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Abstract: Temporal gene expression data contain ample information to characterize gene function
and are now widely used in bio-medical research. A dense temporal gene expression usually shows
various patterns in expression levels under different biological conditions. The existing literature
investigates the gene trajectory using the mean function. However, temporal gene expression curves
usually show a strong degree of heterogeneity under multiple conditions. As a result, rates of
change for gene expressions may be different in non-central locations and a mean function model
may not capture the non-central location of the gene expression distribution. Further, the mean
regression model depends on the normality assumptions of the error terms of the model, which
may be impractical when analyzing gene expression data. In this research, a linear quantile mixed
model is used to find the trajectory of gene expression data. This method enables the changes in
gene expression over time to be studied by estimating a family of quantile functions. A statistical
test is proposed to test the similarity between two different gene expressions based on estimated
parameters using a quantile model. Then, the performance of the proposed test statistic is examined
using extensive simulation studies. Simulation studies demonstrate the good statistical performance
of this proposed test statistic and show that this method is robust against normal error assumptions.
As an illustration, the proposed method is applied to analyze a dataset of 18 genes in P. aeruginosa,
expressed in 24 biological conditions. Furthermore, a minimum Mahalanobis distance is used to find
the clustering tree for gene expressions.

Keywords: chi-square test; classification; linear mixed model; Mahalanobis distance; quantile analy-
sis; temporal gene expressions

1. Introduction

Recently, many researchers have focus on the analysis of gene expression data. The
gene expression process records measurements of expression under various biological
conditions over a specific time period. At present, micro-array experiments are widely
being used to generate rapidly vast amounts of data on gene expression under various
biological conditions. The analysis of temporal gene expression is now becoming of great
interest to scientists to understand the complex mechanism of gene profiles and characterize
gene expressions. Moreover, this analysis also helps bio-medical scientists detect the genes
responsible for early cancer (Fang et al. [1]). Genes are generally expressed by transcription
into RNA, and then this transcript might be translated into protein. Usually, the gene
expression process conveys RNA information as numerical outcomes. For gene expres-
sion data, specific biological characteristics (for example, RNA information) are usually
measured during a predetermined time interval under different experimental conditions.

Several statistical methods to analyze gene expression data have been considered,
including clustering, fold expression changes, ANOVA, etc. Draghici and Kulaeva [2]
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discussed a noise sampling method based on ANOVA for the selection of differentially
regulated genes. They compared their results with the fold change method and discussed
the risk of obtaining a false positive when strictly observing fold change. Eisen et al. [3] used
a cluster analysis method to compare genes according to similarity. Li et al. [4] introduced
a time-lagged correlation coefficient to assess the relationship between genes and used the
linear mixed-effect model with splines for gene clustering. Yeung and Ruzzo [5] applied
the principal component analysis to analyze gene expression data. They also studied
the effectiveness of different clustering algorithms to capture cluster structure. Fang
et al. [1] discussed some limitations of the fold expression method, suggesting that genetic
information might be lost using this method. One defining feature of gene expression
analysis is its time-dependency on the expression levels for a given gene at multiple
times. Therefore, it is very important to incorporate the correlation structure within gene
expressions. Kerr et al. [6], Storey and Tibshirani [7] studied differentially expressed
genes from a single timepoint. Meanwhile, Tusher et al. [8] developed a temporal gene
expression model based on one condition. Fang et al. [1] proposed a non-linear regression
model to mark the relative change rates of genes. Their study uses changeable variance
and covariance structure to model individual gene expression trajectory. Deng et al. [9]
investigated the effects of different biological conditions on gene expressions. Under a
given condition, Deng et al. [9] used log-normal distribution properties to characterize the
variance function of genes and proposed a statistical test approach to test the equality of
the variance function for different conditions. Deng et al. [10] studied the threshold points
of the gene expressions and constructed test statistics to detect the threshold points.

At present, the available literature only considers using the mean function when
analyzing gene expression trajectory. However, when gene expression data are skewed or
over-dispersed, the mean function can be affected by outlying observations. Normality
is usually assumed as the error term for estimation of the parameters in the model, and
this assumption may be improper in practical instances. In addition, the temporal gene
expression curve generally shows a strong degree of heterogeneity between multiple
biological conditions. As a result, the rates of change for gene expressions may be different
in non-central locations, and the mean model can only characterize the central location
of the gene expression distribution. Thus, mean function may not properly capture the
gene expression trajectory. However, by fitting the gene expression curves at different
quantile vaules, the quantile regression approach can be used to completely examine
the gene expression rate. Many researchers have explored statistical methods for the
analysis of the quantile regression model. Huang and Lee [11] predicted the quantiles
of daily Standard&Poor’s 500 (S&P 500) returns by incorporating the high-frequency
information through combining forecasts into one model. Most recently, Gallardo et al. [12]
proposed a parametric quantile regression model for asymmetric response variables. Jung
et al. [13] applied the multiple quantile regression method to the estimation of the spatial
distribution of soil moisture. Chen et al. [14] studied estimation and inference for linear
quantile regression models with generated regressors using a practical, two-step estimation
procedure. Nevertheless, to our knowledge, there is no literature examining the gene
expression data using the quantile regression model.

The purpose of this research is to apply the quantile regression (QR) model to the
analysis of gene expression data and propose a test statistic for the examination of the
similarity between gene expressions by comparing the quantile regression coefficients. The
remainder of this article is organized as follows. In Section 2, the quantile regression model
is proposed for gene expression data and the statistical inference is given for this model.
The simulation study is performed in Section 3. An application for gene expression data is
presented in Section 4, with the discussion in Section 5.

2. Quantile Model for Gene Expression Data

In this section, this research methodology is introduced to analyze the gene expression
data. In most cases, for gene expression data, specific characteristics were measured at
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discrete timepoints and measurements were taken under different biological conditions.
As gene expression characteristics were measured over a series of timepoints and repeated
under different circumstances, the longitudinal data analysis method can be applied to ana-
lyze discrete gene expression data. On the other hand, gene expression measurements show
a variety of patterns under different biological conditions over specific times. Therefore,
the linear quantile mixed model may be appropriate for the analysis of gene expression
data. Let Yi(t) be the observed measurement of specific gene expression under the ith
condition at time t. To determine the gene trajectory at different quantiles τ (0 < τ < 1),
the following quantile model for Yi(t) can be considered.

