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Abstract: The significance of count data modeling and its applications to real-world phenomena
have been highlighted in several research studies. The present study focuses on a two-parameter
discrete distribution that can be obtained by compounding the Poisson and extended exponential
distributions. It has tractable and explicit forms for its statistical properties. The maximum likelihood
estimation method is used to estimate the unknown parameters. An extensive simulation study
was also performed. In this paper, the significance of the proposed distribution is demonstrated in
a count regression model and in a first-order integer-valued autoregressive process, referred to as
the INAR(1) process. In addition to this, the empirical importance of the proposed model is proved
through three real-data applications, and the empirical findings indicate that the proposed INAR(1)
model provides better results than other competitive models for time series of counts that display
overdispersion.

Keywords: extended exponential distribution; overdispersion; simulation; regression model;
INAR(1) process
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1. Introduction

In many fields of applied sciences, such as engineering, medicine, insurance, eco-
nomics, and marketing, studying and analyzing count data play a significant role. Count
data sets are often modeled using a Poisson distribution. However, the Poisson distri-
bution cannot handle overdispersed data sets. Overdispersion occurs when the variance
exceeds the mean. As a consequence, many researchers have developed mixed-Poisson
distributions to provide alternative models for overdispersed count data, including [1–4].
Recent studies in this area are [5–7], among others. When using count data as a response
variable, Poisson regression is a popular model. It is assumed that the dependent variable’s
mean and variance are both identical in the Poisson regression model. There is a lot of
evidence to support the overdispersion that the count data sets exhibit. Thus, the Poisson
regression’s theoretical premise is practically violated. In the beginning, negative binomial
regression (NB) was employed to model overdispersion in the context of count regression.
The Poisson-transmuted exponential linear model was introduced by [2] and applied to
healthcare data sets. The generalized Poisson–Lindley linear model was introduced by [8],
who showed that generalized Poisson–Lindley linear models provide better modeling
abilities than Poisson and NB regression models when there is an overdispersion of data.

There are many instances of integer-valued time series in the real world, such as
the number of births at a hospital in successive months, the number of accidents, the
number of patients, the number of chromosome exchanges in cells, and so on. As an
inaugural approach, refs. [9–11] proposed a stochastic model for integer-valued time
series called INAR(1)P for a first-order non-negative integer-valued autoregressive process
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with Poisson innovations. As time series of counts mostly exhibit overdispersion, the
Poisson distribution is no longer applicable to the INAR(1) process. To overcome this
issue, researchers have proposed different INAR(1) processes with flexible innovation
distributions. Consequently, Aghababaei Jazi et al. [12] proposed an INAR(1) process
with geometric innovations (INAR(1)G), Altun E. [5] presented an INAR(1) process with
new Poisson weighted exponential innovation distribution (INAR(1)PWE),Altun et al. [13]
introduced an INAR(1) process with Poisson quasi-xgamma innovations (INAR(1)PQX),
and so on. Although these methods are excellent for overdispersed time series count data
sets, they have significant drawbacks in real-world applications. By discovering more
INAR(1) models, more opportunities will be available for optimally fitting real data sets by
choosing those models that are most appropriate for each situation.

Therefore, this paper provide new facts on what we call a two-parameter mixed-
Poisson distribution, namely the Poisson extended exponential (PEE) distribution, obtained
by compounding the Poisson distribution with the extended exponential (EE) distribution
proposed by [14]. The EE distribution is obtained by mixing exponential and gamma
distributions. The probability density function (pdf) of the EE distribution is given by

f (x) =
α2(1 + βx)e−αx

α + β
, x > 0, α > 0, β ≥ 0. (1)

It is sometimes denoted as EE(α, β) to specify the parameters. This distribution also
appears in a different form in [15], presented as a two-parameter Lindley distribution.
Recent statistical literature has paid a lot of attention to the EE distribution. As a result
of this, an EE regression model was proposed by [16] in which the reparameterization
of the EE model based on the mean is performed. In addition, de Andrade et al. [17]
proposed the exponentiated generalized EE distribution. Refs. [18,19] also showed the
novelty and possibility of EE distribution through their study of different generalizations
of the EE model. The PEE distribution appears in [20] under a discrete two-parameter
Poisson–Lindley distribution version. However, to the best of our knowledge, some of
these aspects are understudied, and the goal of this research is to rehabilitate them from
applied perspectives. In particular, the appealing applicability and competence of the
EE regression model inspired us to present a two-parameter mixed-Poisson distribution
created by compounding Poisson with the EE distribution and elucidating its regression
characteristics and associated INAR(1) process.

In the rest of the paper, the sections are arranged as follows. Section 2 presents the PEE
distribution and explores some of its statistical properties. The finite sample performance of
the estimation method is examined in Section 3 with a simulation study for the maximum
likelihood estimation of the model parameters. A regression model is discussed in Section 4.
The INAR(1)PEE process is developed in Section 5 using PEE innovations. An empirical
analysis of three real data sets is conducted in Section 6 to prove that the proposed model
is useful when compared to some existing models. In Section 7, a few concluding remarks
are presented.

