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Abstract: Parametric techniques commonly rely on specific distributional assumptions. It is therefore
fundamental to preliminarily identify the eventual violations of such assumptions. Therefore, ap-
propriate testing procedures are required for this purpose to deal with a the goodness-of-fit (GoF)
problem. This task can be quite challenging, especially with small sample sizes and multivariate
data. Previous studiesshowed how a GoF problem can be easily represented through a traditional
two-sample system of hypotheses. Following this idea, in this paper, we propose a multi-aspect
permutation-based test to deal with the multivariate goodness-of-fit, taking advantage of the non-
parametric combination (NPC) methodology. A simulation study is then conducted to evaluate
the performance of our proposal and to identify the eventual critical scenarios. Finally, a real data
application is considered.

Keywords: multi-aspect; NPC; goodness-of-fit

1. Introduction

In this study, we propose a permutation-based methodology, based on multi-aspect
testing, to address the goodness-of-fit problems when the sample size is small and numeric
multivariate data are available.

Parametric techniques rely on specific assumptions about the distribution of the
population from which the parameter of interest is drawn. When such assumptions are
violated, inference can be highly unreliable. For this reason, appropriate tests need to be
preliminarily conducted to detect the eventual departure from the required distribution.

Considering the multivariate scenario, in the literature, a few solutions have been
proposed to evaluate the multivariate normality.

For example, Mardia [1] proposed a pair of solutions based on multivariate versions
of skewness and kurtosis measures. Let us suppose that Skew = 1

n2 ∑n
i=1 ∑n

j=1 m3
ij, Kurt =

1
n ∑n

i=1 m2
ii, mij = (xi − x̄)′S−1(xj − x̄), S = 1

n ∑n
i=1(xi − x̄)(xi − x̄)′, df = V(V+1)(V+2)

6 ,
x = {xij, i = 1, . . . , n, j = 1, . . . , V} is the sample of interest, n is the sample size, and V is
the number of multivariate components. Equation (1) displays the proposed skewness test,
while a kurtosis test is reported in Equation (2).

n
6

Skew ∼̇ X2
df (1)

Kurt ∼̇ N
(

V(V + 2),
8V(V + 2)

n

)
(2)

Given that for small samples, the power and the type I error could be violated, the
author afterwards proposed a corrected version of the Skewness test, using nc

6 Skew as test

statistic, where c = (n+1)(n+3)(V+1)
n(n+1)(V+1)−6 .
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A small sample size indeed makes multivariate goodness-of-fit problems quite chal-
lenging, given that we cannot rely on asymptotic properties. To deal with such circum-
stances, Arboretti et al. [2] proposed a permutation-based method relying on the nonpara-
metric combination (NPC) methodology [3]. Given a random sample x from a population
with distribution f and a theoretical distribution f0, the authors followed the approach sug-
gested by Friedman [4], addressing a goodness-of-fit problem as a two-sample equality in
distribution problem. They drew an additional sample x0 from the theoretical distribution
f0, and used x and x0 to test whether f = f0. Arboretti et al. [2] also recommended the
use of permutation tests, highlighting their non-parametric, distribution-free nature and
their power.

Considering a generic equality in distribution problem, there are many aspects that
can determine a difference and need to be monitored. We can have completely different
distribution functions, but also differences in location, in variability or in shape parameters.
For this reason, multi-aspect permutation tests represent a solution worth considering.
These tests follow the idea proposed by Fisher in 1947, which affirmed that different tests
can be adopted to evaluate different aspects of the same null hypothesis [5,6]. Multi-aspect
testing procedures indeed are aimed at simultaneously testing multiple features of the
same H0.

The NPC methodology allows us to easily extend such procedures to the multivariate
scenario and thereafter to multivariate goodness-of-fit problems. In Section 2, we propose
a possible extension, providing a detailed description of the underlying algorithm and
of a possible competing technique. Then, Section 3 is devoted to the investigation of its
performance through a simulation study. In Section 4, a real data application is proposed.
Finally, in Section 5, we make conclusions about the conducted study.

2. Multi-Aspect Permutation Solution

Arboretti et al. [2] showed that goodness-of-fit problems can be easily converted into
a two-sample equality in the distribution problem. For this reason, the nonparametric
combination methodology can provide suitable and quite powerful solutions.

