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Abstract: Multiple frames are becoming increasingly relevant due to the spread of surveys conducted
via registers. In this regard, estimators of population quantities have been proposed, including the
multiplicity estimator. In all cases, variance estimation still remains a matter of debate. This paper
explores the potential of Bayesian bootstrap techniques for computing such estimators. The suitability
of the method, which is compared to the existing frequentist bootstrap, is shown by conducting a
small-scale simulation study and a case study.
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1. Introduction

For several decades, Multiple Frame (MF) surveys, introduced by Hartley [1,2], and
related estimators [3–6] have been receiving increasing attention. For these estimators,
incorrect frame membership attribution is a potential drawback. The multiplicity estima-
tor [7], further developed by Singh and Mecatti [8] and involving the number of frames to
which units belong, bypasses the problem.

The topic is still relevant in statistical practice, as witnessed by the recent contributions
of Lohr and Raghunathan [9], Wu and Thompson [10], and Lohr [11] and by targeted
works regarding, for instance, calibration in dual frames [12], inference in the case of
ordinal data [13], kernel-based methods [14], and empirical likelihood estimation in dual
frames [15]. Moreover, variance estimation still represents one of the main challenges for
scholars and practitioners [16,17]. In the special case of dual frames, useful proposals have
been elaborated [18–20] based on linearization and jackknife methods. Another option in
dual and multiple frames consists in applying bootstrap methods [21,22].

Originally introduced by Efron [23], bootstrap has been widely applied in survey
sampling for variance estimation and data imputation; overviews of bootstrap methods in
survey sampling can be found in Shao [24] and Lahiri [25]. Regarding complex surveys,
two important contributions are those of Rao and Wu [26] and Sitter [27], where the
performance of bootstrap methods in survey sampling is compared to linearization and
jackknife. Although most of the methods for variance estimation in survey sampling are
based on the frequentist proposal, Bayesian bootstrap (BB) methods, originally introduced
by Rubin [28], have also been developed: see Lo [29], who introduced them in finite
populations and discussed the case of stratified samples, Aitkin [30] for an application in
complex surveys, and Carota [31] for a discussion about the choice of priors.

This paper aims at exploring the potential of BB techniques in estimating the variance
in multiple frame surveys. In particular, we develop a new BB-based algorithm, which
allows the estimation of the variance of the multiplicity estimator. The main advantage
of the BB algorithms is that they allow the estimated variance to be obtained without any
evaluation of second-order inclusion probabilities. A related contribution can be found
in Lohr [21], who proposes two frequentist bootstrap algorithms (named separate and
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combined, respectively) based on the Rao and Wu [26] rescaling technique. From a different
perspective, Dong et al. [32] used BB with the aim of taking multiple complex surveys
into account (without considering multiplicities), while Aidara [22] applied frequentist
bootstrap (FB) in quasi-random sequences to estimate the variance of the multiplicity
estimator [7].

The paper is organized as follows: Section 2 introduces the problem of variance
estimation in multiple frames, while Section 3 illustrates the peculiarities of our non-
parametric Bayesian proposal. A small-scale simulation study was performed in Section 4,
while a case study appears in Section 5. Some concluding remarks are contained in the
final section.

2. Multiple Frames and Variance Estimation

Multiple-frame sampling refers to surveys in which two or more frames are available
and samples are drawn (usually independently) from each frame. This solution is preferred
over the single sampling frame approach whenever a coverage improvement is needed,
e.g., for dealing with elusive populations or for cost reduction purposes. The simplest case
with two frames (A and B) is depicted in Figure 1.

a bab

Frame A Frame B

Figure 1. Example of a dual-frame situation.

More generally, the situation can be expounded as follows: let U1, . . . , Uq, . . . , Ureal −
timeQ be a collection of Q ≥ 2 frames. The sample data collected from a generic frame Uq
can be classified into Dq disjoint domains U1(q), . . . , Ud(q), . . . , U(Dq(q)). The potential num-

ber of non-empty domains allowed for each frame is defined as Dq = 2(Q−1). Table 1 reports
the case of Q = 3 frames: {A, B, C} where four domains can be identified in each frame.
For instance, for frame A, the domains DA are as follows: {a(A), ab(A), ac(A), abc(A)}.

