
����������
�������

Citation: Zhu, T.; Zhu, W.

Quantitative Trading through

Random Perturbation Q-Network

with Nonlinear Transaction Costs.

Stats 2022, 5, 546–560.

https://doi.org/10.3390/stats5020033

Academic Editor: Stéphane

Mussard

Received: 12 May 2022

Accepted: 7 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Quantitative Trading through Random Perturbation Q-Network
with Nonlinear Transaction Costs
Tian Zhu * and Wei Zhu

Department of Applied Mathematics and Statistics, State University of New York at Stony Brook,
Stony Brook, NY 11794, USA; wei.zhu@stonybrook.edu
* Correspondence: tian.zhu@stonybrook.edu; Tel.: +1-(443)-500-5428

Abstract: In recent years, reinforcement learning (RL) has seen increasing applications in the financial
industry, especially in quantitative trading and portfolio optimization when the focus is on the
long-term reward rather than short-term profit. Sequential decision making and Markov decision
processes are rather suited for this type of application. Through trial and error based on historical
data, an agent can learn the characteristics of the market and evolve an algorithm to maximize
the cumulative returns. In this work, we propose a novel RL trading algorithm utilizing random
perturbation of the Q-network and account for the more realistic nonlinear transaction costs. In
summary, we first design a new near-quadratic transaction cost function considering the slippage.
Next, we develop a convolutional deep Q-learning network (CDQN) with multiple price input based
on this cost functions. We further propose a random perturbation (rp) method to modify the learning
network to solve the instability issue intrinsic to the deep Q-learning network. Finally, we use this
newly developed CDQN-rp algorithm to make trading decisions based on the daily stock prices of
Apple (AAPL), Meta (FB), and Bitcoin (BTC) and demonstrate its strengths over other quantitative
trading methods.

Keywords: deep reinforcement learning; Markov decision process; quantitative finance; random
perturbation algorithm; transaction costs model

1. Introduction

Reinforcement learning (RL) is revolutionizing modern society in many areas including
robotics [1], games [2], economics [3], science [4], healthcare [5], and everyday life, bringing
the sci-fi notion of artificial intelligence (AI) to reality step by step. RL also started to see
applications in quantitative trading algorithms for better trade decisions [6]. Traditionally,
traders built mathematical models to monitor business news and trading activities in real-time
to detect any factors that can force security prices to rise or fall. Such model comes with a
predetermined set of instructions on various parameters including timing, price, quantity, and
other factors, for placing trades automatically without the trader’s active involvement. Unlike
human traders, quantitative trading can simultaneously analyze large volumes of data and
make thousands of trades every day. RL learns the trading decisions from the reward and
makes fast trading decisions, rendering superior performance over the market average.

As a unique frontier of machine learning, RL provides a framework for autonomous
learning and decision-making for control problems. The agent in RL learns a policy con-
cerned with how to take actions in an environment to maximize the cumulative reward
(Sutton and Barto, 2018) [7]. In quantitative trading, Moody and Saffell (1998) [8] pro-
posed the pioneering work using recurrent reinforcement learning to train the trading
systems. The recurrent network that they used, however, is too simple to capture the
market movement. In recent years, significant progress has been made by combining
advances in deep learning with RL, resulting in the “Deep Q-network” (DQN) algorithm
(Mnih et al., 2015) [9], capable of human level performance on tasks such as image pro-
cessing. The ability to quickly search for hidden patterns and learn control policies from

Stats 2022, 5, 546–560. https://doi.org/10.3390/stats5020033 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats5020033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0003-3662-2541
https://doi.org/10.3390/stats5020033
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats5020033?type=check_update&version=1

Stats 2022, 5 547

high-dimensional data (LeCun, Bengio and Hinton, 2015) [10] renders DQN widely appli-
cable to many fields other than image processing.

In quantitative trading, transaction costs are important to investors because they are
a key determinant of net returns. The average annual transaction cost for a mutual fund
in the U.S. was estimated at 1.44% (Edelen, et al., 2013) [11]. The first part of these costs
is brokerage commissions and taxes from when a fund manager buys or sells a stock.
One possible way to pay less brokers’ fees is to invest in lower-turnover funds using the
buy-and-hold strategy for actively managed fund (Edelen, et al., 2007) [12]. The second
part of the costs is the slippage which primarily comes from the α decay and bid/ask
spread. The spread cost can be greater if the securities have less liquidity or are traded
across global exchanges. A large mutual fund may also incur market impact costs when
the fund’s sizable purchase of stock drives the price higher artificially. These costs can be
diminished by spreading the purchases over longer periods of time.

For the linear transaction cost model, nontrade region can be obtained using an
augmented quadratic programming (Scherer, 2007) [13]. As mentioned by Lecesne and
Roncoroni (2019) [14], unit transaction costs may be a linear function of the trading size
according to the supply–demand curve. The linear term describes the price deviation from
the intended price entailed by a trade quantity under liquidity frictions, implying that
a trading model with quadratic transaction costs may be more appropriate. Due to the
nonlinearity nature of the transaction cost function, the ordinary linear programming or
quadratic programming techniques commonly used in portfolio optimization cannot be
applied. Until recently, the mean–variance optimized portfolios with quadratic transaction
costs are usually obtained using quadratic programming and the alternating direction
method of multipliers (Chen, 2020) [15]. To date, other transaction cost functions have
yet to be studied. Under the RL framework, however, it is possible to consider flexible
transaction cost functions in quantitative trading.