The NPC essentially requires three steps to be undertaken:

1. The decomposition of the global system of hypotheses (see System 3) into multiple
sub-problems: H0 : X d

= X0

H1 : X
d
6= X0

; (3)

2. The application of partial test statistics to address each sub-problem and computation
of partial p-values.

3. The combination of partial p-values using appropriate combining functions to finally
compute a global p-value to test System 3.

In a multivariate scenario, the first step implies the following decomposition:{
H0 :

⋂V
v=1 H0v

H1 :
⋃V

v=1 H1v.
where

H0v : xv
d
= x0v

H1v : xv
d
6= x0v.

where we create a sub-system of hypotheses for each of the V components xv of the
multivariate outcome.

On the other hand, NPC-based solutions for multi-aspect testing [7–10] also require an
initial decomposition of the system of hypotheses, defining a sub-problem for each aspect
to be considered. For the sake of simplicity, in this study, we focus on three aspects and
report the related sub-systems:
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• location {
H0µ : µ = µ0

H1µ : µ 6= µ0
;

• variability {
H0σ : σ = σ0

H1σ : σ 6= σ0
;

• cumulative distribution function {
H0F : F = F0

H1F : F 6= F0
.

To address the aforementioned multivariate goodness-of-fit problem, we propose a multi-
variate multi-aspect test, and therefore we need to combine the two different decompositions:{

H0µ :
⋂V

v=1 H0µv =
⋂V

v=1 µv = µ0v

H1µ :
⋃V

v=1 H1µv =
⋃V

v=1 µv 6= µ0v
(4)

{
H0σ :

⋂V
v=1 H0σv =

⋂V
v=1 σv = σ0v

H1σ :
⋃V

v=1 H1σv =
⋃V

v=1 σv 6= σ0v
(5)

{
H0F :

⋂V
v=1 H0Fv =

⋂V
v=1 Fv = F0v

H1F :
⋃V

v=1 H1Fv =
⋃V

v=1 Fv 6= F0v.
(6)

For each individual aspect, we then identify a suitable test statistic. In particular, we
detect differences in the following:

• For location, we use the absolute difference between sample means:

Tµv = |x̄v − x̄0v|

• For variability, we adopt the ratio of the two estimated variances s2
1 and s2

0:

Tσv = max

(
s2

1
s2

0
,

s2
0

s2
1

)

• For the cumulative distribution function, we use the Anderson–Darling test statis-
tic [3]:

TFv = ∑N
i=1[F̂(zvi)− F̂0(zvi)]

2/{F̄(zvi)[1− F̄(zvi)]}

where z = {x, x0} is the pooled sample, n and m are individual sample sizes, N = n +
m, F̂(t) = ∑n

i=1 I(xvi ≤ t)/n, F̂0(t) = ∑m
i=1 I(x0vi ≤ t)/m, F̄(t) = ∑N

i=1 I(zvi ≤ t)/N,
I(t) = {1 if t is TRUE; 0 otherwise}, and t ∈ R1.

The second step of the NPC methodology can thereafter be undertaken. We apply
each test statistic to each univariate component of the outcome and compute the related
partial p-values via multivariate permutation.

The adopted algorithm is as follows:

• Apply the three test statistics to the original pooled data set z = {x, x0}. Observed
values To

µv, To
σv, and To

Fv are achieved.
• For b = 1, . . . , B:

– Shuffle rows of z (i.e., the same permutation scheme is applied to each compo-
nent), implicitly taking into account the existing correlation among variables.

– Apply the three test statistics and retrieve Tb
µv, Tb

σv, and Tb
Fv.
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• Compute the partial p-values λ′µv, λ′σv, and λ′Fv, comparing the values of the observed

test statistics to those of the permuted test statistics (e.g., λ′µv =
∑b I(Tb

µv≥To
µv)

(B+1) , v =

1, . . . , V), and their permutation distributions λ′bµv, λ′bσv, and λ′bFv, b = 1, . . . , B (for
further details, see Pesarin and Salmaso [3]).

The last step consists of the combination of the partial p-values and the computation
of the global p-value. To do that, the following procedure needs to be followed:

• For each aspect, apply a combining function φ(·) to the V vectors of partial p-values
and their permutation distributions to achieve second-order test statistics T′′oµ =
φ(λ′µ1, . . . , λ′µV), T′′oσ = φ(λ′σ1, . . . , λ′σV), T′′oF = φ(λ′F1, . . . , λ′FV) and their estimated

distributions T′′bµ = φ(λ′bµ1, . . . , λ′bµV), T′′bσ = φ(λ′bσ1, . . . , λ′bσV), T′′bF = φ(λ′bF1, . . . , λ′bFV),
b = 1, . . . , B.