Table 1. Partition of multi-frame samples into frame-specific domains: example with Q = 3: {A, B, C}.

Frame A Frame B Frame C

a(A) b(B) c(C)
ab(A) ab(B) ac(C)
ac(A) bc(B) bc(C)

abc(A) abc(B) abc(C)

The population is completely covered by two or more frames that may be overlapping,
and this multiplicity should be taken into account when proposing an estimator. A relevant
discussion can be found in Lohr and Rao [16]. A solution is proposed by Mecatti [7] and
included in Singh and Mecatti [8] and Mecatti and Singh [33]: the multiplicity estimator for
the total Y has the following form:
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Ŷ =
Q

∑
q=1

∑
k∈sq

yk
mkπk

, (1)

where sq is a sample extracted from frame Uq under a given sampling design, yk represents
the individual target characteristic of interest, mk is the multiplicity factor (i.e., the number
of frames in which a given individual is sampled), and πk is the first order inclusion
probability for the k-th primary sampling unit (psu). Estimator (1) does not need to assign
the k-th unit to any Uq. It belongs to the Horvitz–Thompson (HT) class, for which a
closed-form for the variance can be computed, which depends on second-order inclusion
probabilities. In fact, following Singh and Mecatti [8] and Mecatti and Singh [33], the
variance of (1) is as follows:

V(Ŷ) =
Q

∑
q=1

 ∑
k∈Uq

y2
km−2

k

1− πk(q)

πk(q)
+ ∑

k 6=k′
∑
∈Uq

ykm−1
k yk′m

−1
k′

πk(q)πk′(q)
(πkk′(q) − πk(q)πk′(q))

, (2)

where, for each frame, all first-order (πk(q)) and second-order (πkk′(q)) inclusion probabilities
must be specified. In the case of simple random sampling from each frame, the variance
of (1) reduces to the following:

V(Ŷ) =
Q

∑
q=1

Nq − nq

nq(Nq − 1)

Nq ∑
k∈Uq

y2
km−2

k −

 ∑
k∈Uq

ykm−1
k

2
, (3)

where Nq and nq are the population and sample size of frame q, respectively.

2.1. Variance Estimation for the Multiplicity Estimator

The Sen–Yates–Grundy estimator of (2) is as follows [33]:

V̂(Ŷ) =
1
2

Q

∑
q=1

∑
k 6=k′

∑
k∈sq

πk′(q)πk′(q) − πkk′(q)

πkk′(q)

(
ykm−1

k
πk(q)

−
yk′m

−1
k′

πk′(q)

)2

. (4)

In cases of simple random sampling of each frame, the estimator of (3) is [7].

V̂(Ŷ) =
Q

∑
q=1

Nq(Nq − nq)

n2
q(Nq − 1)

Nq ∑
k∈sq

y2
km−2

k −
Nq

nq

∑
k∈sq

ykm−1
k

2
. (5)

Estimator (4) needs the first- and second-order inclusion probabilities of the sampled
units. The last quantities are unknown and not trivial to estimate, especially in complex
surveys.

When second-order inclusion probabilities are not available, and non-linear methods to
estimate the variance are required, resampling techniques can be used to obtain an estimate
of (2). The most used resampling methods for variance estimation in survey sampling [34]
are the balanced repeated replications [35], the jackknife [36], and the bootstrap [25]. The
jackknife has been introduced by Lohr and Rao [17,19] in dual frames, and it is further
developed by Lohr and Rao [16] in multiple frames. In addition, jackknife has been recently
proposed to estimate variance in the case of ordinal data in multiple frames [13].

2.2. Frequentist Bootstrap for Variance Estimation

The frequentist bootstrap (FB) is currently applied to variance estimation in (complex)
survey sampling [26,27,37]. See Mashreghi et al. [38] for a general overview. In multiple
frames, the technique is introduced by Lohr [21] using the rescaling bootstrap of Rao
and Wu [26] and developed by [39] to obtain confidence intervals in the case of pseudo-
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empirical likelihood-based estimator. Two possible procedures can be carried out in this
regard. The former jointly resamples psus from all available frames. As per the latter, an
algorithm is implemented to resample from each frame separately. In this case, a different
number of iterations may be set in each frame. Regarding the multiplicity estimator (1),
Aidara [22] applies the algorithm of [21] in a three-frame context using quasi Monte Carlo
methods to improve bootstrap convergence.