Y i(t) = Q(τ)(t) + ε
(τ)
i (t); i = 1, . . . , N, (1)

where, Q(τ)(t) is the quantile curve at time t, ε
(τ)
i (t) is the random noise with zero τth

quantile and N denotes the number of conditions. Note that we are unable to observe
Yi(t) for all timepoints, only at the very specific occasions tij at which measurements with
errors were taken. Therefore, the observed longitudinal data for a specific gene under
ith biological condition consist of the measurements yi = {yi(tij); j = 1, · · · ki}, where ki
denotes the number of observed timepoints. Note that, for gene expression data, there is
no available covariate. However, there are many methods in the literature that can be used
to estimate the quantile function Q(τ)(t), including kernel, local polynomial, smoothing
splines, regression splines and wavelet-based methods, among others. One simple and
straightforward basis is the polynomial basis {1, t, . . . , tp−1}, in which the true quantile
function of gene trajectory expression is modeled as polynomials of degree p− 1. In this
article, the method proposed in Donoho and Johnstone [15] and further developed in
Zhang [16] is adopted. In this spline method, Q(τ)(t) is approximated using the linear
combination of a set of truncated power basis functions. Given a sequence of K interior
knots 0 < κ1 < κ2 < · · · < κK < T where T is the end time of observations, the regression
spline basis functions of order p are 1, t, t2, . . . , tp, (t− κ1)

p
+, . . . , (t− κK)

p
+. Denoting the

vector of r(= K + 1 + p) basis functions by

B(t) = (1, t, t2, . . . , tp, (t− κ1)
p
+, . . . , (t− κK)

p
+)
>,

the regression spline smoothing is used to model Q(τ)(t) using the linear combination of
the basis functions B(t), and the linear quantile mixed model can be written as

Y i(t) = [B(t)]>β(τ) + [Z(t)]>U(τ) + ε
(τ)
i (t); (2)

where the basis function for the fixed effects parameter is denoted as B(t) = (1, t, t2, . . . , tq, (t−
κ1)

q
+, . . . , (t− κK)

q
+)
> and Z(t) is considered as basis function for random effects parameter,

which could be the q-dimensional sub-vector of B(t)(q ≤ r). In particular, basis functions
for the random intercept model and random slope model can be written as follows:

• Random intercept model, Z(t) = (1);
• Random slope model Z(t) = (1, t)>.

For model formulation, gene expression data are considered longitudinal data in
the form {Yi(tij), B(tij)

>, Z(tij)
>}, for n biological conditions and ki time occasions, i.e.,

i = 1, 2, · · · , n and j = 1, 2, · · · , ki. Now, define

Yi =


Yi(ti1)
Yi(ti2)

...
Yi(tiki

)

, Bi =


B>(ti1)
B>(ti2)

...
B>(tiki

)

, Zi =


Z>(ti1)
Z>(ti2)

...
Z>(tiki

)

, ε
(τ)
i =


ε
(τ)
i1

ε
(τ)
i2
...

ε
(τ)
iki


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and β(τ) = (β
(τ)
1 , . . . , βr)>, U(τ)

i = (U(τ)
i1 , . . . , U(τ)

iq )>. Then, we have the matrix form of the
model (2) as follows:

Yi = Biβ
(τ) + ZiU

(τ)
i + ε

(τ)
i

Now, for a longitudinal setup, assuming that Yi conditioned on random effects, Ui are
independently distributed and this conditional distribution follows the asymmetric Laplace
(AL) distribution with location parameter µ

(τ)
i = Biβ

(τ) + ZiU
(τ)
i and scale parameter σ(τ),

respectively. Therefore, it can be written as

Yi|U
(τ)
i ∼ AL(Biβ

(τ) + ZiU
(τ)
i , σ(τ), τ),

where β(τ) denotes the r × 1 vector of fixed-effect parameters and τ is considered the
quantile level. Assume that random effect vectors U(τ)

i are zero τ-quantile vectors and

independent of the error term ε
(τ)
i of the model (U(τ)

i ⊥ ε
(τ)
i ). Moreover, assume that

random effect vectors U(τ)
i are distributed with the density function f (u(τ)

i |Ψ
(τ)), where

Ψ(τ) is regarded as the variance–covariance matrix (symmetric positive definite). All
parameters depend on the skewness parameter, τ (0 < τ < 1). Now, the τth linear quantile
mixed model can be written as

Y = µ(τ) + ε(τ), (3)

where Y = (Y>1 , Y>2 , . . . , Y>n )>, µ(τ) = (µ
(τ)>
1 , µ

(τ)>
2 , · · · , µ

(τ)>
n )> and i.i.d components of

error ε(τ) = (ε
(τ)>
1 , ε

(τ)>
2 , · · · , ε

(τ)>
n )> follow an asymmetric Laplace distribution. Sym-

bolically, ε
(τ)
ij ∼ AL(0, σ, τ), i = 1, 2, . . . , n; j = 1, 2, . . . , ki. Now, in terms of matrix notation,

τth linear quantile of response (Y), denoted as µ(τ), can also be expressed as

µ(τ) = Bβ(τ) + Z⊕U(τ), (4)

where, U(τ) = (U>1 , U>2 , · · · , U>n )>, Z⊕ =
n⊕

i=1
Zi and B = (B>1 , B>2 , · · · , B>n )>.

2.1. Estimation of Parameters

Based on the above discussion, the joint density of (Y, U(τ)) can be written in terms of
the τth quantile as follows:

f (y, u(τ)|β(τ), Ψ(τ), σ(τ)) = f (y|β(τ), u(τ), σ(τ)) f (u(τ)|Ψ(τ))

=
n

∏
i=1

f (yi|β
(τ), u(τ)

i , σ(τ)) f (u(τ)
i |Ψ

(τ)) (5)

For the random intercept model (q = 1), the design matrix for random effects can
be written as Zi = (1, 1, · · · , 1)′; i = 1, 2, · · · , n. Let, Rq denote q−dimensional Euclidean
space. Now, the marginal likelihood can be derived from Equation (5) and written as

Li(β(τ), σ(τ), Ψ(τ)|y) =
∫
Rq

f (yi|β
(τ), u(τ)

i , σ(τ)) f (u(τ)
i |Ψ

(τ))dui (6)

Moreover, the marginal log-likelihood function can also be written as

li(β(τ), σ(τ), Ψ(τ)|y) = log Li(β(τ), σ(τ), Ψ(τ)|y). (7)

Since the distribution of Y(tij) is assumed to follow an asymmetric Laplace distribution,
τth quantile of Y(tij) can be estimated using the asymmetric Laplace distribution with

location parameter µ
(τ)
ij = µ(τ)(tij) = [B(tij)]

>β(τ) + [Z(tij)]
>U(τ)

i , common scale σ(τ)

parameter and known skew parameter (τ). To estimate parameters from joint density
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f (y, u(τ)), expressed in Equation (5), it is important to compute the following integral,
which is also known as the marginal density of Yi.

f (yi|β
(τ), σ(τ), Ψ(τ)) = σ

(τ)
ki

∫
Rq

exp
{
− 1

σ
ρτ(yi − µ

(τ)
i )

}
f (ui|Ψ(τ))dui, (8)

where, σ
(τ)
ki

=
[

τ(1−τ)
σ

]ki
and

ρτ(yi − µ
(τ)
i ) =

ki

∑
j=1

ρτ(yij − µ
(τ)
ij ) =

ki

∑
j=1

ρτ(y(tij)− [B(tij)]
>β(τ) − [Z(tij)]

>U(τ)
i )