2. The Poisson Extended Exponential Distribution

In the new formulation, Poisson distribution is compounded with EE distribution
to produce a mixed-Poisson distribution, which is known as the PEE distribution. Let
the random variable X follow the PEE distribution which holds the following stochastic
representation: X|λ ∼ P(λ) and λ|α, β ∼ EE(α, β), where λ > 0, α > 0 and β ≥ 0. Then the
unconditional probability mass function (pmf) of X has the following form:

P(x; α, β) =
α2(1 + α + β + βx)
(α + β)(α + 1)x+2 , x = 0, 1, 2, 3, .... (2)

In fact, by construction, the random variable X has the Poisson distribution with a
parameter λ, and we assume that the parameter λ represents a random variable with the
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EE(α, β) distribution. Then, the unconditional distribution of X is obtained by the classical
method of compounding, which gives

P(x; α, β) =
∫ ∞

0

e−λλx

x!
α2(1 + βλ)e−αλ

α + β
dλ

=
α2

(α + β)x!

[∫ ∞

0
e−λ(α+1)λxdλ + β

∫ ∞

0
e−λ(α+1)λx+1dλ

]
=

α2

(α + β)x!

[
Γ(x + 1)
(α + 1)x+1 + β

Γ(x + 2)
(α + 1)x+2

]
=

α2(1 + α + β + βx)
(α + β)(α + 1)x+2 .

The gamma function Γ(x) =
∫ ∞

0 ux−1e−udu was used here and the relation
Γ(m + 1) = m!, for any positive integer m.

The discrete two-parameter Poisson–Lindley distribution proposed by [20] has the
same pmf but had a different support for the parameters, i.e., α + β > 0, and merely
explored its various distributional characteristics. In contrast to [20], our applied work
is more focused on the count regression model and the accompanying INAR(1) process,
which are of current interest. Our theoretical work adds more aspects to the aforementioned
study. Different pmf shapes are presented in Figure 1 for several parameter combinations
of PEE distribution. The figure unequivocally demonstrates that the PEE distribution is
right skewed.
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Figure 1. Various shapes of the pmfs of the PEE distribution for the varying values of the parameters.
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2.1. Moments, Skewness and Kurtosis

Some results that can be derived from [20] are now presented in this portion. The
probability-generating function for a random variable X with the PEE distribution is
provided by

G(s; α, β) =
α2(1− s + α + β)

(α + β)(1 + α− s)2 , (3)

for |s| < α + 1. Correspondingly, the moment-generating function of X is given by

M(t; α, β) =
α2(1− et + α + β

)
(α + β)(1 + α− et)2 , (4)

for t ≤ log(α + 1). Let r be a positive integer. The rth factorial moment of a random
variable X with the PEE distribution is given by

µ[r] =
r!(α + β + βr)

αr(α + β)
. (5)

That is, in accordance with the definition of the rth factorial moment, we have

µ[r] =
∫ ∞

0

λrα2(1 + βλ)e−αλ

α + β
dλ =

α2

α + β

∫ ∞

0
λr(1 + βλ)e−αλdλ

=
Γ(r + 1)(α + β + βr)

αr(α + β)
.

From the last equality, (5) is determined by applying the relation, Γ(m + 1) = m!, r
being a positive integer. The first four non-central moments are derived as

E(X) =
α + 2β

α(α + β)
,

E(X2) =
α2 + 6β + 2α(1 + β)

α2(α + β)
,

E(X3) =
α3 + 24β + 2α2(3 + β) + 6α(1 + 3β)

α3(α + β)

and

E(X4) =
α4 + 120β + 2α3(7 + β) + 24α(1 + 6β) + 6α2(6 + 7β)

α4(α + β)
.

The variance of X is given by

Var(X) =
α3 + α2 + 4αβ + 3α2β + 2β2 + 2αβ2

α2(α + β)2 .

The explicit versions of measures such as skewness and kurtosis of X can be found
using the following formulas:

S(X) =
E(X3)− 3E(X2)E(X) + 2[E(X)]3

[Var(X)]
3
2

and

K(X) =
E(X4)− 4E(X2)E(X) + 6E(X2)[E(X)]2 − 3[E(X)]4

[Var(X)]2
,

respectively.
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2.2. Dispersion Index and Coefficient of Variation

The dispersion index (DI) of the PEE distribution is given by

DI =
Var(X)

E(X)

=
α3 + 3α2β + α2 + 2αβ2 + 4αβ + 2β2

α(α + β)(α + 2β)
.

As a complementary measure, the coefficient of variation (CV) of the PEE distribution
is given by

CV =

√
Var(X)

E(X)

=
α(α + β)

α + 2β

√
α3 + α2 + 4αβ + 3α2β + 2β2 + 2αβ2

α(α + β)(α + 2β)
.

Now, Tables 1 and 2 provide some numerical values for the PEE distribution’s mean,
variance, and DI for a variety of parameter configurations. For the values considered, we
check the mean, variance, and DI of the PEE distribution, and it is inferred that the DI of
the PEE distribution is always greater than one, clearly showing overdispersion.

Table 1. Moment measure values for the PEE distribution for α = 0.5 and various β values.

Measures
β

0.1 0.5 0.9 2.6 5 8

Mean 2.3333 3.0 3.2857 3.6774 3.8182 3.8824
Variance 7.5556 10.0 10.7755 11.5734 11.7851 11.8685

DI 3.2381 3.3333 3.2795 3.1471 3.0866 3.0570

Table 2. Moment measure values for the PEE distribution for β = 1.5 and various α values.