In a real financial market, unpredictable stock prices and socioeconomic events often
lead to noisy and nonstationary financial data, rendering the prediction of trading behaviors
arduous. In quantitative trading, the most widely used method is technical analysis
(Murphy 1999) [16] first introduced by Charles Dow as part of the Dow Theory in the
late 1800s. It builds technical indicators using predominantly charts of Opening-High-
Low-Closing prices (OHLC) and trading volumes, and identifies trading opportunities by
analyzing statistical trends gathered from these trading activities. Technical analysts view
past trading activity activities and price changes valuable indicators of a security’s future
price movements, which can in turn be embedded into a current reinforcement learning
framework for trading.

The remaining part of this paper is organized as follows. In Section 2, we introduce the
basic RL framework and the reward function used in finance. In Section 3, we then propose
the convolutional deep Q-network with random perturbation (CDQN-rp) associated with
nonlinear transaction costs to address the aforementioned challenges. In particular, for the
first challenge concerning all kinds of transaction costs, we establish our own near-quadratic
model in Section 3.1 to include the effect of slippage, especially the bid/ask spread and
market impact, as well as the fixed explicit costs. For the second challenge regarding
integrating technical analysis to reinforcement learning, we first stack n consecutive prices
as a single input, and then utilize the convolutional layers on top of the DQN, as introduced
in Sections 3.2 and 3.3. For the last challenge of instability and overoptimistic estimation
issues behind training DQN, we develop the random perturbation policy network method
in Section 3.4, which can also be embedded into the double Q-learning. In Section 4, we
develop trading strategies for several stocks using the newly proposed RL method and
compare its performance to other baseline trading strategies to demonstrate the strength of
our new method in terms of higher cumulative wealth and Sharpe ratio.

Stats 2022, 5 548

2. Reinforcement Learning Structure
2.1. Markov Decision Process

The Markov decision processes (MDP) is a mathematically idealized form of the
reinforcement learning (RL) problem for which interaction is used to achieve a goal. The
decision maker, or the agent, and the environment interact at each of the discrete time
steps, t = 0, 1, 2, 3 At each time step t, there is a corresponding state St representing
the condition of the environment, and the agent selects an action At accordingly. One time
step later, based on the action selected, the agent immediately receives a reward Rt+1, and
the environment moves to a new state st+1. The MDP and the agent together generates a
sequence of trajectory:

S0, A0, R1, S1, A1, R1, S2, A2, R3, . . .

The goal of the RL is to maximize the total amount of reward, namely the cumulative
reward in the long run, the agent receives. In particular, the agent chooses At to maximize
the expected discounted reward (if γ = 1, it means no discount):

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞

∑
k=0

γkRt+k+1 (1)

where γ is the discount rate, ranging from 0 to 1.

2.2. Action–Value Functions and Q-Learning

In order to estimate “how good” a certain state–action pair (a given action in a given
state) is, RL involves value functions to evaluate the state–action pair. An action–value
function is defined with respect to a certain policy π, which is a mapping from the state–
action pairs to their probabilities. Define the action–value function for policy π of taking
action a in state s by qπ(s, a), as the expected return starting from s, taking action a, and,
thereafter, following policy π:

qπ(s, a) = Eπ [
∞

∑
k=0

γkRt+k+1|St = s, At = a] (2)

The optimal policies share the same optimal action–value function q∗:

q∗(s, a) = max
π

qπ(s, a) (3)

To estimate the true optimal value function, an early breakthrough in RL was the de-
velopment of an off-policy temporal difference control algorithm known as the Q-learning
algorithm (Watkins, 1989) [17] to iteratively update the estimation of q∗:

Q(St, At)← (1− α)Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)] (4)

where Q(s, a) denotes the estimation of q∗(s, a).

2.3. Additive Profits, Multiplicative Profits and Sharpe Ratio

There are mainly two types of profits: the additive profit and the multiplicative profit.
The additive profit is appropriate to consider if each trade is for a fixed number of shares or
contracts of security st. With the definitions rt = st − st−1 and r f

t for the price returns of a
risky (traded) asset and a risk-free asset (such as T-Bills), respectively, the additive profit
accumulated over T time periods with trading position size µ > 0 is then defined as:

PT =P0 +
T

∑
t=1

Rt

=P0 + µ
T

∑
t=1

(r f
t + At−1(rt − r f

t)− Ct)

(5)

Stats 2022, 5 549

where At−1 is the position held at time t− 1 and Ct is the transaction costs at time t, with
P0 = 0 and typically AT = A0 = 0. Equation (1) holds for continuous quantities also. The
wealth is defined as WT = W0 + PT .