Now, the log-likelihood function for n conditions can be expressed as

l(β(τ), σ(τ), Ψ(τ)|y) =
n

∑
i=1

log(σ(τ)
ki

) + log
∫
Rq

exp
{
− 1

σ
ρτ(yi − µ

(τ)
i )

}
f (ui|Ψ(τ))dui

 (9)

This numerical likelihood can be solved by applying Gaussian quadrature (Gauss–
Hermite quadrature or Gauss–Laguerre quadrature) proposed by Geraci and Bottai [17].
Now, assuming normal random effects (Ui ∼ N(0, Ψ(τ))) to Equation (9), the Gauss–
Hermite quadrature can be applied to approximate the likelihood function with nodes
νm1,··· ,mq = (νm1 , · · · , νmq)

′ and weights wml , l = 1, 2, · · · , q, respectively. Integer M deter-
mines the number of points over the real line for each of the q one-dimensional integrals.
The covariance matrix of the random effects is reparameterized by parameters α(τ), i.e.,
Ψ(α(τ)), and parameters, characterized by β(τ) and α(τ), are denoted by θ(τ) = (β(τ), α(τ))T .
Finally, Equation (9) leads to the following approximate likelihood.

lapp(θ
(τ), σ(τ)|y) =

n

∑
i=1

log

 M

∑
m1=1

· · ·
M

∑
mq=1

f
(

yi|β
(τ), σ(τ), [Ψ′(α(τ))]

1
2 νm1,··· ,mq

) q

∏
l=1

wml

. (10)

Geraci and Bottai [17] develop the gradient search (gs) and the derivative free (df)
optimization algorithm to maximize likelihood function in Equation (10). This optimization
starts with a parameter value and then searches the positive semi-line for a new parame-
ter value where likelihood is larger. This algorithm works until the likelihood change is
sufficiently small or less than the pre-specified tolerance (δ) level. This algorithm begins
estimating by initializing β(τ) = β

(τ)
0 ; α(τ) = α

(τ)
0 ; σ(τ) = σ

(τ)
0 . The derivative-free opti-

mization algorithm is similar to the gradient search method. This method alternates a loop
for θ(τ) and then updates σ(τ).

Now, from the approximate likelihood in Equation (10), the fixed effects parameter
β(τ), the random effects parameter α(τ) and the error term parameter σ(τ) can be estimated
by using the algorithm given in Geraci and Bottai [17]. Further, the estimate of quantile
function Q(τ)(t) can be written as follows

Q̂(τ)(t) = [B(t)]> β̂
(τ)

+ [Z(t)]>Û(τ)

where β̂
(τ)

is the estimate of β(τ) and Û(τ) is the estimated best linear predictor of U(τ),
which can be expressed as (Geraci and Botai [17])

Û(τ)
= Ψ̂

(τ)Z>Σ̂
−1{Y− B> β̂

(τ) − Ê(ε(τ))} (11)

where Ψ̂
(τ)

= Ψ(α̂(τ)), Z = (Z>1 , . . . , Z>n )>, Σ̂ = ĉov(Y) = ZΨ̂
(τ)Z> + ĉov(ε(τ)) =

ZΨ̂
(τ)Z> +diag(v̂ar(ε(τ)ij )) with v̂ar(ε(τ)ij ) = σ̂(τ)(τ2+(1−τ)2)

τ2(1−τ)2 , j = 1, . . . , ki; i = 1, . . . , n
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and Ê(ε(τ)) = (Ê(ε(τ)11 ), . . . , Ê(ε(τ)1k1
); ...; Ê(ε(τ)n1 ), . . . , Ê(ε(τ)nkn

)) with Ê(ε(τ)ij ) = σ̂(τ)(1−2τ)
τ(1−τ)

for

j = 1, . . . , ki; i = 1, . . . , n. Furthermore, the asymptotic covariance matrix for Û(τ) can be
derived as

cov(Û(τ)
) = Ψ̂

(τ)Z>Σ̂
−1ZΨ̂

(τ)Z>Σ̂
−1ZΨ̂

(τ) (12)

Asymptotically, Q̂(τ)(t) ∼ N(Q(τ)(t), V̂Q(τ)(t)) with

V̂Q(τ)(t) = v̂ar(Q̂(τ)(t)) = (B>(t), Z>(t))ĉov(β̂
(τ)

, Û(τ)
)(B>(t), Z>(t))>

From the asymptotic normality of Q̂(τ)(t), the approximate (1− α)100% confidence
interval for the quantile function Q(τ)(t) can be constructed as follows:

Q̂(τ)(t)± z α
2

√
V̂Q(τ)(t) (13)

where z α
2

is the upper 100 (1− α
2 )% percentile of standard normal distribution. Although

the asymptotic covariance matrix for Û(τ) has a closed form (12), there is no expression for

the covariance matrix of estimator β̂
(τ)

, and thus we are unable to find the expression for

the estimate of covariance ĉov(β̂
(τ)

, Û(τ)
). However, bootstrap is a very powerful method

and can be used in the estimation of covariance matrix for estimators (β̂
(τ)

, Û(τ)
). Here, we

use a block bootstrap approach to find the estimate for ĉov(β̂
(τ)

, Û(τ)
).

The procedures are as follows.

1. Obtain R bootstrap samples from the original data {Yi(tij), B(tij), Z(tij); j = 1, 2, . . . , ki;
i = 1, 2, . . . , n}

2. Find the estimated values for the parameters β(τ), α(τ) and σ(τ) and then calculate

the values of Û(τ) by using formula (11) from each bootstrap sample and denote the

obtained values as β̂
(τ)
1 , . . . , β̂

(τ)
R ; α̂

(τ)
1 , . . . , α̂

(τ)
R ; σ̂

(τ)
1 , . . . , σ̂

(τ)
R and Û(τ)

1 , . . . , Û(τ)
R .

3. Set φ̂
(τ)
r = (β̂

(τ)>
r , Û(τ)>

r )>, ϑ̂
(τ)
r = (β̂

(τ)>
r , α̂

(τ)
r , σ̂

(τ)
r )>, r = 1, 2, . . . , R and calculate

the sample means of R bootstrap estimates for fixed effects parameters and random
effects predictors φ(τ) = (β(τ)>, U(τ)>)> and ϑ

(τ)
r = (β(τ)>

r , α
(τ)
r , σ

(τ)
r )>

φ̄(τ) =
1
R

R

∑
r=1

φ̂
(τ)
r , ϑ̄

(τ) =
1
R

R

∑
r=1

ϑ̂
(τ)
r (14)

4. Now, the bootstrap estimator for covariance matrix of estimators (β̂
(τ)

, Û(τ)
) can be

written as

V̂
φ(τ) = ĉov(β̂

(τ)
, Û(τ)

) =
1

R− 1

R

∑
r=1

(φ̂
(τ)
r − φ̄(τ))(φ̂

(τ)
r − φ̄(τ))>, (15)

V̂
ϑ(τ) = ĉov(β(τ)>

r , α
(τ)
r , σ

(τ)
r ) =

1
R− 1

R

∑
r=1

(ϑ̂
(τ)
r − ϑ̄

(τ))(ϑ̂
(τ)
r − ϑ̄

(τ))> (16)

Furthermore, the estimates of model parameters and covariance matrix of estimators
are computed by using the ‘lqmm’ package developed by Geraci and Bottai [17] in the R
programming environment. Generally, this ‘lqmm’ package is used to estimate conditional
quantile functions with random effects in linear quantile mixed models.