In agreement with the mentioned literature, Algorithm 1 below summarizes the
general procedure, sketched, in the two-frame case, by Lohr [21]. In a given frame q, for
each bootstrap iteration (nh(q) − 1), psus are sampled from stratum h in frame q. Defining
xh(q)k(b) as how many times the psu k in the stratum h is drawn at the b-th bootstrap
iteration, the sampling weight wh(q)k is scaled according to the following scheme.

wh(q)k(b) = wh(q)k
nh(q)

nh(q) − 1
xh(q)k(b). (6)

Algorithm 1 Frequentist bootstrap

for each frame q do
for each bootstrap iteration b do

for each stratum h(q) do
(a) generate a synthetic sample s∗h(q) of size nh(q) − 1 using SRSWR
(b) adjust unit-specific sampling weights using Equation (6)

end for
estimate population total using the q-th row of Equation (7)

end for
estimate bootstrap variance of the frame using (8)

end for
aggregate frame-specific variances (9)

Similarly to the jackknife technique, the variance estimator can be expressed as a
function of weights in (6) as follows. Indeed, for a given τ̂ estimator of interest, for each
iteration b, the following Q-elements vector is constructed:

τ̂∗(1)(b) = g(w(1)(b), w(2), . . . , w(Q))

· · ·
τ̂∗(q)(b) = g(w(1), . . . , w(q)(b), . . . , w(Q))

· · ·
τ̂∗(Q)(b) = g(w(1), w(2), . . . , w(Q)(b))

(7)

where g(.) is a duly specified function.
Assuming that g(.) has the functional form (1), for each frame, a bootstrap-based

variance estimator can be computed as follows:

V̂∗(q)(Ŷ) =
1
Bq

Bq

∑
b=1

(τ̂∗(q)(b)− Ŷ)2. (8)

where Bq is the total number of bootstrap iterations, which can be different for each frame.
Finally, the variance estimator of (1) is obtained bt aggregating separate estimators (8):

V̂∗(Ŷ) =
Q

∑
q=1

V̂∗(q)(Ŷ) (9)
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3. Bayesian Bootstrap in Multiple Frames

In what follows, we propose a non-parametric Bayesian approach for variance estima-
tion in multi-frame sampling designs. Bayesian bootstrap (BB) constitutes an additional
method to approach variance estimation based on resampling and is a little explored op-
portunity in the case of multiple frame surveys. While the classical bootstrap resamples
from the observed sampled values (in the “naive” case), BB starts from the posterior dis-
tribution of the sampled units [28]. It was introduced by Lo [29] for survey sampling in
finite populations and, more recently, discussed by Aitkin [30] and Carota [31]. In case of
multiple surveys, contributions can be found in Dong et al. [32,40].

Broadly speaking, BB can be defined in terms of the Dirichlet–Multinomial compound
model. Let {y}N

1 be the values of a characteristic attributed to an exchangeable population,
where J ≤ N includes the values that can be sampled according to a vector of probabilities
θ = (θ1, θ2, . . . , θJ). In the simplest case, the prior distributions for the parameters θ are
assumed to be uniformly distributed, i.e., flat priors [41]. We assume that θ ∼ F(α), where
F(α) is the Dirichlet prior distribution over the parameter of the population generating
process, as follows. {

yi|θ ∼ Multinomial(θ1, θ2, . . . , θJ)
θ|α ∼ Dirichlet(α1, α2, . . . , αJ)

(10)

Thus, according to the Bayes theorem, the posterior predictive distribution can be
derived [32] as follows:

p(Y|y) =
∫ p(Y, θ, y)

p(y)
dθ

=

∫ 1
0 . . .

∫ 1
0 p(Y|y, θ)p(y|θ)p(θ)dθ1 . . . dθJ∫ 1

0 . . .
∫ 1

0 p(y|θ)p(θ)dθ1 . . . dθJ

=

∫ 1
0 . . .