The multiplicative profit is appropriate when a fixed fraction of accumulated wealth
ν > 0 is invested in each long or short trade. Here, rt = st

st−1
− 1. If no short sales are

allowed and the leverage factor is set fixed at ν = 1, the wealth at time T is:

WT =W0

T

∏
t=1

(1 + Rt)

=W0

T

∏
t=1

(1 + (1− At−1)r
f
t + At−1rt)(1− Ct)

(6)

Instead of maximizing the profit alone, most hedge fund managers attempt to maxi-
mize the profit with risk adjusted. The Sharpe ratio is the most widely used measure of
risk adjusted return. The Sharpe ratio SRt for period t = {1, 2, . . . , T} with returns Rt is
defined as follows:

SRt =
Mean(Rt)

Standard Deviation(Rt)
(7)

3. Methodology
3.1. Transaction Cost Model

Quantitative traders use transaction cost models to have reasonable expectations for
the possible cost of an order which they will trade and adjust their trading strategies
accordingly. There are four basic transaction cost models: flat, linear, piecewise linear, and
quadratic. For theoretical quantitative methods utilizing stochastic processes and partial
differential equations, transaction costs are often ignored. For most machine learning
methods such as neural networks and especially those for time series data such as the long
short term memory (LSTM), either fixed transaction costs or linear transaction costs are
considered. In the framework of reinforcement learning (RL), the structure of the transaction
costs can be flexible, rendering it feasible to use quadratic or even more complex functions,
which are often more suitable and realistic.

In reality, transaction costs include not only the explicit costs, but also the slippage and
opportunity cost which are harder to model. Some costs such as commissions, fees, and
taxes are fixed, while other costs, such as slippage and opportunity cost, cannot be known
precisely before a trade is completed. Slippage refers to situations in which a trader receives
a different trade execution price than intended. Slippage can be caused by several factors,
such as the volatility, the order size, or even abrupt change in the bid/ask spread. For small
orders, slippage is primarily caused by bid/ask spread, while for large orders, slippage
is often due to the market impact. Market impact can also be affected by many drivers,
including the size of the order being executed and the liquidity of the instrument. One way
to avoid unexpected slippage is to set the price limits or conditional execution strategies,
which, in turn, may cause the opportunity cost. Unlike other factors of the transaction costs
occurring when an order is executed, the opportunity cost refers to the potential loss from
unexecuted shares.

Since we evaluate and adjust our position each trading day, our quantitative trading
framework belongs to low frequency trading according to the daily strategy holding period.
We use the following factor equation to model the slippage and market impact:

expected price = baseline price +/−[f (spread) + g(size, volatility)]

where expected price refers to the actual realized price rather than the intended trading
price if a trading is completed, “+/−” is determined by the side (“+” for buy side while
“−” for sell side).

The baseline price used in our model is the current price. The spread cost is 4 basis
points and the basic spread function is f (spread) = 0.5× spread. The last market impact

Stats 2022, 5 550

term is set to be g(size, volatility) ∝ sizeα × volatility, where α is a constant close to but
less than 1. Some possible choices of α are 0.88, 0.92, and 0.96 to satisfy the mathematical
requirements of a fractional exponents. For simplicity, we currently do not consider the
price limits; thus no opportunity cost is needed. Furthermore, to estimate the local volatility,
we utilize the volatility ∝ current price approximation. The expected price in our model
is therefore:

expected price = st +/− [0.5× 0.0004 + δ× size0.92 × st]

where δ is a pre-determined scalar and st is the current price.
Most work to date uses the linear transaction model in their quantitative trading

setting. Considering different underlying factors such as slippage and market impact
mentioned above, the transaction cost should behave nonlinearly in terms of the size, as the
realized price itself is a function of size. Therefore, in our quantitative trading framework,
we use a more realistic near-quadratic approximation to model the transaction cost Ct at
time t, with the size determined by the position change when unit share assumption holds:

Ct = (expected price− st)× size

= +/− [0.0002× size + δ× size1.92 × st]

= δ(At − At−1)
1.92st + (At − At−1)× 0.0002

(8)

3.2. Stacked Prices State

At each time step t, we consider the price of a single security with price series st. Instead
of using a single price st as our state, we consider a tuple St: St = (st−n+1, st−n+2, . . . , st−1, st)
with consecutive n prices as our current state at time t. The reason behind stacking a few
consecutive stock prices to represent a single state, lie in that the impact of uncertainty
is cumulative and dependent upon the history of the process, and not merely its current
value. A single price will not be enough for our network to fully understand the state of an
environment. By looking at one single price without the historical trajectory, it is impossible
to tell whether the price will rise or fall the next day. Moreover, one single price cannot
reveal the “speed” of the price movement. If we set the n consecutive prices as the current
state instead, the network will have a much better understanding of the current state of
the environment.

One advantage of using stacked price states is that the historical information is auto-
matically included when we input the state into the network for learning. Therefore, no
recurrent layer is needed, and all layers can be feedforward, which reduces the computa-
tional complexity, as computational cost of a recurrent model grows with the number of
time steps the model needs to go through [18].

The action space in our setting contains three values: −1, 0, 1, representing the
three possible positions we hold for a particular security—short, neutral, or long position,
respectively. The trader is assumed to take the position At at a constant magnitude. To
enable risk control, this assumption can be easily relaxed. The position At is determined
at time t and reassessed at time t + 1. The reward Rt is calculated using additive profits
due to the constant magnitude assumption. The summary of our MDP formulation is
as follows:

Markov Decision Process Setting:
State space: St = (st−n+1, st−n+2, . . . , st−1, st)
Action space: At ∈ {−1, 0, 1} (short, neutral, long);
Discount rate: γ = e−r f ∆t, which is the continuous discount factor;
Rewards: Rt = r f

t + (st − st−1 − r f
t)At−1 − δ(At − At−1)

1.92st − 0.0002(At − At−1).