Measures
α

0.1 0.9 5.0 9.0 11.0

Mean 19.3750 1.8056 0.2462 0.1270 0.1018
Variance 218.9844 4.1011 0.3025 0.1426 0.1119

DI 11.3024 2.2714 1.2288 1.1230 1.0995

3. Parameter Estimation
3.1. Maximum Likelihood Estimation

Let X1, X2, ..., Xn be a random sample of size n from the PEE distribution with un-
known parameters α and β, and x1, x2, ..., xn be the related observations of the variables of
this sample. Then the likelihood function is given by the following finite product:

L =
n

∏
i=1

α2(1 + α + β + βxi)

(α + β)(α + 1)xi+2 .

The maximum likelihood estimates (MLEs) of the parameters α and β, say α̂ and
β̂, are obtained by (α̂, β̂) = argmax(α,β) L or, in an equivalent manner in our setting,

(α̂, β̂) = argmax(α,β) log L. To provide more practical facts, the normal equations are
given by

∂ log L
∂α

=
2n
α
− n

α + β
− 2n

α + 1
+

n

∑
i=1

1
1 + α + β + βxi

−
n

∑
i=1

xi
α + 1
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and

∂ log L
∂β

=
n

∑
i=1

1 + xi
1 + α + β + βxi

− n
α + β

.

Then α̂ and β̂ are obtained by solving the equation ∂ log L
∂α = 0 and ∂ log L

∂β = 0, provided
they reach a maximum well. This can only be achieved by a numerical optimization
technique by using mathematical packages such as R, Mathematica and Python.

3.2. Simulation Study

The Monte Carlo simulation was performed to demonstrate the model’s efficiency
using the maximum likelihood method. The estimates were calculated for true values of
parameters for N = 1000 samples of sizes 50, 75, 200, 500, 750, and 1000. The following
formulas are also used to calculate indices such as MLE, bias, mean square errors (MSEs),
and coverage probabilities (CPs) and average lengths (ALs) of confidence intervals (CIs).

(i) Mean value of MLEs: MLE(ĥ) = 1
N ∑N

j=1 ĥj.

(ii) Average bias: Bias(ĥ) = 1
N ∑N

j=1(ĥj − h).
(iii) MSE: MSE(ĥ) = 1

N ∑N
j=1(ĥj − h)2.

(iv) CP of CI: CP(ĥ) = 1
N ∑N

j=1 I
{

ĥj − 1.959964× sj,ĥ < h < ĥj + 1.959964× sj,ĥ

}
.

(v) AL of CI: AL(ĥ) = 2×1.959964
N ∑N

j=1 sj,ĥ.

Here, h = α or β, and sj,ĥ and I{.} denote the standard errors (SEs) of the MLEs and
indicator function, respectively. Tables 3 and 4 show the simulation results for two sets of
parameter values. It has been found that MSEs and ALs of the CIs decrease with increasing
sample size. The CPs of the CIs for each parameter are relatively close to the nominal
95% level.

Table 3. Simulation results for α = 0.5 and β = 0.9.

α = 0.5, β = 0.9

Parameter n MLE Bias MSE CP AL

α

50 0.4839 −0.0161 0.0090 0.9970 0.5243
75 0.4867 −0.0133 0.0071 0.9920 0.4322
200 0.4894 −0.0106 0.0032 0.9910 0.2640
500 0.4974 −0.0026 0.0013 0.9790 0.1560
750 0.4996 −0.0004 0.0009 0.9720 0.1274

1000 0.4997 −0.0003 0.0007 0.9770 0.1103

β

50 0.9605 0.0605 0.3220 0.8790 5.3376
75 0.9548 0.0548 0.2933 0.8840 4.6352
200 0.9478 0.0478 0.2134 0.9060 3.0661
500 0.9405 0.0405 0.1475 0.9220 2.0805
750 0.9297 0.0297 0.1215 0.9310 1.7183

1000 0.9208 0.0208 0.0978 0.9380 1.4755
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Table 4. Simulation results for α = 1.2 and β = 0.8.

α = 1.2, β = 0.8

Parameter n MLE Bias MSE CP AL

α

50 1.1537 −0.0463 0.0832 0.9950 2.4724
75 1.1704 −0.0296 0.0654 0.9850 1.9964
200 1.1707 −0.0293 0.0432 0.9940 1.4188
500 1.1739 −0.0261 0.0282 0.9840 0.9127
750 1.1806 −0.0194 0.0222 0.9920 0.7404

1000 1.1815 −0.0185 0.0185 0.9940 0.6468

β

50 0.8703 0.0703 0.4569 0.8950 8.5865
75 0.8641 0.0641 0.4554 0.8770 7.3207
200 0.8524 0.0524 0.3843 0.8770 4.9990
500 0.8456 0.0456 0.3089 0.9220 3.5077
750 0.8407 0.0407 0.2611 0.9440 2.8943

1000 0.8213 0.0213 0.2365 0.9570 2.5458

4. PEE Regression Model

According to the previous section, the PEE model can model overdispersed data sets,
which is critical since the majority of data in real life displays overdispersion. As a count
regression model, this section uses the PEE distribution to model overdispersed data sets.