• Compute second-order p-values λ′′µ, λ′′σ , and λ′′F (and the related distributions λ′′bµ ,
λ′′bσ , λ′′bF , b = 1, . . . , B) comparing T′′oa to the permuted values T′′ba , b = 1, . . . , B, with
a ∈ {µ, σ, F}.

• Apply a combining function θ(·) to the second-order p-values and their permuta-
tion distributions to achieve a third-order test statistic T′′′o = θ(λ′′µ, λ′′σ , λ′′F) and its
estimated distribution T′′′b = θ(λ′′bµ , λ′′bσ , λ′′bF ), b = 1, . . . , B.

• Compute the global p-value λ′′′ comparing T′′′o to the permuted values T′′′b, b =
1, . . . , B.

The choice of the combining function can represent a key factor in determining the
power of the proposed test. According to Pesarin and Salmaso [3], a combining function
should satisfy four fundamental properties, which are as follows:

• It should be a non-increasing and possibly symmetric function;
• It should reach its supremum value even when only a single partial p-value attains 0;
• For each significance level α, the related critical value should be finite and lower than

the supremum value;
• The rejection region of the resulting combined test should be convex.

Among the functions satisfying these requirements, we have the following:

• Fisher’s [11]:

ψFisher : RK −→ R (λ1, . . . , λK) 7→ −2 ·
K

∑
k=1

log(λk)

• The truncated product method [12], a modification of Fisher’s combining function
which generally helps in gaining power with highly dependent data [13]:

ψTPM : RK −→ R (λ1, . . . , λK) 7→ −2 ·
K

∑
k=1

log(λk) · 1[0,τ](λk)

• Tippett’s [14]:

ψTippett : RK −→ R (λ1, . . . , λK) 7→ 1−min{λ1, . . . , λK}

In this study, we decided to set θ(·) = ψTippett(·) and to investigate the impact of
choosing the truncated product method over Fisher’s ψFisher(·) as the first combining
function φ(·) used to combine V vectors of p-values related to the V components of the
multivariate outcome. A simulation study was indeed conducted to evaluate the power of
our proposal, implementing two different versions of the test, one using φ(·) = ψTPM(·)
(indicated as NPC—Fisher) and one using φ(·) = ψFisher(·) (indicated as NPC—Truncated).
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A Competing Method

For a better evaluation of the performance of the proposed method, we decided to
consider a possible competing method. In particular, we focused on the two-sample energy
tests introduced by Székely et al. [15] in order to deal with the equality in distribution in
high-dimensional problems. The test statistic they suggested is

ε =
nm

n + m

(
n

∑
i=1

m

∑
i′=1
||xi − xi′ ||+

1
m2

n

∑
i=1

m

∑
i′=1
||x0i − x0i′ || −

2
nm

n

∑
i=1

m

∑
i′=1
||xi − x0i′ ||

)

where || · || is the Euclidean distance. Large values of this statistic lead to rejection and in
order to propose an adequate p-value, they rely on a permutation approach.

3. Simulation Study

In this study, we considered several different scenarios to accurately evaluate the
performance of the proposed NPC-based approach.

Firstly, we decided to consider three different multivariate distributions:

• Multivariate normal distribution with mean µ and variance-covariance matrix Σ;
• Multivariate log-normal distribution with the mean vector of the log of the distribution

equal to µ and variance–covariance matrix of the log of the distribution equal to Σ;
• Multivariate Student’s t distribution with 3 degrees of freedom, location parameter µ

and scale matrix Σ.

Data generation was conducted, taking advantage of the rmvnorm [16], LaplacesDe-
mon [17] and compositions [18] packages implemented in R. The energy package [19] was
adopted to apply the competing method, while R codes implementing the two versions of
the multi-aspect test are available upon request.

Initially, the sizes of the observed and the theoretical samples were both fixed to 20,
while we decided to consider two possible numbers of variables V, namely 6 and 10.

Under the null hypothesis, the observed and the theoretical distributions are expected
to be the same. Therefore, under H0, we set the V-dimensional vector µ = [10, . . . , 10] and
the (V ×V)-dimensional matrix

Σ =


1 ω · · · ω
ω 1 · · · ω
· · · · · · · · · · · ·
ω ω · · · 1


for both samples. We considered three possible values of ω, i.e., 0, 0.25, and 0.5, to introduce
different degrees of correlation.