Stats 2022, 5 551

3.3. Convolutional Deep Q-Learning Network

DQN combines Q-learning with a flexible deep neural network with the poten-
tial for a low asymptotic approximation error, reducing noise in the environment sig-
nificantly, and therefore producing the best-case scenario for Q-learning in some ways
(Van Hasselt et al., 2016) [19]. The input of the network is the current state while the output
vector is the action value estimate associated with the input state and all possible actions.

Convolutional neural networks (CNNs) are primarily used in the field of pattern
recognition, such as image processing, because the convolutional layers are particularly
designed for edge detection and impulse response filters (O’Shea, 2015) [20]. Besides fully
connected layers, CNNs also include convolutional layers and pooling layers. Adding
convolutional layers on top of DQN will produce the CDQN framework for RL. Through
transformation, CDQNs can analyze the original input trajectory, layer by layer, using
convolutional and down sampling techniques to detect the “trading signals” automatically,
without applying technical analysis to build and extract signals manually.

The convolution output for one stacked price sequence in the convolutional layer is
calculated according to the following equation:

y(h) = (x ∗ w)[h] = ∑
k

x(k)× w(h− k) (9)

where y is the convolution output in the next layer, x is the input stacked prices, w is the
kernel matrix, and ∗ is the convolution operator.

Apart from the convolutional layers, pooling layers are always included in the CNNs.
The aim of the pooling layer is to reduce the complexity cost through decreasing the
dimensionality of the input gradually. In our CDQN framework, the max-pooling layers
with kernels of a dimensionality of 2 × 2 are implemented. Another advantage of adding
the pooling layer is to render the model invariant to some noises and thus capture the true
trading signals.

3.4. Deep Q Networks with Random Perturbation

To train the network, the Bellman optimality equation is used to obtain the target Q-values:

Qtarget(s, a) = Rt+1 + γ max
a′

Q(s′, a′) (10)

For the gradient in DQN, the loss between the output Q-values and the target Q-values
needs to be calculated. The latter, target Q-values, require a second pass to the same DQN,
known as the policy network, with the next state s′ as input. The same weights used to
update both the output Q-values and the target values will lead the optimization process
to the “chasing tail” instability, as the output Q-values move closer to their targets while
the targets move further away. One solution proposed by Mnih and colleagues (2015) is to
obtain the target Q-values from a separate network, aptly named the target network.

The target network is a clone of the policy network. Its weights are frozen except
for that, periodically, after every certain number of time steps τ, the weights are copied
from the policy network’s new weights. If we denote the policy network’s parameters by
θ, for a given state s, the DQN outputs a vector of action values Q(s, ·; θ) using the policy
network. The target Q-values calculated from the target network with parameters θ′ is then
determined by:

Qtarget = Rt+1 + γ max
a′

Q(St+1, a′; θ′t) (11)

where θ′t = θ′t+1 = . . . = θ′t+τ−1 = θt and θ′t+τ = θ′t+τ+1 = . . . = θ′t+2τ−1 = θt+τ , as shown
in Figure 1.

Stats 2022, 5 552

(a) (b)

Figure 1. Convolutional deep Q-network diagram for quantitative trading. (a) The left policy network
with parameters θ shows the first pass with the current state St = (st−n+1, st−n+2, . . . , st) as input to
the network, and the network produces the Q values associated with short, neutral and long actions,
respectively. (b) The right target network with parameters θ′ shows the second pass with the next
state St = (st−n+2, st−n+3, . . . , st+1) as input, and the network outputs the state-action paired values
Q(St+1, At+1) associated with the next state. The maximum value among Q(St+1, At+1)s is used to
calculate the target Q values associated with the current state via the Q-learning algorithm.

The choice of predetermined τ can influence the speed of the convergence, i.e., the
number of episodes needed to reach the optimal value. If τ is large, which means that
the weights of the target network θ′ are fixed for many steps, then the selection process
argmax

a′
Q(st+1, a′; θ′) may not be up-to-date, especially at the beginning of the learning.

If τ is small, however, indicating that the weights of the target network θ′ are changed
frequently, then the instability issue may appear again. Even though cross-validation
can be applied to tune a single “best” τ in a specific situation, the value of τ should
behave differently at different learning phases, not to mention the complexity cost of the
tuning process.

We now consider a random variable τ instead of a deterministic τ, and let τ(i) be a
function of learning episodes. In general, τ(i) follows a stochastic process D(i) with discrete
probability distributions. Define the values which τ(i) can take by Vi = {vi1 , vi2 , . . . , vin(i)}
with vi1 < vi2 < . . . < vin(i) . At the beginning of the learning phase, i.e., when i is relatively
small, τ(i) should, to some extent, take small values as the weights change significantly at
the start, so that P(τ(i) = vi1) > P(τ(i) = vi2) > . . . > P(τ(i) = vin(i)). When the learning
is near the end, i.e., when t is relatively large, τ(i) should take large values instead as the
weights become more and more stable, so that P(τ(i) = vi1) < P(τ(i) = vi2) < . . . <
P(τ(i) = vin(i)). During the middle part of learning, τ(i) can take uniform distribution so
P(τ(i) = vi1) = P(τ(i) = vi2) = . . . = P(τ(i) = vin(i)). Some advantages of a random τ(i)
are: (i) the network will not stuck at the local optimum compared to a fixed τ, (ii) no tuning
process is needed, which saves the computational cost. Under this setting, the new target
network behaves like a random perturbation of the original policy network. Figure 2 shows
our proposed CDQN-rp algorithm of applying the CDQN with random perturbation (rp)
method in quantitative trading. Below is the detailed algorithm for updating θ′ based on
the random perturbation policy network.