4.1. Model Construction

Let Y be a random variable representing the response variable and the number of
occurrences of an event that follows the PEE distribution as well. To begin, let us consider

the following reparametrization: β = α−α2µ
αµ−2 . With this configuration, we obtain the pmf of

the PEE distribution in terms of the mean E(Y) = µ > 0 and α > 0. Then the corresponding
pmf is obtained as

P(Y = y; α, µ) =
α2
[
1 + α +

(
α−α2µ
αµ−2

)
+
(

α−α2µ
αµ−2

)
y
]

[
α +

(
α−α2µ
αµ−2

)]
(α + 1)y+2

, (6)

where y = 0, 1, 2, ... With the appropriate link functions, explanatory variables can be used
to model the mean of the random variable Y. Covariates and the mean of the dependent
variable can be linked using the log-link function. Let us consider Y1, Y2, ..., Yn a random
sample of size n from Y. Using the log-link function, the mean of Yi is linked to the covariate
vector xT

i = (xi1, xi2, ..., xik)
T by the following equation:

µi = E(Yi) = exT
i γ, i = 1, 2, . . . , n, (7)

where γ = (γ0, γ1, γ2, ..., γk) is the unknown regression coefficients. Based on (7), a linear
form for the pmf of Yi|XT

i = xT
i which follows the PEE distribution with parameter µi, and

α is obtained as

P(yi; α, exT
i γ) =

α2
[

1 + α +

(
α−α2exT

i γ

αexT
i γ−2

)
+

(
α−α2exT

i γ

αexT
i γ−2

)
yi

]
[

α +

(
α−α2exT

i γ

αexT
i γ−2

)]
(α + 1)yi+2

, (8)

where yi is the ith observations of Y.
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4.2. Estimation of the Model

To estimate the regression coefficients γ, the maximum likelihood method is used. The
logaritmic transformation of the likelihood function of the PEE count regression model is
given by

log U = 2n log α +
n

∑
i=1

log

[
1 + α +

(
α− α2exT

i γ

αexT
i γ − 2

)
+

(
α− α2exT

i γ

αexT
i γ − 2

)
yi

]

−
n

∑
i=1

log

[
α +

(
α− α2exT

i γ

αexT
i γ − 2

)]
− log(α + 1)

n

∑
i=1

(yi + 2).

(9)

Now the unknown parameter vector γ is obtained by maximizing (9). To accomplish
this, we employ the optim function of R software. In addition, the SEs of these estimates are
calculated using the fdHess function in R software.

4.3. Simulation of the PEE Regression Model

In this part, the maximum likelihood method used to estimate the unknown regression
parameters is analysed using a simulation study. The parametric combinations (α = 1.5,
γ0 = 0.6, γ1 = 0.2, γ2 = 0.3) and (α = 1.2, γ0 = 0.7, γ1 = 0.3, γ2 = 0.4) are used to
generate N = 1000 samples of sizes n = 50, 100, 200, and 500 from the following model:
log(µi) = γ0 + γ1xi1 + γ2xi2. We assume that xi1 and xi2 are generated from the uniform
distribution with parameters 0 and 1, which is denoted by U(0, 1). Here, indices such as
estimates, bias, and MSEs are used to prove the asymptotic property of the MLEs. Table 5
reports the simulation results.

Table 5. Simulation results for the PEE regression model.

α = 1.5, γ0 = 0.6, γ1 = 0.2, γ2 = 0.3 α = 1.2, γ0 = 0.7, γ1 = 0.3, γ2 = 0.4

n Parameters Estimates Bias MSE n Parameters Estimates Bias MSE

50

α 0.6963 0.8037 0.6459

50

α 0.6522 0.5478 0.3001
γ0 0.4224 0.1776 0.7988 γ0 0.5156 0.1844 1.1900
γ1 0.1745 0.0255 0.2899 γ1 0.3329 0.0329 0.5317
γ2 0.1406 0.1594 0.2775 γ2 0.1578 0.2422 0.3585

100

α 0.7289 0.7711 0.5946

100

α 0.6732 0.5268 0.2775
γ0 0.5077 0.0923 0.7280 γ0 0.7876 0.0876 1.0121
γ1 0.2117 0.0117 0.2397 γ1 0.2711 0.0289 0.3790
γ2 0.1560 0.1440 0.2486 γ2 0.1637 0.2363 0.2430

200

α 0.7857 0.7143 0.5103

200

α 0.7135 0.4865 0.2367
γ0 0.6645 0.0645 0.5838 γ0 0.6243 0.0757 0.8479
γ1 0.2074 0.0074 0.2277 γ1 0.3217 0.0217 0.3546
γ2 0.1710 0.1290 0.2241 γ2 0.1852 0.2148 0.2408

500

α 0.8031 0.6969 0.4856

500

α 0.7201 0.4799 0.2303
γ0 0.6019 0.0019 0.5448 γ0 0.7273 0.0273 0.7893
γ1 0.2058 0.0058 0.2093 γ1 0.3171 0.0171 0.3164
γ2 0.1712 0.1288 0.1559 γ2 0.1963 0.2037 0.2028

From Table 5, it is clear that as sample size increases, the bias and MSEs are decreasing,
implying the consistency property of the MLEs for estimating the regression parameters.

