 0.5675 0.5343 0.5509
29 0.5703 0.5371 0.5537
30 0.5717 0.5396 0.5557
31 0.5730 0.5410 0.5570
32 0.5754 0.5434 0.5594
33 0.5785 0.5468 0.5627
34 0.5826 0.5511 0.5668
35 0.5878 0.5569 0.5724
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