2.2. Test of the Similarity of Quantile Functions for Two Gene Expressions

The other purpose of this research is to identify gene similarity based on quantile
functions. Using the results obtained in Section 2.1, the estimates of quantile functions
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for gene expressions can be obtained. The estimated quantile functions for g genes can be
expressed as

Q̂(τ)
h (t) = [B(t)]> β̂

(τ)
h + [Z(t)]>Û(τ)

h ; h = 1, 2, · · · , g.

Two genes, h and s, are said to be similar if their quantile curve expressions are equal,
i.e.,

Q̂(τ)
h (t) = Q̂(τ)

s (t); t ∈ [0, T], T > 0.

Therefore, the proposed hypothesis is

H0 : Q(τ)
h (t) = Q(τ)

s (t) vs H1 : Q(τ)
h (t) 6= Q(τ)

s (t). (17)

Now, suppose that all quantile functions share the same truncated power basis func-
tions B(t) and Z(t). Then, the τ–quantile curves of gene expressions depend on the fixed
effects parameter β(τ) and the random effects components U(τ), and testing the similarity
of two gene expression is equivalent to testing the equality of the corresponding fixed
effects parameters and random effects components. Further, the predictors of random
effects components depend on the estimates of parameters β(τ)T , α(τ), σ(τ). Thus, instead
of testing the hypothesis (17), one can test the following hypothesis related to the fixed
effects parameters and the random effects components.

H0 :(β
(τ)>
h , α

(τ)
h , σ

(τ)
h ) = (β(τ)>

s , α
(τ)
s , σ

(τ)
s ) vs

H1 :(β
(τ)>
h , α

(τ)
h , σ

(τ)
h ) 6= (β(τ)>

s , α
(τ)
s , σ

(τ)
s ). (18)

Based on parameter estimates and its covariance matrix, the following asymptotic
statistic for testing the the hypothesis H0 : (β

(τ)>
h , α

(τ)
h , σ

(τ)
h ) = (β(τ)>

s , α
(τ)
s , σ

(τ)
s ); (h 6= s),

is given by

χ
2(τ)
hs =

 β̂
(τ)
h − β̂

(τ)
s

α̂
(τ)
h − α̂

(τ)
s

σ̂
(τ)
h − σ̂

(τ)
s


>

Ξ

 β̂
(τ)
h − β̂

(τ)
s

α̂
(τ)
h − α̂

(τ)
s

σ̂
(τ)
h − σ̂

(τ)
s

, (19)

where, Ξ = (V̂h

β(τ)>
h ,α(τ)

h ,σ(τ)
h

+ V̂s

β(τ)>
s ,α(τ)

s ,σ(τ)
s
)−1 and V̂h

β(τ)>
h ,α(τ)

h ,σ(τ)
h

and V̂s
β(τ)T

s ,α(τ)
s ,σ(τ)

s

are the estimated variance–covariance matrices of the estimators (β
(τ)>

h , α
(τ)
h , σ

(τ)
h ) and

(β(τ)>
s , α

(τ)
s , σ

(τ)
s ), respectively, which can be computed from (16). When H0 holds, χ

2(τ)
hs in

Equation (19) has asymptotic chi-squared distribution with (r + q + 1) degrees of freedom,
where r is known as the dimension number of β(τ) for fixed effects parameters and q is the
dimension number of α(τ) for random effects components.

Furthermore, since the quantile function of gene expression is determined by r-
dimensional fixed parameters, q-dimensional random effects components, and scale pa-
rameter σ(τ), the pattern of gene expression h can be induced to be a random point in the
(r + q + 1) dimensional Euclidean space, which has the asymptotic multivariate normal dis-
tribution with mean (β

(τ)
h , α

(τ)
h , σ

(τ)
h ) and covariance matrix V̂h

β(τ)

h ,α(τ)
h ,σ(τ)

h
for h = 1, . . . , g.

From this point of view, the statistic χ
2(τ)
hs in (19) is also the Mahalanobis distance be-

tween random vectors (β̂
(τ)
h , α

(τ)
h , σ

(τ)
h ) and (β̂

(τ)
s , α

(τ)
s , σ

(τ)
s ). In terms of the minimum

Mahalanobis distance, we can obtain the clustering tree for g gene expressions.

3. Simulation

In this section, we examine the performance of the estimation and chi-square test
(19) based on the proposed quantile model for analyzing temporal gene expression data.
Extensive simulation studies are carried out to evaluate the accuracy of the estimated
quantile curves and the power of the proposed chi-square test (19). The random intercept
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QR model and random slope QR model are chosen with five different error terms, in which
the error terms are chosen from symmetric distribution (normal), symmetric and heavy
tailed distribution (Laplace and Student t) and skewed distribution (skew normal and skew
t). Hence, there are ten different scenarios to examine through the simulation study. The
steps are given below.

• Thirty-five equally spaced timepoints between [0, 1] are considered for 50 samples.
The data were generated using the following mixed model. The true model is assumed
as follows:

Yi(t) = f0(t) + Ui(t) + εi(t); t ∈ [0, 1], (20)

where, f0(t) = exp
(

5t
1+t3

)
, i = 1, · · · , 50.

• Random effects components are assumed to follow a normal distribution with a mean
of zero and standard deviation of two, i.e., (Ui ∼ N(0, 4)).

• The following i.i.d errors are considered for true models Equation (20).

1. Model 1: εi(t) ∼ Laplace(0,1)
2. Model 2: εi(t) ∼ Normal(0,1)
3. Model 3: εi(t) ∼ Skew Normal(0,1,1)
4. Model 4: εi(t) ∼ Skew t(0,1,1,4)
5. Model 5: εi(t) ∼ t(3)

3.1. Model and Parameter Estimation

For model generalization, the following quantile mixed model is considered:

Yi(t) = B>(t)β(τ) + Z>(t)Ui + ε
(τ)
i , (21)

where, B(t) and Z(t) are the basis functions for fixed and random effects components,
respectively. The parameter estimation procedure is illustrated below.

• Generate data for n = 50 samples using Equation (20) .
• Basis functions for Model (21) are considered as:

1. Random intercept model: B(t) = (1, t, t2, t3)>, Z(t) = (1).
2. Random slope model: B(t) = (1, t, t2, t3)>, Z(t) = (1, t).

• Forthe random slope model, we consider normal random effects with a diagonal
variance–covariance matrix. A Gauss–Hermite quadrature with seven noves is consid-
ered to approximate the marginal log-likelihood of Equation (10).