We assume the total number of episodes for learning is N and the total time step for
one episode is T. For a specific episode i, do the following steps:
Step 1: initialize θ0, and set θ′0 = θ0 and tcum = 0;
Step 2: generate τ = τ(i) according to the following probability mass function, where the
constant c(c ≥ 1) controls the “tendency” of uniform weights, as all vik s have the same
weights when c −→ ∞, while v1 or vn(i) (depending on i) will have the weight close to 1
when c −→ 1:

Stats 2022, 5 553

P(τ = vik) =
exp(vn(i)−k+1/c)

n(i)
∑

j=1
exp(vij /c)

, if i ≤ bN
3
c;

P(τ = vik) =
1

n(i)
, if bN

3
c ≤ i ≤ b2N

3
c;

P(τ = vik) =
exp(vik /c)

n(i)
∑

j=1
exp(vij /c)

, if i > b2N
3
c.

Step 3: update θt via deep Q network while keep θ′t = θtcum for all tcum < t < max{τ +
tcum, NT + 1};
Step 4: update tcum = tcum + τ and set θ′t = θtcum when t = tcum
Step 5: repeat Step 2 to Step 4 until tcum ≥ NT.

Figure 2. The proposed convolutional deep Q-network (CDQN) with random perturbation (rp), that
is, CDQN-rp algorithm for quantitative trading. First we store the (current state, next state, action,
reward) tuples into the replay memory. The reward is then calculated based on the transaction costs
(TCs) that we have modeled. Next, a sample from the replay memory is used to train the CDQN.
During the training process, we apply the rp technique to update the target network. The action
selected during the learning is based on both exploration and exploitation with the exploration rate
following exponential decay. For decision making, we, or rather the agent, would select the action
with the highest Q value for a given state.

The max operator in standard Q-learning and DQN uses the same weights to select
and to evaluate a given action, resulting in overestimated values, as pointed out by van
Hasselt and colleagues (2016). Double Q-learning using two value functions with two sets
of weights, θ and θdouble, is proposed to prevent the overoptimistic value estimates. The
experiences are randomly assigned to update one of the two sets of weights. One set of
weights θ is used to select the greedy action while the other set of weights θdouble is used to
evaluate the value. For a clear comparison, the target Q-values in DQN can be rewritten as:

Qtarget = Rt+1 + γQ(St+1, argmax
a′

Q(St+1, a′; θ); θ) (12)

The target Q-values in Double DQN can be written as:

Qdouble = Rt+1 + γQ(St+1, argmax
a′

Q(St+1, a′; θ); θdouble) (13)

Stats 2022, 5 554

Similar to the random perturbation policy network, θdouble can take the same values as
θ′ defined above without sacrificing part of the data to build a different network. Therefore,
the random perturbation result can be directly applied to double Q-learning as well.

4. Experimental Results
4.1. General Context

A long/short trading system is trained using various trading strategies including the
newly proposed CDQNn-rp (convolutional deep Q-network with random perturbation)
algorithm, and based on the daily prices of stocks and cryptocurrency—AAPL (Apple Inc.),
FB (Meta Platforms, Inc.), and BTC (Bitcoin) from January 2017 to December 2021 while
utilizing the 4- week Treasury Bill data to help maximize the cumulative rewards. The
Treasury Bill is served as the risk-free asset. If we do not hold a long position on the risky
asset, we invest our money in the risk-free asset. The prediction results are compared
using different trading strategies for the year 2021. All data were downloaded freely from
Google Finance (https://www.google.com/finance/?hl=en, accessed on 17 March 2022)
and the Min-max normalization is used to preprocess the data. The real data experiments
are divided into two parts. The first is to compare the total cumulative wealth and the
Sharpe ratio using different trading strategies, based on a single stock or cryptocurrency.
The second part is to demonstrate that our new random perturbation technique can indeed
improve the learning results in terms of both cumulative wealth and Sharpe ratio. The
hyper-parameters used in the experiments are shown in Appendix A Table A1.

4.2. Different Trading Strategies in Cumulative Wealth and Sharpe Ratio

The following trading strategies are compared:

Buy and Hold: traditional buy and hold strategy
LSTM: trading based on LSTM predictions
DQN: naive deep Q-network with single stock price
DQNn: deep Q-network with n consecutive daily prices
CDQNn: convolutional deep Q-network with n consecutive daily prices
CDQNn_rp: convolutional deep Q-network with n consecutive daily prices, trained with
random perturbation target network

For reinforcement learning (RL) based strategies, namely, DQN, DQNn, CDQNn and
CDQNn-rp, the cumulative reward is compared directly. For the trading strategy using
the nueral network LSTM, we first use LSTM to train the model and then predict the daily
prices in 2021 (252 daily prices). Next, based on the predicted prices, we can calculate the
rewards of different action choices. For a given action, if the net profit after subtracting the
transaction cost is positive, we then select such action to calculate the cumulative rewards.