Under the alternative hypothesis, we focused on scenarios where the observed and the
theoretical distributions were different in terms of both the location and scale parameters.
For the theoretical sample X0, the aforementioned µ and Σ were adopted. On the other
hand, to generate the observed sample X, we used µ1 = [9.5, . . . , 9.5] and

Σ1 =


3 ω · · · ω
ω 3 · · · ω
· · · · · · · · · · · ·
ω ω · · · 3

.

Again, three possible values of ω, i.e., 0, 0.25, and 0.5, were considered, using each time the
same value for both the distributions.

Given the well-known properties of the NPC methodology, increasing the size m of
the theoretical sample could allow us to increase the power of our procedure. To better
illustrate such a phenomenon, we also tried to vary m in a final scenario, where for the
theoretical sample, we use µ = [10, . . . , 10] and
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Σ =


1 ω · · · ω
ω 1 · · · ω
· · · · · · · · · · · ·
ω ω · · · 1

,

and for the observed sample, we have µ1 = [9.5, . . . , 9.5] and

Σ1 =


3 ω · · · ω
ω 3 · · · ω
· · · · · · · · · · · ·
ω ω · · · 3

,

with ω = 0.25. In particular, we considered three possible values for m (i.e., 20, 30, and 40),
while keeping n fixed to 20.

It is worth noting that the current choice of test statistics is not ideal for situations
where the observed and the theoretical samples differ in terms of correlation structure. This
shortcoming is illustrated and further discussed through an additional simulation scenario,
where for the theoretical sample we use V = 6, µ = [10, . . . , 10] and

Σ =


3 ω · · · ω
ω 3 · · · ω
· · · · · · · · · · · ·
ω ω · · · 3


with ω = 0.5, while for the observed sample we have µ1 = [10, . . . , 10] and

Σ1 =


3 ω1 · · · ω1

ω1 3 · · · ω1
· · · · · · · · · · · ·
ω1 ω1 · · · 3


with ω1 = {1.5, 2.0, 2.5}.

The number of simulation runs was set equal to 5000, while the number of permuta-
tions was equal to 2000.

Results and Discussion

Under the null hypotheses, both versions of the NPC-based test (using Fisher’s com-
bining function and the truncated product method with τ = 0.2) and the energy test all
kept the nominal level. Having fixed the significance level α to 1%, the rejection rates (i.e.,
the proportion of p-values less than or equal to α) are always quite close to 1%, with some
slight random fluctuations (see Table 1).

Under the alternative hypothesis, we can appreciate some differences between the
considered methods (see Table 2).

First of all, it appears that the choice of the combining function does not affect con-
siderably the performance of the NPC-based multi-aspect test. This is probably due to the
fact that two sequential combination steps are undertaken, mitigating the impact of the use
of a specific function during the first step. However, when a larger number of variables
and a multivariate log-normal distribution are considered, the solution adopting Fisher’s
combining function appears to be perform slightly better.

Both the Fisher and truncated product methods show reasonably high rejection rates
and outperform the energy test under the vast majority of scenarios. However, it should be
noted that for the multivariate log-normal distribution, this is not true. When considering
this asymmetric distribution, the methods show similar performance when V = 6 and
the energy test even has the highest rejection rates when a larger number of variables is
considered (i.e., when V = 10).
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Table 1. Rejection rates with significance level α = 1% under the null hypothesis.

ω V Method Multivariate
Normal

Multivariate
Log-Normal

Multivariate
Student’s t

0

6
Energy 0.010 0.009 0.010
NPC —Fisher 0.012 0.010 0.011
NPC—Truncated 0.012 0.009 0.010

10
Energy 0.007 0.011 0.010
NPC—Fisher 0.008 0.009 0.011
NPC—Truncated 0.007 0.009 0.013

0.25

6
Energy 0.010 0.010 0.009
NPC—Fisher 0.010 0.008 0.009
NPC—Truncated 0.009 0.009 0.011

10
Energy 0.008 0.012 0.009
NPC—Fisher 0.009 0.013 0.009
NPC—Truncated 0.008 0.014 0.009

0.5

6
Energy 0.009 0.010 0.011
NPC—Fisher 0.009 0.010 0.009
NPC—Truncated 0.009 0.009 0.009

10
Energy 0.012 0.011 0.011
NPC—Fisher 0.009 0.012 0.011
NPC—Truncated 0.009 0.012 0.011

Table 2. Rejection rates with significance level α = 1% under the alternative hypothesis varying ω.