• All parameters are estimated at median (τ = 0.50).
• A total of 500 bootstrap replications are considered for the estimation of the covariance

matrix of the estimators (β̂
(τ)

, Û(τ)
).

Note that, for simplicity, the interior knots are not added in the basis function B(t) in
this simulation study. The simulations were also conducted in the scenario for the basis
function B(t) with the interior knots and the results are similar to those without the interior
knots. Furthermore, the simulations for the other values of quantile τ are omitted.

3.2. Simulation Results for Parameter Estimation
3.2.1. Parameter Estimates of Random Intercept QR Model

Parameter estimates for the 50th quantile (τ = 0.50) of the random intercept QR
model are reported below for five different scenarios. The estimated median function,
along with the confidence interval of each random intercept QR model, is presented in
Figures 1–5. Again, the estimated 50th (τ = 0.50) quantile function is also compared with
sample median function in each figure.

• Estimates of parameters in Model 1: β̂
(τ)

= [1.19,−5.06, 68.86,−53.29]>, α̂(τ) = 1.23,
σ̂(τ) = 0.56, Ψ̂(τ) = 1.52.
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• Estimates of parameters in Model 2: β̂
(τ)

= [1.68,−7.42, 74.74,−56.87]>, α̂(τ) = 1.01,
σ̂(τ) = 0.43, Ψ̂(τ) = 1.02.

• Estimates of parameters in Model 3: β̂
(τ)

= [2.03,−7.46, 74.81,−57.17]>, α̂(τ) = 1.14,
σ̂(τ) = 0.36, Ψ̂(τ) = 1.29.

• Estimates of parameters in Model 4: β̂
(τ)

= [1.88,−7.85, 76.28,−57.92]>, α̂(τ) = 1.41,
σ̂(τ) = 0.49, Ψ̂(τ) = 1.98.

• Estimates of parameters in Model 5: β̂
(τ)

= [1.29,−8.70, 76.78,−57.78]>, α̂(τ) = 1.42,
σ̂(τ) = 0.57, Ψ̂(τ) = 2.01.

Figure 1. Estimated median function and C.I. (left); Estimated median and sample median (right)
for Model 1.

Figure 2. Estimated median function and C.I. (left); Estimated median and sample median (right)
for Model 2.
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Figure 3. Estimated median function and C.I. (left); Estimated median and sample median (right)
for Model 3.

Figure 4. Estimated median function and C.I. (left); Estimated median and sample median (right)
for Model 4.

Figure 5. Estimated median function and C.I. (left); Estimated median and sample median (right)
for Model 5.

3.2.2. Parameter Estimates of Random Slope QR Model

Now, the estimates of parameters for the 50th quantile (τ = 0.50) of the random slope
QR model are reported below for five different scenarios and estimated median functions;
sample median functions, along with confidence intervals, are shown in Figures 6–10.

• Estimates of parameters in Model 1: β̂
(τ)

= [1.27,−5.08, 68.86,−53.31]>, α̂(τ) =

[1.35, 0.67]>, σ̂(τ) = 0.54, Ψ̂(τ)
intercept = 1.83, Ψ̂(τ)

time = 0.45.
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• Estimates of parameters in Model 2: β̂
(τ)

= [0.98,−6.43, 72.80,−55.64]>, α̂(τ) =

[1.29, 0.68]>, σ̂(τ) = 0.41, Ψ̂(τ)
intercept = 1.68, Ψ̂(τ)

time = 0.46.

• Estimates of parameters in Model 3: β̂
(τ)

= [1.92,−7.43, 74.85,−57.15]>, α̂(τ) =

[1.79, 0.73]>, σ̂(τ) = 0.35, Ψ̂(τ)
intercept = 3.20, Ψ̂(τ)

time = 0.53.

• Estimates of parameters in Model 4: β̂
(τ)

= [2.30,−7.83, 76.31,−57.87]>, α̂(τ) =

[1.67, 1.06]>, σ̂(τ) = 0.46, Ψ̂(τ)
intercept = 2.79, Ψ̂(τ)

time = 1.13.

• Estimates of parameters in Model 5: β̂
(τ)

= [1.25,−8.53, 76.79,−57.92]>, α̂(τ) =

[1.47, 0.53]>, σ̂(τ) = 0.57, Ψ̂(τ)
intercept = 2.16, Ψ̂2

time = 0.29.

Figure 6. Estimated median function and C.I. (left); Estimated median and sample median (right)
for Model 1.

Figure 7. Estimated median function and C.I. (left); Estimated median and sample median (right)
for Model 2.
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Figure 8. Estimated median function and C.I. (left); Estimated median and sample median (right)
for Model 3.

Figure 9. Estimated median function and C.I. (left); Estimated median and sample median (right)
for Model 4.

Figure 10. Estimated median function and C.I. (left); Estimated median and sample median (right)
for Model 5.

3.3. Power Analysis of Proposed Test Statistic

In this section, the power of the chi-square test presented in Equation (19) is evaluated
by considering the alternative model. A constant number, m is added to this alternative
model.

The alternative model considered in simulation is as follows:
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[Yi(t)]new = exp(
5t

1 + t3 ) + Ui(t) + εi(t) + m (22)

where, m ∈ {0, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00}. The L2 distance between true model and
alternative model is m. Here, we assume that random effects (Ui) and error (εi) follow the
same distribution. The power analysis is carried out for both the random slope QR model
and random intercept QR model. All simulation results are performed for a sample size of
n = 30, 50 and 75 at a level of significance of α = 0.05 and quantile value of τ = 0.25, 0.50,
0.75 with 1000 replications. Tables 1–3 report empirical powers for five random intercept
QR models and five random slope models with the quantiles τ = 0.25, 0.5 and 0.75. Power
analysis results demonstrate that the statistical performance of the proposed chi-square
test statistic is good for both random intercept models and random slope models at a 5%
level of significance. This indicates that this test statistic can be applied to determine the
similarity of two gene expressions.

Table 1. Empirical Powers of χ
2(τ)
hs for intercept models and slope models with τ = 0.25.