Figures 3–5 show the cumulative rewards curves and the Sharpe ratio based on
different trading strategies corresponding to AAPL, FB, and Bitcoin respectively. For AAPL
and FB, LSTM performs the worst, getting little profit at the end of the period. The naive
DQN produces the same result exactly as the buy and hold strategy for AAPL. The reason
is that from a single daily price, the system cannot learn the overall trend and thus cannot
distinguish the differences between the input. Subsequently, all positions are long positions
in naive DQN, making it identical to the buy and hold strategy. While for FB, the naive
DQN generates nearly flat cumulative reward with most of the profits coming from the
risk-free asset, which means the naive DQN completely fails in this case. For DQN5 for
AAPL, using 5 consecutive past prices improves the final cumulative reward as the final
reward for DQN5 is 109.08, over twice that of the naive DQN reward at 40.34. If we
increase the number of consecutive days to 10, namely DQN10, the final reward is 118.11,
only slightly better than that from DQN5. If we further increase n to 15, the final reward
increases to 129.90 and the DQN15 curve lies above those of DQN5 and DQN10 most of the

https://www.google.com/finance/?hl=en

Stats 2022, 5 555

time, indicating that DQN15 is a better choice compared to DQN5 or DQN10. If we add
the convolutional layers, the CDQN outperforms other methods drastically, as the final
reward goes up to 243.83 in CDQN20 which is the best scenario among all CDQNs. The
convolutional and pooling layers can indeed recognize the “trading signals” automatically
and thus improve the trading results. For FB, the best scenario for cumulative wealth
happens when n = 25, after which the cumulative wealth will decrease. While for Bitcoin,
the largest cumulative wealth corresponds to n = 20. All AAPL, FB and Bitcoin show the
same pattern that the cumulative wealth will increase first and then decrease when we
increase the parameter n. Detailed cumulative rewards are summarized in Table 1.

In terms of the Sharpe ratio, the situation is similar. The Sharpe ratio is calculated
using the past 30 daily returns. The best case for AAPL, FB, and Bitcoin is n = 20, n = 25
and n = 25 respectively, slightly different from the cumulative wealth situation. However,
the overall trend for n is the same and we can conclude that CDQN outperforms DQN,
the buy and hold strategy, and LSTM. One potential issue of the RL trading strategies is
that most RL methods do not involve risk measure in quantitative trading. Indeed the
magnitude of Sharpe ratio is not satisfactory compared to that of the cumulative wealth,
which maybe partly due to the impact of the COVID-19 pandemic to the financial market.
How to improve the current trading strategies rendering them more resistant to risk shall
be our future work.

(a) (b)

Figure 3. Different trading strategies for AAPL (Apple Inc.). (a) The left figure shows the cumulative
wealth curves in 2021 using different trading algorithms including DQNn (n ∈ {1, 5, 10, 15}), CDQNn
(n ∈ {10, 15, 20, 25}), Buy and Hold, and LSTM. (b) The right figure shows the Sharpe ratio curves in
2021 using DQN15, CDQNn (n ∈ {10, 15, 20, 25}), Buy and Hold, and LSTM.

(a) (b)

Figure 4. Different trading strategies for FB (Meta Platforms, Inc.). (a) The left figure shows the cumu-
lative wealth curves in 2021 using different trading algorithms including DQNn (n ∈ {1, 5, 10, 15}),
CDQNn (n ∈ {10, 15, 20, 25, 30, 35}), Buy and Hold, and LSTM. (b) The right figure shows the Sharpe
ratio curves in 2021 using DQN15, CDQNn (n ∈ {10, 15, 20, 25, 30, 35}), Buy and Hold, and LSTM.

Stats 2022, 5 556

(a) (b)

Figure 5. Different trading strategies for BTC (Bitcoin). (a) The left figure shows the cumulative
wealth curves in 2021 using different trading strategies including CDQNn (n ∈ {5, 10, 15, 20, 25, 30})
and Buy and Hold. (b) The right figure shows the Sharpe ratio curves in 2021 using CDQNn
(n ∈ {5, 10, 15, 20, 25, 30}) and Buy and Hold.

Table 1. Cumulative Wealth for Different Datasets.

Methods AAPL FB BTC

DQN 40.34 23.37
DQN10 118.11 89.26

CDQN10 134.13 313.58 134,939
CDQN15 171.20 508.15 160,155
CDQN20 218.26 541.91 269,967
CDQN25 150.47 680.13 258,032
CDQN30 411.05 153,604

Buy and Hold 39.74 64.06 14,861

The reason that LSTM performs poorly is partly due to the lag effect, as the price
change cannot be captured in time, leading the position prediction inaccurate. Another
reason coms from the transaction costs. Although LSTM can sometimes predict the trend
of the stock, the magnitude of change in price is not always captured. The mean squared
error (MSE) for LSTM using one day ahead forecast is 2.54. Consequently, LSTM may
lose many trading opportunities because the predicted change in price cannot cover the
transaction costs. From these results, we find that the supervised machine learning methods
may not learn the process as efficient as the RL methods. The strategies built from the
DQN, especially CDQN can also easily outperform the traditional buy and hold strategy.
Furthermore, the technique of using stacked prices as input can greatly improve the
cumulative reward due to the fact that the price of a security is path-dependent.