∫ 1
0 p(Y|y, θ)p(y|θ)p(θ)dθ1 . . . dθJ∫ 1

0 . . .
∫ 1

0 p(y|θ)p(θ)dθ1 . . . dθJ
(11)

=

∫ 1
0 . . .

∫ 1
0 ∏J

j=1 θ
Nj−nj
j ∏J

j=1 θ
nj
j ∏J

j=1 θ
αj−1
j θ1 . . . dθJ∫ 1

0 . . .
∫ 1

0 ∏J
j=1 θ

nj
j ∏J

j=1 θ
αj−1
i dθ1 . . . dθJ

=
∏J

j=1 Γ(Nj + αj)/Γ(αj)

Γ(N + α0)/Γ(α0)

∏J
j=1 Γ(nj + αj)

Γ(n + α0)

−1

,

where N = ∑J
j=1 Nj and n = ∑J

j=1 nj represent the total number of elements in the pop-

ulation and in the sample, respectively. In addition, α0 = ∑J
j=1 αj and Γ(.) stands for the

Gamma function.
Resampling from the posterior predictive (12) is not trivial at all. Consequently, the

suggestion for practical implementation is to leverage Pólya’s urn scheme to simulate
such a distribution [29]. In a nutshell, the Pólya’s urn scheme contains J values αj with
j = 1, . . . , J. Initially, a value j is randomly sampled from the urn and reinserted together
with another value of the same type. After a sufficiently large number of iterations, the
distribution converges to F(α) ∼ Dirichlet(α1, . . . , αJ) [42].

The Proposed Algorithm

As mentioned above, BB relies on generating a Dirichlet-based posterior predictive
distribution via Pólya’s urn scheme. For a single frame and non-complex sampling, the
application of the BB is straightforward, but the presence of multiple frames and multi-strata
sampling designs [29] induces a further degree of complexity that must be considered.

Our proposal in this regard is summarized in Algorithm 2. The generation of a syn-
thetic population represents its core, starting from generating synthetic samples. A number
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of (N− n) elements is generated using Pólya’s urn scheme. In the generic synthetic sample,
we can identify (Nj − nj) as the number of draws of units belonging to the same group.
This corresponds to the draw from the Dirichlet-based posterior predictive distribution
p(Y|y) of Equation (12).

Algorithm 2 Bayesian bootstrap

for each frame q do
for each bootstrap iteration b(q) do

for each stratum h(q) do
(a) generate a synthetic sample s∗h(q) of size (Nh(q) − nh(q)) using the
Pólya Urn model on the original sample sh(q)
(b) construct Ch(q) by concatenating the original sample sh(q) with s∗h(q) (12)
(c) nh(q)-sized sampled is drawn from Ch(q)
(d) adjust unit-specific sampling weights using Equation (13)

end for
estimate population total using the q-th row of Equation (14)

end for
estimate bootstrap variance of the frame using Equation (15)

end for
aggregate frame-specific variances (16)

Therefore, in any frame q, for the variable of interest y in any stratum h(q), the
final bootstrapped population is obtained by concatenating the nh(q) units of the original
sample and the Nh(q) − nh(q) bootstrapped units. Then, the BB-based population values are
obtained for each h(q) as follows:

Ch(q) = {y1, . . . , ynh(q)} ∪ {y
∗
1 , . . . , y∗Nh(q)−nh(q)

} (12)

where y∗s represent values sampled from the Dirichlet-based posterior predictive distribu-
tion. The population in (12) is then used to resample nh(q) units, which constitute the frame
and stratum-specific bootstrap sample. Distinct from the FB-based weights in (6), in BB,
the weights are obtained as follows.

wBB
h(q)k(b) = wh(q)kxh(q)k(b). (13)

Then, for a given τ̂ estimator, for each iteration b, the following Q-elements vector is
constructed using weights: (13):

τ̂∗BB
(1) (b) = g(wBB

(1)(b), w(2), . . . , w(Q))

· · ·
τ̂∗BB
(q) (b) = g(w(1), . . . , wBB

(q)(b), . . . , w(Q))

· · ·
τ̂∗BB
(Q) (b) = g(w(1), w(2), . . . , wBB

(Q)(b))

(14)

where g(.) is the function of the previous paragraph in the frequentist case.
Assuming that g(.) has the functional form (1), for each frame, a BB-based variance

estimator can be computed as follows.