(a) Intercept Models (b) Slope Models
Models Distance n = 30 n = 50 n = 75 n = 30 n = 50 n = 75

0.00 0.055 0.052 0.051 0.042 0.049 0.052
0.50 0.077 0.083 0.073 0.066 0.066 0.054
1.00 0.144 0.175 0.174 0.122 0.151 0.197

Model 1 1.50 0.293 0.347 0.397 0.234 0.320 0.408
2.00 0.476 0.576 0.628 0.420 0.551 0.659
2.50 0.693 0.777 0.828 0.639 0.752 0.860
3.00 0.837 0.900 0.954 0.808 0.873 0.943

0.00 0.055 0.047 0.049 0.044 0.051 0.047
0.50 0.094 0.065 0.077 0.074 0.063 0.078
1.00 0.163 0.171 0.215 0.122 0.155 0.208

Model 2 1.50 0.325 0.365 0.453 0.242 0.315 0.443
2.00 0.533 0.597 0.709 0.430 0.556 0.686
2.50 0.728 0.811 0.868 0.653 0.774 0.851
3.00 0.871 0.922 0.958 0.826 0.899 0.944

0.00 0.068 0.057 0.051 0.059 0.050 0.046
0.50 0.108 0.082 0.086 0.078 0.065 0.080
1.00 0.194 0.204 0.218 0.138 0.153 0.178

Model 3 1.50 0.349 0.417 0.494 0.255 0.346 0.403
2.00 0.563 0.668 0.739 0.449 0.601 0.661
2.50 0.756 0.847 0.897 0.653 0.797 0.842
3.00 0.885 0.957 0.964 0.831 0.920 0.950

0.00 0.066 0.058 0.053 0.057 0.046 0.054
0.50 0.086 0.084 0.086 0.072 0.057 0.061
1.00 0.159 0.172 0.194 0.133 0.148 0.173

Model 4 1.50 0.298 0.375 0.428 0.252 0.326 0.389
2.00 0.523 0.621 0.697 0.423 0.572 0.662
2.50 0.717 0.816 0.865 0.669 0.774 0.842
3.00 0.871 0.933 0.952 0.818 0.901 0.942

0.00 0.056 0.053 0.049 0.057 0.043 0.046
0.50 0.085 0.082 0.085 0.085 0.062 0.071
1.00 0.144 0.167 0.187 0.149 0.157 0.195

Model 5 1.50 0.270 0.336 0.402 0.253 0.323 0.422
2.00 0.460 0.558 0.671 0.448 0.553 0.675
2.50 0.651 0.762 0.844 0.634 0.748 0.851
3.00 0.806 0.890 0.947 0.786 0.889 0.949
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Table 2. Empirical Powers of χ
2(τ)
hs for intercept models and slope models with τ = 0.50.

(a) Intercept Models (b) Slope Models
Models Distance n = 30 n = 50 n = 75 n = 30 n = 50 n = 75

0.00 0.071 0.047 0.051 0.051 0.057 0.053
0.50 0.095 0.091 0.086 0.076 0.087 0.072
1.00 0.193 0.240 0.270 0.154 0.182 0.227

Model 1 1.50 0.360 0.489 0.574 0.313 0.413 0.505
2.00 0.597 0.751 0.812 0.521 0.664 0.774
2.50 0.807 0.903 0.940 0.720 0.849 0.913
3.00 0.919 0.976 0.991 0.874 0.951 0.981

0.00 0.066 0.049 0.052 0.048 0.050 0.046
0.50 0.092 0.089 0.100 0.080 0.069 0.059
1.00 0.190 0.239 0.318 0.158 0.176 0.227

Model 2 1.50 0.396 0.479 0.635 0.317 0.397 0.491
2.00 0.638 0.730 0.854 0.536 0.664 0.761
2.50 0.849 0.922 0.967 0.749 0.857 0.927
3.00 0.944 0.977 0.990 0.876 0.952 0.978

0.00 0.078 0.047 0.048 0.065 0.051 0.057
0.50 0.102 0.105 0.096 0.087 0.063 0.073
1.00 0.211 0.240 0.320 0.152 0.196 0.226

Model 3 1.50 0.383 0.511 0.615 0.310 0.414 0.488
2.00 0.628 0.770 0.842 0.493 0.665 0.752
2.50 0.820 0.924 0.955 0.711 0.850 0.911
3.00 0.937 0.990 0.992 0.872 0.954 0.976

0.00 0.076 0.057 0.051 0.044 0.045 0.047
0.50 0.101 0.080 0.102 0.084 0.070 0.071
1.00 0.202 0.223 0.291 0.151 0.191 0.226

Model 4 1.50 0.379 0.510 0.606 0.328 0.436 0.508
2.00 0.626 0.754 0.847 0.559 0.679 0.767
2.50 0.835 0.911 0.952 0.755 0.855 0.909
3.00 0.934 0.977 0.985 0.881 0.951 0.975

0.00 0.058 0.055 0.052 0.048 0.056 0.048
0.50 0.092 0.084 0.089 0.079 0.074 0.080
1.00 0.183 0.222 0.273 0.157 0.166 0.246

Model 5 1.50 0.374 0.491 0.587 0.316 0.420 0.513
2.00 0.608 0.724 0.836 0.522 0.672 0.786
2.50 0.796 0.897 0.942 0.741 0.851 0.924
3.00 0.922 0.966 0.983 0.874 0.936 0.982

Table 3. Empirical Powers of χ
2(τ)
hs for intercept models and slope models with τ = 0.75.

(a) Intercept Models (b) Slope Models
Models Distance n = 30 n = 50 n = 75 n = 30 n = 50 n = 75

0.00 0.073 0.056 0.047 0.069 0.058 0.044
0.50 0.098 0.078 0.069 0.081 0.071 0.071
1.00 0.163 0.170 0.197 0.150 0.158 0.177

Model 1 1.50 0.303 0.359 0.415 0.285 0.320 0.396
2.00 0.499 0.572 0.661 0.447 0.551 0.666
2.50 0.686 0.777 0.852 0.639 0.758 0.856
3.00 0.818 0.903 0.955 0.795 0.894 0.943

0.00 0.058 0.050 0.050 0.050 0.057 0.048
0.50 0.083 0.066 0.082 0.064 0.070 0.074
1.00 0.164 0.170 0.198 0.139 0.156 0.199

Model 2 1.50 0.332 0.380 0.455 0.251 0.346 0.442
2.00 0.535 0.634 0.724 0.449 0.567 0.696
2.50 0.740 0.816 0.881 0.655 0.771 0.863
3.00 0.880 0.923 0.960 0.809 0.899 0.941
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Table 3. Cont.

(a) Intercept Models (b) Slope Models
Models Distance n = 30 n = 50 n = 75 n = 30 n = 50 n = 75

0.00 0.075 0.046 0.054 0.077 0.046 0.050
0.50 0.101 0.086 0.084 0.098 0.078 0.081
1.00 0.173 0.202 0.226 0.178 0.169 0.214

Model 3 1.50 0.347 0.440 0.486 0.303 0.371 0.445
2.00 0.539 0.677 0.757 0.463 0.609 0.690
2.50 0.739 0.864 0.910 0.663 0.817 0.855
3.00 0.873 0.940 0.958 0.817 0.921 0.951

0.00 0.066 0.050 0.051 0.055 0.044 0.044
0.50 0.079 0.081 0.082 0.077 0.055 0.072
1.00 0.166 0.188 0.203 0.132 0.163 0.205

Model 4 1.50 0.319 0.388 0.451 0.273 0.360 0.446
2.00 0.523 0.638 0.680 0.468 0.610 0.726
2.50 0.717 0.819 0.873 0.679 0.803 0.887
3.00 0.868 0.946 0.957 0.831 0.925 0.966

0.00 0.046 0.046 0.054 0.056 0.051 0.047
0.50 0.070 0.066 0.081 0.070 0.073 0.076
1.00 0.131 0.154 0.187 0.136 0.143 0.177

Model 5 1.50 0.264 0.333 0.400 0.281 0.320 0.413
2.00 0.456 0.567 0.644 0.449 0.552 0.688
2.50 0.664 0.773 0.831 0.633 0.757 0.867
3.00 0.833 0.913 0.940 0.817 0.881 0.948

4. Application: Gene Expression Data

In this section, the linear quantile mixed model given in Section 2 is applied to analyze
a real dataset of 18 gene expressions in P. aeruginosa expressed in 24 conditions. Some
descriptive measures are discussed at the beginning of this section. Towards the end of this
section, the similarities between genes are investigated using the proposed test statistic
(Equation (19)) based on quantile functions.