5. INAR(1) Model with PEE Innovations

The INAR(1) process is widely used in the modeling of time series of counts in several
scientific disciplines, including actuarial, finance, and medical. By applying the binomial
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thinning operator, INAR(1) differs from the first-order autoregressive process (AR(1)). The
INAR(1) process is given by

Xt = p ◦ Xt−1 + εt, t ∈ Z, (10)

where 0 ≤ p < 1, and the innovation process is denoted by {εt}t∈Z which are independent
and identically distributed (iid) integer-valued random variables having mean, E(εt) = µε

and variance, Var(εt) = σ2
ε . The binomial thinning operator is denoted by the symbol ◦

and is defined as

p ◦ Xt−1 :=
Xt−1

∑
j=1

Gj, (11)

where
{

Gj
}

j≥1 is the sequence of Bernoulli random variables with probability

p = Pr(Gj = 1) = 1− Pr(Gj = 0).

For the INAR(1) process, the one-step transition probability matrix is given by

Pr(Xt = k|Xt−1 = l) =
min(k,l)

∑
i=0

(
l
i

)
pi(1− p)l−iPr(εt = k− i), k, l ≥ 0, (12)

where 0 < p < 1. There are many examples in real life where these types of stochastic
processes play a role, including the number of passengers each year, the growth of bacteria
each day, the number of scientific books cited, and many more. Here, a new INAR(1)
process is introduced by assuming that the {εt} innovations follow a PEE distribution. The
one-step transition probability of the INAR(1)PEE model is given by

Pr(Xt = k|Xt−1 = l) =
min(k,l)

∑
i=0

(
l
i

)
pi(1− p)l−i α2(1 + α + β + β(k− i))

(α + β)(α + 1)(k−i)+2
. (13)

So, hereafter, the described process will be called the INAR(1)PEE process.
Weiss C.H. [21] provide the mean, variance, and DI of {Xt}t∈Z by using the mean,

variance, and DI of the innovation distribution. For the INAR(1)PEE process, they are

E(Xt) =
α + 2β

α(α + β)(1− p)
, (14)

Var(Xt) =
α2(α + αp + 1) + 2β2(α + αp + 1) + αβ(3α(p + 1) + 4)

α2(1− p2)(α + β)2 (15)

and

DI(Xt) =

(
1

α + β
− 1

α + 2β
+

1
α
+ p + 1

)
1

p + 1
. (16)

According to [21,22], the conditional expectation and variance of the INAR(1)PEE
process are given by

E(Xt|Xt−1) = pXt−1 +
α + 2β

α(α + β)
(17)

and

Var(Xt|Xt−1) = p(1− p)Xt−1 +
α3 + α2 + 4αβ + 3α2β + 2β2 + 2αβ2

α2(α + β)2 , (18)

respectively.
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5.1. Estimation

The conditional maximum likelihod (CML), conditional least squares (CLS), and Yule–
Walker (YW) methods are used to obtain the unknown parameters of the
INAR(1) process.

5.1.1. Conditional Maximum Likelihood

The complicated form of the likelihood function resulting from the usual maximum
likelihood method motivated the researchers to use the CML method instead of maximum
likelihood. The knowledge of the transition probabilities is sufficient for the creation of
likelihood in the CML technique since conditioning on the first observation results in
a simple form of the likelihood, whereas there is no such conditioning present in the
traditional maximum likelihood approach. The conditional log-likelihood function for the
INAR(1)PEE process of the random sample X1, X2, ...., XT based on associated observations
x1, x2, ..., xT is given by

l(p, α, β) = log

[
T

∏
t=2

Pr(Xt = xt|Xt−1 = xt−1)

]

=
T

∑
t=2

log[Pr(Xt = xt|Xt−1 = xt−1)], (19)

where X1 is fixed, and Pr(Xt = xt|Xt−1 = xt−1) is given by (13). By the maximization
of (19), the CML estimates are obtained by using the constrOptim function of R.

5.1.2. Conditional Least Squares

The below function is minimized to obtain the CLS estimates of the parameters of the
INAR(1) process

S(p, α, β) =
T

∑
t=2

[xt − E(Xt|Xt−1 = xt−1)]
2.

5.1.3. Yule–Walker

As a result of the YW approach, the theoretical moments as well as the empirical ones
are solved synchronously. Given that the autocorrelation function (ACF) of the INAR(1)
process at lag η is ρx(η) = pη , the YW estimate of p is given by

p̂YW =
∑T

t=2(xt − x̄)(xt−1 − x̄)

∑T
t=1(xt − x̄)2

, (20)

where x̄ = 1
T ∑T

t=1 xt. Now, the theoretical mean is solved with their empirical equivalents
to derive the YW estimates of α and β. More precisely, when the theoretical mean equated
with the empirical mean, we obtain

β̂YW =
α̂YW [α̂YW x̄(1− p̂YW)− 1]

2− α̂YW x̄(1− p̂YW)
. (21)

By substituting (21) in (16) and equating it with the sample dispersion, α̂YW is obtained.

5.2. Simulation

A simulation study was performed to check the finite sample performance of the
CML, CLS, and YW estimates. In this regard, the number of replications is chosen as
N = 1001 for different sample sizes, n = 50, 100, 200, 300, and 500. The two parameter
vectors used here are (p = 0.5, α = 0.7, β = 1) and (p = 0.7, α = 0.5, β = 0.8). The
simulation results are interpreted based on the biases and MSEs. The R-code is given in
Appendix A. Tables 6 and 7 show the results. The biases and MSEs of the CML estimates
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are the smallest when the three estimation methods are compared, and the CML estimation
approach outperforms the others. The CML estimation approach is then applied.