ω V Method Multivariate
Normal

Multivariate
Log-Normal

Multivariate
Student’s t

0

6
Energy 0.757 0.448 0.807
NPC—Fisher 0.965 0.453 0.976
NPC—Truncated 0.958 0.450 0.972

10
Energy 0.949 0.677 0.970
NPC—Fisher 0.999 0.582 1.000
NPC—Truncated 0.999 0.558 1.000

0.25

6
Energy 0.647 0.425 0.734
NPC—Fisher 0.931 0.435 0.955
NPC—Truncated 0.926 0.430 0.946

10
Energy 0.854 0.595 0.891
NPC—Fisher 0.990 0.551 0.997
NPC—Truncated 0.987 0.535 0.995

0.5

6
Energy 0.563 0.378 0.645
NPC—Fisher 0.877 0.380 0.908
NPC—Truncated 0.876 0.374 0.901

10
Energy 0.709 0.479 0.770
NPC—Fisher 0.961 0.461 0.959
NPC—Truncated 0.953 0.455 0.955

It is then worth noting how a high correlation among variables appears to be detri-
mental to the power of the methods. All the considered tests show indeed considerably
lower rejection rates when ω = 0.5 with respect to the case ω = 0. The performance of
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the NPC-based solutions, however, remains reasonably good, even for ω = 0.5 when the
symmetrical distributions are considered.

Additionally, a higher number of informative variables appears to lead to an increase
in power. This is a well-known property of NPC-based tests, called finite-sample consis-
tency [20]. This means that whatever the sample size, a reasonably good power can be
reached if a considerably high number of informative variables is available. This is a pretty
useful property that introduces a potential solution to deal with the shortcomings posed by
small-sample scenarios.

Table 3 allows us to appreciate the positive effect on power of an increase in the theo-
retical sample size m. In particular, we can see that the permutation-based solutions with
m = 40 are able to outperform the competing method even for V = 10 and a multivariate
log-normal distribution, i.e., the only case where the energy test was performing the best for
smaller sample sizes. To further enhance the power of these tests, the user could therefore
consider increasing the size of the theoretical sample, given that it can be freely chosen.
However, when adopting such an approach, we should be aware that it could lead to a
substantial increase in the computational burden.

Table 3. Rejection rates with significance level α = 1% under the alternative hypothesis varying m.

m V Method Multivariate
Normal

Multivariate
Log-Normal

Multivariate
Student’s t

20

6
Energy 0.667 0.421 0.731
NPC—Fisher 0.941 0.434 0.958
NPC—Truncated 0.935 0.444 0.952

10
Energy 0.847 0.572 0.911
NPC—Fisher 0.994 0.506 0.996
NPC—Truncated 0.990 0.492 0.995

30

6
Energy 0.711 0.432 0.800
NPC—Fisher 0.985 0.467 0.986
NPC—Truncated 0.984 0.456 0.982

10
Energy 0.902 0.578 0.934
NPC—Fisher 0.998 0.523 1.000
NPC—Truncated 0.997 0.515 1.000

40

6
Energy 0.753 0.433 0.825
NPC—Fisher 0.993 0.524 0.993
NPC—Truncated 0.992 0.518 0.992

10
Energy 0.929 0.580 0.959
NPC—Fisher 1.000 0.595 1.000
NPC—Truncated 1.000 0.582 1.000

Investigating a potential shortcoming due to the current choice of the test statistics,
we noticed that the methods indeed fail at detecting differences in the correlation structure.
This is true for both the NPC-based solutions and the energy test. Looking at Table 4,
we can indeed see that the rejection rates are very close to the nominal level expected
under H0. However, by including an additional test statistics specifically designed to detect
differences in correlation, it could be possible to address even such a scenario [3].
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Table 4. Rejection rates with significance level α = 1% with differences in the correlation structure.

ω1 V Method Multivariate
Normal

Multivariate
Log-Normal

Multivariate
Student’s t

1.5 6
Energy 0.013 0.012 0.014
NPC—Fisher 0.010 0.013 0.012
NPC—Truncated 0.010 0.015 0.010

2.0 6
Energy 0.019 0.014 0.018
NPC—Fisher 0.012 0.009 0.010
NPC—Truncated 0.015 0.013 0.009

2.5 6
Energy 0.021 0.022 0.028
NPC—Fisher 0.012 0.009 0.014
NPC—Truncated 0.013 0.009 0.014