4.1. Data

A description of 18 genes is reported in Table 4. The data observed for these genes
are first analyzed by Fang et al. [1] and then by Deng et al. [10] Initially, polymerase
chain reaction (PCR) was performed to amplify regions of P. aeruginosa virulence factors.
The primers were synthesized using PAO1 genome data according to Duan [18]. PAO1
chromosomal DNA was used as a PCR template and amplified promoter regions were
cloned into XhoI-BamHI restriction sites of the plasmid PMS402. Then plasmids were
inserted into PAO1 using electroporation. More details regarding DNA manipulation, PCR
and transformation procedures can be found in Duan [18]. The promoter activity was
measured as counts per second (CPS) of light production using a Victor2 Multilabel counter.
TSBDC minimal medium containing EDTA (400 µg/mL) and (50 µg/mL) Fecl3 were used
to assay gene expression. The reporter strains were grown overnight and the resulting
culture was diluted into 1:200 proportion in a 96-well microtiter plate. Then, the promoter
activity of the virulence factors was measured under 24 biological conditions every 30 min
for 21 h. These genes were considered as quorum-sensing or quorum-sensing-regulated
genes, which play an important role in bio-films formation. Thus, this dataset consists of 18
genes in P. aeruginosa (Table 4) and each gene was observed at 43 consecutive timepoints
under 24 conditions. Therefore, the data for each gene consist of 1032 observations and, in
total, 18,576 observations are measured for 18 genes.
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Table 4. 18 genes in P. aeruginosa expression.

Code Name Protein Ratio Remarks

A6 PA5283 Probable Trancriptional regulator 99.68% 48% similar to putative transcriptional
regulator (Bacilus subtilis)

B3 PA2975
(rluc) Ribosomal large subunit 99.68% Transcription, RNA processing and degra-

dation

B4 PA4991 Hypothetical Protein 100% Unknown

B5 PA5237 Conserved hypothetical Protein 100% 87% similar to hypothetical yigC gene
product of E. coli

C4 PA0287
(gpuP) 3-guanidinopropionate transport protein 100% Transport of small molecules

D1 PA3115
(fimV) Motility protein FimV 100% Membrane proteins; Motility and Attach-

ment

D2 PA3879
(narL) Two-component response regulator NarL 99.67% 74% similar to E. coli NarL protein

D3 PA0894 Hypothetical Protein 99.02% Unknown

E5 PA1875 Probable outer membrane protein precur-
sor 100% 41% similar to alkaline protease secretion

protein AprF

E6 PA0573 Hypothetical Protein 100% Unknown

F2 PA3902 Hypothetical Protein 100% Unknown

F3 PA3212 Probable ATP-binding component of ABC
transporter 100%

65% similar to putative amino acid abc
transporter, ATP-binding Protein (Heli-
cobacter Pylori J99)

F5 PA2997
(nqrC)

Na+translocating NADH: ubiquinone ox-
idoreductase subunit Nrq3 100% Energy metabolism

G2 PA0649
(trpG) Anthranilate synthase component II 100%

Energy metabolism; Biosynthesis of co-
factors, prosthetic groups and carriers;
Amino acid biosynthesis and metabolism

G5 PA1748 Probable enoyl-CoA hydratase/isomerase 98.20%
61% similar to putative enoyl-coA hy-
dratase EchA3 (Mycobacterium tubercu-
losis)

G6 PA3771 Probable trancriptional regulator 99.22% 54% similar to a region of putative regula-
tory protein (Streptomyces coelicolor)

H3 PA1841 Hypothetical protein 100% 43% similar to hypothetical yeaK gene
product of (E. coli)

S70 σ70 σ factor As a control

4.2. Exploratory Analysis

In this section, a summary is provided of the selected gene expression data. Gene
expressions, g(t) are obtained on a log scale under 24 conditions. Figure 11 exhibits gene
expression curves of genes PA2975(rluc) and PA0573, respectively. From this figure, it is
evident that the expressions for genes PA2975(rluc) and PA0573 are very different under
different biological conditions. Figure 12 shows a histogram of expressions on PA2975(rluc)
and PA0573, respectively. This figure reveals that teh data are severely skewed (negative)
and show non-normality signs. Figures 13 and 14 present the distributions of expressions
for PA2975(rluc) and PA0573 with respect to time and conditions, respectively. Both box-
plots demonstrate that heterogeneity is present in both PA2975(rluc)(B3) and PA0573(E6)
gene expressions. More importantly, both parts of the figure show that the gene expression
dataset consists of outliers. Hence, Figures 12–14 suggest that the normality assumption
for linear mixed model may be inappropriate for analyzing gene expression data. For this
reason, the quantile models are going to be used to determine gene trajectory in terms
of different quantile values. This method might provide more significant and insightful
results than the mean regression model.
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Figure 11. Gene expressions of PA2975(rluc)(B3) (left) and PA0573(E6) (right).

Figure 12. Histograms of gene expressions of PA2975(rluc)(B3) (left) and PA0573(E6) (right).

Figure 13. Box-plots of gene expressions PA2975(rluc)(B3) regarding time (left) and conditions
(right).
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Figure 14. Box-plots of gene expressions PA0573(E6) regarding time (left) and conditions (right).

4.3. Model and Parameter Estimates

Let Yi(t) be the measurements for condition i at time t. The linear quantile mixed
model is considered for estimation purposes. Since no additional covariates are available,
polynomial basis functions are considered for fixed effects in this analysis.

Yi(t) = [B(t)]>β(τ) + [Z(t)]>U(τ) + ε
(τ)
i (t); (i = 1, · · · , 24) (t = 0, 0.5, · · · , 21). (23)

Random Intercept Model: B(t) = (1, t, t2, t3, t4)> and Z(t) = (1).
Random Slope Model: B(t) = (1, t, t2, t3, t4)> and Z(t) = (1, t)>.