Table 6. Simulation for the INAR(1)PEE model for p = 0.5, α = 0.7 and β = 1.

p = 0.5, α = 0.7, β = 1

Parameter n
CML CLS YW

Bias MSE Bias MSE Bias MSE

p 50 0.0041 0.0048 −0.0518 0.0197 −0.0614 0.0204
100 0.0020 0.0024 −0.0258 0.0088 −0.0307 0.0089
200 0.0013 0.0014 −0.0141 0.0047 −0.0164 0.0048
300 0.0010 0.0008 −0.0062 0.0027 −0.0077 0.0028
500 0.0009 0.0006 −0.0046 0.0018 −0.0057 0.0018

α 50 −0.0318 0.0233 −0.0110 0.0237 −0.4307 0.1912
100 −0.0312 0.0159 −0.0078 0.0121 −0.4152 0.1762
200 −0.0280 0.0115 −0.0044 0.0063 −0.3969 0.1605
300 −0.0191 0.0088 0.0026 0.0040 −0.3865 0.1523
500 −0.0128 0.0055 0.0016 0.0025 −0.3823 0.1482

β 50 −0.0336 0.3716 0.0969 0.0677 −0.9361 0.8767
100 −0.0244 0.3649 0.0825 0.0422 −0.9360 0.8766
200 −0.0215 0.3303 0.0675 0.0251 −0.9357 0.8756
300 −0.0053 0.3024 0.0520 0.0149 −0.9352 0.8746
500 −0.0021 0.2514 0.0514 0.0111 −0.9347 0.8737

Table 7. Simulation for the INAR(1)PEE model for p = 0.7, α = 0.5, β = 0.8.

p = 0.7, α = 0.5, β = 0.8

Parameter n
CML CLS YW

Bias MSE Bias MSE Bias MSE

p 50 0.0007 0.0018 −0.0601 0.0182 −0.0751 0.0200
100 0.0006 0.0010 −0.0347 0.0071 −0.0418 0.0076
200 0.0004 0.0005 −0.0168 0.0032 −0.0206 0.0033
300 0.0002 0.0003 −0.0095 0.0018 −0.0121 0.0018
500 0.0001 0.0002 −0.0056 0.0011 −0.0070 0.0011

α 50 −0.0214 0.0122 −0.0270 0.0209 −0.3335 0.1144
100 −0.0202 0.0081 −0.0214 0.0105 −0.3159 0.1021
200 −0.0170 0.0053 −0.0089 0.0055 −0.3008 0.0923
300 −0.0114 0.0039 −0.0020 0.0032 −0.2900 0.0855
500 −0.0113 0.0024 −0.0010 0.0020 −0.2823 0.0810

β 50 0.1302 0.4455 0.1081 0.0866 −0.7603 0.5782
100 0.1200 0.3912 0.0785 0.0368 −0.7574 0.5738
200 0.1143 0.3544 0.0644 0.0209 −0.7554 0.5707
300 0.1092 0.3145 0.0535 0.0140 −0.7545 0.5694
500 0.0818 0.2597 0.0531 0.0168 −0.7544 0.5692

6. Empirical Studies

With the help of three real-life data sets, the superiority of the PEE model is illustrated.

6.1. Corn Borer Data

The first data set is from [23]. The data are from the biological experiment, representing
the number of larvae of the European corn borer (ECB) in the field (Pyrausta).

Several competing distributions were compared to the fit of the PEE distribution,
including the discrete Burr (DB) distribution (see [24]), the discrete log-logistic (DLL)
distribution (see [25]), the discrete Gumbel (DG) distribution (see [26]), the Poisson quasi-
xgamma (PQX) distribution (see [13]), the exponentiated discrete Lindley (EDL) distribution
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(see [27]), the discrete Bilal (DBL) distribution (see [28]), the discrete inverse Rayleigh (DIR)
distribution, and the discrete Pareto (DP) distribution (see [24]).

Utilizing the optim function of R, the Hessian and the Fisher information matrices are
assessed. Each parameter’s SE is evaluated by using the fact that the SEs can be computed
as the square root of the diagonal elements of the inverse of the Fisher information matrix.
As shown in Table 8, the MLEs with their corresponding SEs and confidence intervals (CIs)
(lower bound of CI, upper bound of CI) for the numbers of borers data set are provided.
From Table 9, it is clearly evident that the PEE distribution is the best among the considered
competitive models since it has the lowest AIC, BIC, and value with the highest log L and
p-value. The fitted PEE distribution is overdispersed since the mean and variance of the
PEE distribution for the corn borer data are 1.375 and 2.2131, respectively.

Table 8. Corn borer data: MLEs, SEs and CIs.