4. Real Data Application

We decided to consider a real data application in order to better show the usefulness of
our proposed procedure. In particular, we applied our approach to an industrial problem,
where an operator is interested in checking the quality of a production process in terms
of multiple key performance indicators. Initially, 25 different bottles (i.e., the output of
the process) were randomly selected. Their diameters measured on three key positions
were expected to be, on average, equal to 2.5 cm (Diameter A), 5 cm (Diameter B) and 7 cm
(Diameter C), respectively (i.e., µs = [2.5, 5.0, 7.5]). Additionally, after an application of
the Six Sigma methodology, we knew in advance that the expected variance–covariance
matrix was as follows:

Σs =

1.02× 10−4 1.04× 10−5 2.01× 10−5

1.04× 10−5 1.12× 10−4 2.03× 10−5

2.01× 10−5 2.03× 10−5 2.05× 10−4

,

with the diameters values following a multivariate normal distribution.
The gathered sample showed a potential shift from the expected mean value in Diam-

eter A (i.e., the diameter of the neck of the bottle) as we can see in Table 5. We therefore
applied both the versions of the NPC-based multi-aspect test and the energy test to further
investigate this hypothesis.

Table 5. Descriptive statistics.

Value Diameter A Diameter B Diameter C

Average 2.516 4.999 7.002
Variance 1.04 × 10−4 1.17 × 10−4 2.03 × 10−4

Table 6 reports the achieved global p-values. We can see that all the considered
methods allow us to reject the null hypothesis with a significance level equal to 5%, which
means that the gathered sample does not follow a multivariate normal distribution with
mean µs and a matrix of variance and covariance Σs. Looking at adjusted partial p-values
(see Table 7) we can also identify which aspects lead to this rejection. In particular, we can
see that a significant shift in mean did happen.

Table 6. Global p-values.

Energy NPC—Fisher A NPC—Truncated

4.99 × 10−4 1.14 × 10−2 2.79 × 10−2
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Table 7. Partial p-values.

Test Statistics NPC—Fisher A NPC—Truncated

Tµ 0.014 0.019
Tσ 0.095 0.147
TF 0.014 0.019

5. Conclusions

In this paper, we introduced a multi-aspect permutation test to deal with the multi-
variate goodness-of-fit (GoF). First of all, we adopted the approach already proposed by
Arboretti et al. [2], transforming the GoF problem into a traditional two-sample one. Then,
we simply introduced an extension of the nonparametric combination (NPC) methodol-
ogy [3], which is able to detect differences in location, scale and cumulative distribution
function between the observed sample distribution and the theoretical distribution.

To evaluate the performance of this solution, we proposed a simulation study, which
allowed us to appreciate the goodness of our proposal, even when compared to a possible
competing testing procedure (i.e., the energy test proposed by Székely et al. [15]). Its power
appears to be negatively affected by high correlation among variables, but at the same time,
it tends to substantially increase when the number of informative variables increases. It also
emerged that the choice of the combining function adopted in the first combination step
required by the NPC methodology does not appear to significantly affect the performance
of the proposed test.

The conducted simulation study showed the benefits of choosing a large size m of the
sample drawn from the theoretical distribution, which appears to lead to an increase in
power. Future studies could therefore consider providing guidelines about the appropriate
ratio between the observed and the theoretical samples sizes.

On the other hand, it emerged also a shortcoming of the current configuration of the
proposed approach, which fails at detecting differences in the correlation structure. For this
reason, future studies could focus on the introduction of a further test statistic, specifically
designed to detect such differences, which could allow us to improve the performance
under such scenarios.

A real data application was also proposed, which allowed us to show the usefulness
of our approach.

Overall, our proposal demonstrated to be a quite powerful solution to goodness-
of-fit problems, which shows high flexibility and leaves room for further improvement
and investigation.

Author Contributions: Conceptualization, R.C., N.B. and E.B.; Methodology, R.C., N.B. and E.B.;
Software, R.C., N.B. and E.B.; Validation, R.C., N.B. and E.B.; Formal Analysis, R.C., N.B. and E.B.;
Investigation, R.C., N.B. and E.B.; Resources, R.C., N.B. and E.B.; Data Curation, L.C., L.S. and R.A.;
Writing—Original Draft Preparation, L.C., L.S. and R.A.; Writing—Review and Editing, L.C., L.S. and
R.A.; Visualization, L.C., L.S. and R.A.; Supervision, L.C., L.S. and R.A.; Project Administration, L.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Stats 2022, 5 582

References
1. Mardia, K.V. Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies.
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