For each gene expression, the same fixed effects and random effects structures are
considered when estimating the parameters in both the random intercept model and
random slope model. However, AIC is found to be lower for the random intercept model
than for the random slope model. Thus, the random intercept model is used for further
analysis, instead of the random slope model. Table 5 reports the values of estimated
parameters for quantile functions with quantile τ = 0.25, 0.50, 0.75 for PA2975(rluc)(B3)
and PA0573(E6). Figures 15 and 16 show the estimated quantile functions and confidence
intervals for genes PA2975(rluc)(B3) and PA0573(E6), respectively. Figures 17 and 18
present the estimated quantile functions, along with the sample quantile functions, for
gene PA2975(rluc)(B3) and PA0573(E6). Moreover, Figure 19 shows the estimated median
functions for 18 genes in P. aeruginosa.

Table 5. Parameter estimates of quantile model for genes PA2975(rluc)(B3)and PA0573(E6).

PA2975(rluc)(B3) PA0573(E6)

Estimate τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

β0 2.7592 2.843 2.925 2.569158 2.625809 2.785331
β1 0.54199 0.53962 0.53468 0.465631 0.494351 0.4591522
β2 −0.054218 −0.054119 -0.052799 −0.039942 −0.042743 −0.038572
β3 0.002192 0.0021183 0.0020676 0.001215 0.001262 0.001171
β4 −0.000031 −0.000029 −0.000029 −0.000011 −0.000008 −0.000009
σ̂ 0.068 0.096 0.072 0.084 0.101 0.076

AIC 43.43 143.56 166.91 466.15 241.57 252.46
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Figure 15. Confidence intervals of gene PA2975(rluc)(B3).

Figure 16. Confidence intervals of gene and PA0573(E6).

Figure 17. Quantile functions and sample quantile functions of PA2975(rluc)(B3): lower quartile
(left); median (center); upper quartile (right).
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Figure 18. Quantile functions and sample quantile functions of PA0573(E6): lower quartile (left);
median (center); upper quartile (right).

Figure 19. Estimated median functions of 18 genes in P. aeruginosa.

4.4. Test of Gene Similarity

To find the similarity between genes, pairwise comparisons of all the gene expressions
of 18 genes in P. aeruginosa were investigated in terms of their quantile functions, since gene
expression curves depend on fixed effects parameters and random effects components. For
τ = 0.50 the following hypotheses were tested.

H0 : (β
(τ)
h , U(τ)

h ) = (β(τ)
s , U(τ)

s ) vs

H1 : (β
(τ)
h , U(τ)

h ) 6= (β(τ)
s , U(τ)

s )
(24)

where β
(τ)
h and β(τ)

s are the set of parameters (β0, β1, β2, β3, β4) for hth gene and sth gene.

When H0 holds, χ
2(τ)
hs , Equation (19) has an asymptotic chi-squared distribution with (r + 1)

degrees of freedom, where r is known as the basis of the regression model. Table 6 reports
the Mahalanobis distance between 18 genes using the results of parameter estimates and chi-
square statistic for τ = 0.50. Moreover, considering a significance level of α = 0.05, Table 7
reports gene similarity. Figure 20 presents clustering tree of 18 genes in P. aeruginosa. Based
on Figure 20 and Table 7, it can be said that PA1841(H3) shows no significant difference to
PA2975(rluc)(B3), PA4991(B4), PA0573(E6), PA2997(F5) and PA1748(G5). In addition, the
quantile function of PA3771(G6) shows no difference to the quantile function of PA0287(C4),
PA0573(E6), PA0649(G2). Furthermore, PA3212(F3) shows similarities with PA5283(A6)
and PA1875(E5).
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Figure 20. The clustering tree of 18 genes in P. aeruginosa.

Table 6. Mahalanobis distance between genes.

Gene A6 B3 B4 B5 C4 D1 D2 D3 E5 E6 F2 F3 F5 G2 G5 G6 H3

B3 222.58
B4 145.73 17.46
B5 331.40 53.15 62.8
C4 41.58 21.14 20.96 54.61
D1 29.88 127.88 64.77 176.25 66.30
D2 5.78 77.32 79.50 105.09 29.10 29.56
D3 12.93 62.89 68.93 145.2 22.02 29.05 22.91
E5 18.15 35.27 41.42 49.32 27.38 18.92 24.82 26.35
E6 159.01 39.13 34.87 190.01 14.69 78.55 51.99 28.54 20.33
F2 35.29 33.85 34.91 54.04 29.13 33.34 49.49 15.86 49.9 17.52
F3 9.90 43.38 66.94 92.28 11.63 25.66 18.09 11.51 11.01 24.65 36.72
F5 120.18 39.42 19.50 37.26 31.58 71.71 93.65 88.4 52.68 55.69 43.79 74.78
G2 185.55 15.76 53.09 54.37 11.47 105.15 53.06 39.77 27.35 31.29 19.38 25.87 51.5
G5 104.23 25.73 5.68 62.91 11.67 71.79 61.42 40.07 28.85 11.2 36.9 39.48 25.01 52.04
G6 62.10 10.25 28.59 36.92 8.99 82.18 35.43 35.28 16.29 13.19 33.96 19.79 41.33 5.85 22.08
H3 104.05 8.72 7.82 35.07 21.29 78.07 71.37 45.62 36.34 9.94 25.01 39.33 24.02 25.64 6.22 17.28
σ70 55.17 59.36 29.27 75.08 55.16 20.55 41.38 34.36 23.2 51.65 56.12 39.25 51.18 82.15 28.1 59.18 40.18

Table 7. Gene similarity.

Gene A6 A6 A6 B3 B3 B4 B4 C4 C4
Gene D2 D3 F3 G6 H3 G5 H3 F3 G2
Distance 5.78 12.93 9.90 10.25 8.72 5.68 7.82 11.63 11.47

Gene C4 C4 D3 E5 E6 E6 E6 G2 G5
Gene G5 G6 F3 F3 G5 G6 H3 G6 H3
Distance 11.67 8.99 11.51 11.01 11.20 13.19 9.94 5.85 6.22

5. Concluding Remarks

Gene expression analysis usually tracks the expression values of a large number of
genes simultaneously under different biological conditions, and the rate of change may
not be consistent at different quantiles. This research uses a linear quantile mixed effect
model to analyze the gene expression trajectory. Gene expression models are constructed
using basis functions and a statistical test is proposed to determine the similarity of the
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genes based on estimated fixed effects parameters and random effects components from the
linear quantile mixed model. In simulation studies, both the random intercept and random
slope models are considered to examine the performance of proposed estimation and test
statistics. The simulation results indicate that the chi-square test statistic performs well in
all circumstances to test the similarity of quantile functions. Finally, as an illustration, a
linear quantile mixed model is applied to a real dataset of 18 genes in P. aeruginosa expressed
in 24 conditions, and the similarity between genes is investigated using the proposed test
statistic based on quantile functions. Moreover, a clustering tree is also shown using a
complete linkage method. This research suggests that this proposed test statistic may help
bio-medical scientists test the similarity between genes in terms of their quantile functions.
In a simulation study, instead of true quantile functions, estimated quantile functions are
compared with sample quantile functions, which is a limitation of this research. This
research can be further extended by considering a changeable variance and covariance
structure for the gene expression data.
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