V̂∗BB
(q) (Ŷ) =

1
Bq

Bq

∑
b=1

(τ̂∗BB
(q) (b)− Ŷ)2. (15)

Similarly to the FB case, the variance estimator can be obtained as follows.
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V̂∗BB(Ŷ) =
Q

∑
q=1

V̂∗BB
(q) (Ŷ) (16)

4. Simulation Study

In this section, a small-scale simulation study was performed to assess the proposed
methodology via a comparison between BB and FB.

4.1. Set-Up

As a first Data Generating Process (DGP), we consider a three-frame design with
simple random sampling in each frame (DGP1). Following Mecatti, we generate M Monte
Carlo pseudo-populations of N = 2400 elements from a Gamma distribution with parame-
ters (1.5, 2) such that the population total is Y = 7200. Each element of the population is
then randomly assigned to a frame via Bernoulli trials. We state two alternative expected
values for each frame, p = 0.4 and p = 0.6, and ensure overlapping between frames and
non-empty frames. Three possible sampling fractions ( fq = nq/Nq) are considered: 0.05,
0.15, and 0.40.

Secondly, we consider a more complex sample design with stratification (DGP2).
Two strata are generated according to N1 = N2 = 1200; the individual values of the
characteristic under study are sampled from the following.

- A Gamma distribution with parameters (1.5, 2);
- A Gamma distribution with parameters (2, 4).

The population total is now equal to Y = 13,200, while the same Bernoulli trials (to
construct frames) and sampling fractions of DGP1 are used.

The number of Monte Carlo simulations is set equal to M = 500, and the number
of boostrap replications is B = 399. In agreement with previous studies [7,16,22], two
performance indicators were used: Relative Bias (RB) and the Coefficient of Variation (CV).
The RB is computed as follows:

RB =
1
M

M

∑
m=1

(V̂∗m −MSE)
MSE

· 100 (17)

where the V̂∗m is either the BB- or the FB-based variance estimate for the m-th sample,
according to the theoretical choice performed. The expression for the CV is as follows.

CV =

√
1
M ∑M

m=1(V̂∗m −MSE)2

MSE
(18)

The reference MSE in (17) and (18) is computed via 10,000 Monte Carlo simulations as
follows:

MSE =
1

10,000

10,000

∑
m=1

(Ŷm −Y)2

where Ŷm is the estimate computed for the m-th synthetic sample.

4.2. Main Results

For DGP1, Tables 2 and 3 illustrate the results about performance indicators, i.e., the
RB (17) and the CV (18), with p = 0.4 and p = 0.6, respectively.

In terms of RB, both tables show how the BB and the FB have a similar counterintuitive
behaviour, achieving the poorest results for the highest sampling fraction (0.4). Furthermore,
in the case of p = 0.6 (Table 3), a lower value of the indicator is associated with the BB at
the lowest sampling fraction (0.05), while it performs poorly when the sampling fraction is
higher. With an intermediate value of sampling fraction (0.15), still considering p = 0.6, the
performances in terms of RB are very satisfactory for both methods: the values are very
close to zero.
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Table 2. Performance indicators for DGP1 considering p = 0.4.

RB CV

fq BB FB BB FB

0.05 −8.328 −6.198 0.288 0.279
0.15 −7.575 −6.459 0.173 0.168
0.40 −13.828 −11.546 0.166 0.150

Table 3. Performance indicators for DGP1 considering p = 0.6.

RB CV

fq BB FB BB FB

0.05 −1.216 −3.541 0.316 0.312
0.15 −0.217 −0.095 0.196 0.181
0.40 −7.141 −5.935 0.137 0.130

As per the CV, the two methods show comparable results in both Tables 2 and 3, even
if FB slightly outperforms BB, with a decreasing behaviour of the indicator as the sampling
fraction increases, either for p = 0.4 or p = 0.6.