Statistic PEE DB DLL DG PQX EDL DBL DIR DP

MLEα 1.0583 2.3570 1.9429 3.1063 0.9259 0.4691 0.6566 0.3196 0.3292

SEα 0.2751 0.3655 0.1879 0.3667 0.8718 0.0421 0.0186 0.0421 0.0338

95% CI
lowerα 0.5190 1.6407 1.5745 2.3876 0 0.3865 0.6202 0.2370 0.2630

upperα 1.5976 3.0733 2.3113 3.8250 2.6346 0.5517 0.6930 0.4022 0.3954

MLEβ 1.4022 0.5190 1.4007 0.4067 1.3743 0.9015 - - -

SEβ 2.4893 0.0508 0.1212 0.0294 0.3391 0.1707 - - -

95% CI
lowerβ 0 0.4194 1.1631 0.3492 0.7097 0.5669 - - -

upperβ 6.2812 0.6186 1.6383 0.4642 2.0389 1.2361 - - -

Table 9. Corn borer data: MLE, χ2, p-value, AIC and BIC for the competitive models.

X Of PEE DB DLL DG PQX EDL DBL DIR DP

0 43 44.6167 43.8359 41.0317 28.5533 45.4765 44.0244 32.7337 38.3520 64.4467
1 35 30.4598 39.6006 38.9381 37.8611 29.3320 30.5905 39.5856 51.8743 20.1489
2 17 19.0658 15.6218 17.7752 25.5848 18.7843 19.4565 24.2772 15.4890 9.6863
3 11 11.3361 7.2063 8.4315 12.8520 11.5226 11.5650 12.5077 6.0275 5.6474
4 5 6.5147 3.9102 4.4846 5.7001 6.7542 6.5845 5.9702 2.9050 3.6805
5 4 3.6545 2.3755 2.6300 2.4017 3.8056 3.6386 2.7375 1.6096 2.5800
6 1 2.0132 1.5625 1.6634 0.9909 2.0750 1.9668 1.2265 0.9814 1.9042
7 2 1.0936 1.0894 1.1152 0.4054 1.1012 1.0452 0.5419 0.6414 1.4605
8 2 1.2456 4.7977 3.9304 5.6506 1.1487 1.1286 0.4198 2.1198 10.4456

Total 120 120 120 120 120 120 120 120 120 120

log L −200.4152 −204.2933 −202.6303 −213.1911 −200.6567 −200.4922 −204.6753 −208.4404 −220.6182
AIC 404.8303 412.5865 409.2606 430.3823 405.3134 404.9844 411.3505 418.8808 443.2363
BIC 410.4053 418.1615 414.8356 435.9573 410.8883 410.5593 414.1380 421.6683 446.0238
χ2 0.9877 2.6739 1.3113 7.6151 1.4760 1.0070 6.9961 14.2949 30.5180
df 2 2 2 2 2 2 3 3 3

p-value 0.6103 0.2626 0.5191 0.0222 0.4781 0.6044 0.0720 0.0025 0.0001

Figure 2 presents the estimated pmfs of all the considered models from which the
distribution adequacy of the PEE model is clearly seen.
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Figure 2. Pmfs of fitted models for corn borer data.

6.2. Length of Hospital Stay

The effectiveness of the count regression model under the PEE distribution is assessed
using the second data set. The data consists of 3589 observations from the files of 1991
Arizona cardiovascular patients that were located in the COUNT package of the R program-
ming language. The PEE regression model is used to model the length of stay (yi) by using
the covariates: cardiovascular procedure (x1i) (1 = CABG, 0 = PTCA), sex (x2i) (1 = male,
0 = female), type of admission (x3i) (1 = urgent, 0 = elective), and age (x4i) (1 = age > 75,
0 = age ≤ 75). Given below is the regression structure which will be fitted by the PEE
distribution, the new Poisson generalized Lindley (NPGL) regression model (see [29]),
the Poisson-xgamma (PX) regression model (see [7]), the Poisson–Lindley (PL) regression
model and the basic Poisson regression model:

µi = eγ0+γ1x1i+γ2x2i+γ3x3i+γ4x4i .

The mean and variance of the dependent variable are calculated as 8.831 and 47.973,
respectively, stating the clear overdispersion. Table 10 gives the parameter estimates and
results of information criterion.
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Table 10. The MLE, −log L, AIC and BIC of the fitted regression models for the length of stay data set.

Covariates
P PL PQX NPGL PEE

Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value

γ0
1.4560 <0.001 1.4133 <0.001 1.3996 <0.001 1.4044 <0.001 1.3968 <0.0010.0158 0.0372 0.0349 0.0353 0.0345

γ1
0.9606 <0.001 0.9843 <0.001 0.9725 <0.001 0.9761 <0.001 0.9932 <0.0010.0122 0.0291 0.0270 0.0274 0.0271

γ2
−0.1240 <0.001 −0.1288 <0.001 −0.1269 <0.001 −0.1267 <0.001 −0.1276 <0.0010.0118 0.0304 0.0280 0.0285 0.0284

γ3
0.3266 <0.001 0.3843 <0.001 0.3732 <0.001 0.3759 <0.001 0.3938 <0.0010.0121 0.0302 0.0280 0.0284 0.0281

γ4
0.1224 <0.001 0.1193 <0.001 0.1202 <0.001 0.1198 <0.001 0.1197 <0.0010.0124 0.0323 0.0298 0.0303 0.0302

−log L −11,189.8976 −10,625.5957 −10,569.8162 −10,563.2551 −10,428.6400
AIC 22,389.7952 21,239.1913 21,127.6324 21,114.5102 20,845.2700
BIC 22,420.7233 21,202.0775 21,090.5187 21,077.3964 20,808.1600

Altun E. [29] used this data set to prove the better fit of the NPGL regression model.
Hence, from Table 10, it is clear that the PEE regression model is better than competing
models since it has minimized values for its -log L, AIC, and BIC. We thus conclude that
it will be a more appropriate model than the other models for modelling this data set. As
a result, we can say that the length of hospital stay increases when people have CABG
cardiovascular surgery, are admitted urgently, and are over the age of 75. Additionally,
female individuals have a longer hospital stay than male individuals.