4.3. The Effect of Random Perturbation

The objective of this section is to compare the cumulative wealth and the Sharpe
Ratio between the fixed step target network and random perturbation target network.
As shown in Figure 6, for all three datasets, the random perturbation can improve the
learning result in terms of the cumulative wealth, with detailed results summarized in
Table 2. The figure shows the comparison between the cumulative wealth with or without
the random perturbation target network. Clearly, for all cases, CDQN10, CDQN15, and
CDQN20 (also CDQN25 for FB as the best scenario is n = 25 for FB), the application of
random perturbation can lead to higher cumulative wealth. Figures 7–9 show that the
random perturbation improves the Sharpe ratio as well, in all three cases, based on AAPL,
FB, and Bitcoin respectively. Another advantage of the random perturbation is that the
Sharpe ratio curve trained with random perturbation becomes more stable compared to
that trained with the fixed step target network, especially for AAPL.

Stats 2022, 5 557

Table 2. Random Perturbation Effect on Cumulative Wealth for Different Datasets. The term “rp” in
the parenthesis denotes the random perturbation technique.

Methods AAPL AAPL(rp) FB FB(rp) BTC BTC(rp)

CDQN10 134.13 151.77 313.58 340.12 134,939 205,791
CDQN15 171.20 188.49 508.15 531.92 160,155 247,023
CDQN20 218.26 243.83 541.91 551.52 269,967 278,092

(a) (b) (c)

Figure 6. The effect of random perturbation measured by cumulative wealth. (a) The left figure
shows the comparison between the cumulative wealth curves with or without the random per-
turbation technique in CDQN10, CDQN15, and CDQN20 for AAPL. (b) The middle figure shows
the comparison between the cumulative wealth curves with or without the random perturbation
technique in CDQN10, CDQN15, CDQN20, and CDQN 25 for FB. (c) The right figure shows the com-
parison between the cumulative wealth curves with or without the random perturbation technique
in CDQN10, CDQN15, and CDQN20 for BTC.

(a) (b) (c)

Figure 7. The effect of random perturbation measured by Sharpe ratio for AAPL. (a) The left figure
shows the comparison between the Sharpe ratio curves with or without the random perturbation
technique in CDQN10. (b) The middle figure shows the comparison between the Sharpe ratio curves
with or without the random perturbation technique in CDQN15. (c) The right figure shows the
comparison between the Sharpe ratio curves with or without the random perturbation technique
in CDQN20.

(a) (b) (c)

Figure 8. The effect of random perturbation measured by Sharpe ratio for FB. (a) The left figure shows
the comparison between the Sharpe ratio curves with or without the random perturbation technique
in CDQN15. (b) The middle figure shows the comparison between the Sharpe ratio curves with or
without the random perturbation technique in CDQN20. (c) The right figure shows the comparison
between the Sharpe ratio curves with or without the random perturbation technique in CDQN25.

Stats 2022, 5 558

Figure 9. The effect of random perturbation measured by Sharpe ratio for BTC. (a) The left figure
shows the comparison between the Sharpe ratio curves with or without the random perturbation
technique in CDQN10. (b) The middle figure shows the comparison between the Sharpe ratio curves
with or without the random perturbation technique in CDQN15. (c) The right figure shows the
comparison between the Sharpe ratio curves with or without the random perturbation technique
in CDQN20.

5. Discussion

Problems for which reinforcement learning (RL) is applicable usually involve a long-
term reward that needs to be optimized and a sequence of decisions that needs to be learned.
Quantitative trading is such a problem. In this section, we first recap the new RL method
for quantitative trading that we have proposed in this work, and proceed to summarize
our conclusions, limitations, and future research directions.

To recap, we first proposed the near-quadratic transaction cost model based on several
key factors, such as market impact and bid/ask spread, which is often neglected by most
papers work on quantitative trading. We then developed the convolutional deep Q-network
(CDQN) with stacked prices strategy for trading. We addressed the connection between the
convolution in deep learning and the technical analysis in traditional finance. Our analysis
focused on selecting different number of historical prices, adding the convolutional and
the pooling layers, and subsequently comparing these strategies to both the traditional buy
and hold strategy and the modern LSTM stock prediction method.

We tested our methods by devloping RL trade strategies based on AAPL, FB, and
BTC daily prices in 2021, and the results demonstrated that CDQN outperforms other
commonly used trading strategies when transaction cost is included. In terms of the
Sharpe ratio measurement, our CDQN method fluctuates a lot, indicating that our method
cannot recognize all some sudden change points in the time series. This is especially
pronounced for Bitcoin (BTC) as the cryptocurrency market can be especially volatile. To
improve the trading stability and be more resistant to risk events has be one of our research
foci. To solve the instability issue lying behind training a DQN, we have also designed
the random perturbation method which randomized the step used to update the target
network. This method can also be embedded on top of the double Q-networks without
training a completely different network. We have demonstrated that our new random
perturbation method can help the agent learn the environment faster than the typical fixed
step DQN. In addition, for future studies, apart from the historical prices, other covariates
such as socioeconomic variables, both domestic and international, will be added to capture
the market information and to account for more exogeneous influences.

At present, one single asset is traded in our work—further research is needed to estab-
lish and to adjust the optimal portfolio weights. Furthermore, we will consider extending
the action space from discrete to continuous to have better real-world applications. In this
work, our focus was on methodology development, and we could run our algorithms on a
personal computer in a span of hours. A related issue to be addressed, with a portfolio of
equities and with continuous action space, will be the computational cost and efficiencies.
Finally, in the future, we would also like to investigate different reward functions for our
RL trading algorithms. Many reward functions in the quantitative trading field do not
include risk measures, while in practice, an investor often prioritizes the risk over the
net return.