The results for the more complex DGP2 witness the reliability of the BB with respect to
the FB, as shown in Tables 4 and 5. In particular, FB severely overestimates the variability
for each p and fq, as denoted by the high positive values of its RB. Conversely, BB, which
slightly underestimates the variability of the estimator, performs well, especially with
p = 0.6 (Table 5) and when the sampling fraction is not too small ( fq = 0.15 and fq = 0.40).
In terms of CV, even if both methods show a decreasing trend according to the increase in
sampling fraction, BB definitively outperforms FB.

Table 4. Performance indicators for DGP2 with p = 0.4.

RB CV

fq BB FB BB FB

0.05 −21.996 62.258 0.375 1.088
0.15 −12.827 56.689 0.236 0.755
0.40 −12.849 49.886 0.174 0.605

Table 5. Performance indicators for DGP2 with p = 0.6.

RB CV

fq BB FB BB FB

0.05 −14.944 74.108 0.432 1.211
0.15 −2.479 68.636 0.266 0.848
0.40 −2.010 58.881 0.159 0.688

5. Case Study

To stress the advantages of using the BB in multiple frame surveys, the proposed
algorithm is applied to the two-frame dataset included as a running example in the R
package Frames2 [43]. Two households populations are considered with NA = 1735 and
NB = 1191 and with an intersection of Nab = 601 such that N = 2325. The first population
is organized in H = 6 strata with the following sizes: Nh(A) = {727, 375, 113, 186, 115, 219}.
Two samples are selected without replacement in the following manner:

- nA = 105 by simple random sampling in each stratum:

nh(A) = {15, 20, 15, 20, 15, 20};
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- nB = 135 by simple random sampling.

The available variables are three types of expenditures: Feeding, Clothing, and Leisure
(in Euros). The number of bootstrap replications is set equal to B = 999. Table 6 summarizes
the main results where the estimated variances are divided by 106.

Table 6. Resampling-based variance estimates (divided by 106) for the case study.

Variable FB BB (FB − BB)/FB

Feeding 348.24 280.12 19.56%
Clothing 6.33 5.40 14.74%
Leisure 2.50 1.88 24.52%

Empirical results confirms that the BB-based variance estimates are lower than the
competing ones computed with FB under stratified sampling in multiple frames. In
particular, BB exhibits a relative percentage difference (with respect to FB) that ranges
(approximately) between 15% and 25%.

6. Discussion and Conclusions

The novelty of the present paper is the proposal of a Bayesian non-parametric tech-
nique (BB) to estimate the variance of a multiple frame estimator for a parameter of interest,
namely the population total. The BB is proposed to construct the first-order inclusion
probabilities in a non-frequentist manner and without modifying design-based properties.
BB is also compared with frequentist bootstrap (FB), suggested by [21] and applied by [22].
The motivation for using resampling methods in multiple frames is due to the fact that they
do not require the estimation of second-order inclusion probabilities.

Results of a small-scale simulation study show that the BB and FB perform similarly
under simple random sampling in each frame, with a slight advantage in favor of the FB
except when the sampling fraction is very low. However, this result should be considered
as a benchmark, since under simple random sampling in each frame, a closed-form for the
variance estimator is currently available [8,33].

Under a more complex sampling design like stratification, FB becomes practically
unusable, severely overestimating the variability of the estimator in the context of multiple
frames. Few previous experiments of FB in multiple frames have been performed [21,22],
but they are not directly comparable with our findings due to different DGPs as a starting
point for the simulation studies. Possible issues related to the application of FB to stratified
samples in multiple frames should be investigated in further studies even from a theoret-
ical perspective. Conversely, BB exhibits satisfactory performance, especially when the
sampling fraction is not very low. A case study also reveals the suitability of BB in the
context of dual frames with stratification.

The results here presented need future investigation with more intensive Monte
Carlo simulations, alternative Data Generating Processes, different population parameters,
further estimators in the context of multiple frames in addition to (1), and other complex
sampling design, e.g., cluster sampling. In addition, BB is insensitive to the choice of prior
for totals or means; its sensitivity for non-linear estimators should be deepened using tools
similar to those provided by Aitkin [30] and Carota [31]. Finally, a relevant advantage for
scholars and practitioners would be the implementation of BB (and the FB) in (possibly
open source) statistical software.
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