6.3. Weekly Number of Syphilis Cases Data

Here, the performance of the INAR(1)PEE process is carried out with other famous
INAR(1) processes such as the INAR(1)P process (see [10]), the INAR(1)G process (see [12]),
the INAR(1)PTE process (see [30]), and the INAR(1)PWE process (see [5]). The data set
used here is the weekly number of syphilis cases in the United States from 2007 to 2010 in
New York. The ZIM package of the R software contains the data. The mean, variance, and
DI of the data set are 24.6316, 105.6761, and 4.2903, respectively. The data have statistically
significant overdispersion according to the test [31] presented, which results in a p-value of
less than 0.001. In Figure 3, the fundamental plots of the data set, including the ACF, the
partial ACF (PACF), the histogram, and the time series plots, are depicted. It is concluded
that the INAR(1) process could be a possible model for this data set, since only the first lag
is significant in the PACF plot. As shown in Table 11, fitting INAR(1) processes with the
PEE innovations and other corresponding innovations yields parameter estimates along
with SE, AIC, BIC, theoretical mean, variance, and DI. The minimum AIC and BIC statistics
values for the INAR(1)PEE process demonstrate that it offers a better fit than other INAR(1)
processes. The theoretical DI value for the INAR(1)PEE process is also relatively close to
the empirical one. In light of this, it is believed that the INAR(1)PEE process provides a
very good explanation for the properties of the data set.
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Table 11. Estimates and modelling adequacy statistics for the number of syphilis cases data.

Model Parameters Estimate St. Error AIC BIC µx σ2
x DIx

INAR(1)PEE α 0.1050 0.0074
1629.8848 1639.9118 23.0431 144.3587 6.2647β 5.5000 7.5600

p 0.2365 0.0371

INAR(1)P λ 21.0634 0.7087 2016.5395 2023.2242 25.3493 25.3493 1p 0.1480 0.0261

INAR(1)G λ 0.0583 0.0047 1686.4277 1693.1124 23.8947 252.4312 10.5643p 0.3469 0.0323

INAR(1)PWE
λ 0.0584 0.1589

1688.4277 1698.4547 24.9904 369.2114 14.7741α 0.0598 2.8834
p 0.3468 0.0323

INAR(1)PTE
λ −1.0000 0.0860

1637.0544 1647.0814 25.2105 278.4266 11.0441α 0.0788 0.0058
p 0.2425 0.0390

Empirical 24.6316 105.6761 4.2903
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Figure 3. ACF, PACF, time series, and histogram plots of weekly number of syphilis cases data.

7. Conclusions
7.1. Concluding Remarks

This paper focuses on a two-parameter discrete distribution obtained by compounding
the Poisson and EE distributions and called the PEE distribution. The properties of the PEE
distribution were derived and discussed. The properties, including the factorial moments,
the moment-generating function, and the probability-generating functions, are evaluated,
and they are in explicit forms. The article thus highlights the PEE distribution and, for
the first time, its regression model and the INAR(1) model. The PEE model is found to
outperform all other compared models in all aspects of the present study. In the modelling
of positive integer-valued data sets from various fields of study, the proposed model is
expected to increase its prevalence and have a broader variety of applications.
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7.2. Future Work

This study may take a different turn if either the bivariate PEE model and its cor-
responding BINAR(1) model or the pth-order integer-valued auto regressive process
(INAR(p)) with PEE innovations are developed. We will leave the substantial revisions,
research, and software support for this effort to future studies.
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Appendix A

R-code for the generation of random numbers from the INAR(1)PEE process.

library(nleqslv)
datt=NULL
ppois=function(x,alpha,theta){
f=1-(((alpha+1)^(-(x+2))*(alpha+alpha^2+theta+(x+2)*alpha*theta))
/(alpha+theta))
return(f)

ppois(2,0.5,1)
r.pois <- function(n, L,T)
{
U <- runif(n)
X <- rep(0,n)
for(i in 1:n)
{
if(U[i] < ppois(0,L,T))
{
X[i] <- 0
} else
{B = FALSE
I = 0
while(B == FALSE)
{int <- c( ppois(I, L,T), ppois(I+1,L,T) )
if( (U[i] > int[1]) & (U[i] < int[2]) )
{X[i] <- I+1
B = TRUE
} else
{I=I+1
}}}}
return(X)
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}
r.pois(50, 1.5, 1.2)
r.inarnpl=function (n, alpha, lambda,theta, n.start = NA)
{length. <- n + n.start
x <- rep(NA, times = length.)
error <- r.pois(length., lambda,theta)
x[1] <- error[1]
for (t in (2):length.) {
x[t] <- 0
for (j in 1:1) {
x[t] <- x[t] + rbinom(1, x[t - 1], alpha)
}
x[t] <- x[t] + error[t]
}
ts(x[(n.start + 1):length.], frequency = 1, start = 1)
}
(x <- as.numeric(r.inarnpl(100, 0.5, 0.5, 0.2, 200)))
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