Stats 2022, 5 559

Author Contributions: Conceptualization, T.Z. and W.Z.; methodology, T.Z.; software, T.Z.; vali-
dation, T.Z. and W.Z.; formal analysis, T.Z. and W.Z.; investigation, T.Z. and W.Z.; resources, T.Z.;
data curation, T.Z.; writing—original draft preparation, T.Z.; writing—review and editing, W.Z.;
visualization, T.Z.; supervision, W.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets analyzed in this study are openly available from Google
Finance at https://www.google.com/finance/?hl=en, accessed on 17 March 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RL reinforcement learning
AI artificial intelligence
DQN deep Q-network
CDQN convoluntional deep Q-network
rp random perturbation
CDQN-rp convoluntional deep Q-network with random perturbation target network

Appendix A

Table A1. The hyper-parameters used in CDQNrp and LSTM in real data experiments.

Hyper-Parameters Value

batch size 64
replay memory size 100,000

target network update frequency τ 5000, 8000, 10,000, 20,000
uniform tendency c 5000

learning rate 0.00025
initial exploration 1
final exploration 0.01

decay rate 0.00025
number of episodes 1000

LSTM forecast one-step ahead
LSTM input units 50

References
1. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
2. Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osinski, B.; Campbell, R.H.; Czechowski, K.; Erhan, D.; Finn, C.; Kozakowski, P.; Levine, S.;

et al. Model-based reinforcement learning for atari. arXiv 2019, arXiv:1903.00374.
3. Mosavi, A.; Faghan, Y.; Ghamisi, P.; Duan, P.; Ardabili, S.F.; Salwana, E.; Band, S.S. Comprehensive review of deep reinforcement

learning methods and applications in economics. Mathematics 2020, 8, 1640. [CrossRef]
4. Collins, A.G.E. Reinforcement learning: Bringing together computation and cognition. Curr. Opin. Behav. Sci. 2019, 29, 63–68.

[CrossRef]
5. Zhong, Y.; Wang, C.; Wang, L. Survival Augmented Patient Preference Incorporated Reinforcement Learning to Evaluate Tailoring

Variables for Personalized Healthcare. Stats 2021, 4, 776–792. [CrossRef]
6. Sun, S.; Wang, R.; An, B. Reinforcement Learning for Quantitative Trading. arXiv 2021, arXiv:2109.13851.
7. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
8. Moody, J.; Saffell, M. Reinforcement learning for trading. Adv. Neural Inf. Process. Syst. 1998, 11, 918–923.
9. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
10. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]

https://www.google.com/finance/?hl=en
http://doi.org/10.1177/0278364913495721
http://dx.doi.org/10.3390/math8101640
http://dx.doi.org/10.1016/j.cobeha.2019.04.011
http://dx.doi.org/10.3390/stats4040046
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442

Stats 2022, 5 560

11. Edelen, R.; Evans, R.; Kadlec, G. Shedding light on “invisible” costs: Trading costs and mutual fund performance. Financ. Anal. J.
2013, 69, 33–44. [CrossRef]

12. Edelen, R.M.; Evans, R.B.; Kadlec, G.B. Scale Effects in Mutual Fund Performance: The Role of Trading Costs. 17 March 2007.
Available online: https://ssrn.com/abstract=951367 (accessed on 1 May 2022). [CrossRef]

13. Scherer, B.; Martin, R.D. Modern Portfolio Optimization with NuOPTTM, S-PLUS®, and S+ BayesTM; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2007.

14. Lecesne, L.; Roncoroni, A. Optimal allocation in the S&P 600 under size-driven illiquidity. In ESSEC Working Paper; Amundi
Institute: Paris, France, 2019.

15. Chen, P.; Lezmi, E.; Roncalli, T.; Xu, J. A note on portfolio optimization with quadratic transaction costs. arXiv 2020,
arXiv:2001.01612.

16. Murphy, J.J. Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications; Penguin: New
York, NY, USA, 1999.

17. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
18. Spoerer, C.J.; Kietzmann, T.C.; Mehrer, J.; Charest, I.; Kriegeskorte, N. Recurrent neural networks can explain flexible trading of

speed and accuracy in biological vision. PLoS Comput. Biol. 2020, 16, e1008215. [CrossRef] [PubMed]
19. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.
20. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.

http://dx.doi.org/10.2469/faj.v69.n1.6
https://ssrn.com/abstract=951367
http://dx.doi.org/10.2139/ssrn.951367
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1371/journal.pcbi.1008215
http://www.ncbi.nlm.nih.gov/pubmed/33006992

	Introduction
	Reinforcement Learning Structure
	Markov Decision Process
	Action–Value Functions and Q-Learning
	Additive Profits, Multiplicative Profits and Sharpe Ratio

	Methodology
	Transaction Cost Model
	Stacked Prices State
	Convolutional Deep Q-Learning Network
	Deep Q Networks with Random Perturbation

	Experimental Results
	General Context
	Different Trading Strategies in Cumulative Wealth and Sharpe Ratio
	The Effect of Random Perturbation

	Discussion
	Appendix A
	References

